Ultralow-power silicon photonic interconnect for high-performance computing systems
Ultralow-power silicon photonic interconnect for high-performance computing systems
18 January 2010
The Ultra-performance Nanophotonic Intrachip Communication (UNIC) project aims to achieve unprecedented high-density, low-power, large-bandwidth, and low-latency optical interconnect for highly compact supercomputer systems. This project, which has started in 2008, sets extremely aggressive goals on power consumptions and footprints for optical devices and the integrated VLSI circuits. In this paper we will discuss our challenges and present some of our first-year achievements, including a 320 fJ/bit hybrid-bonded optical transmitter and a 690 fJ/bit hybrid-bonded optical receiver. The optical transmitter was made of a Si microring modulator flip-chip bonded to a 90nm CMOS driver with digital clocking. With only 1.6mW power consumption measured from the power supply voltages and currents, the transmitter exhibits a wide open eye with extinction ratio >7dB at 5Gb/s. The receiver was made of a Ge waveguide detector flip-chip bonded to a 90nm CMOS digitally clocked receiver circuit. With 3.45mW power consumption, the integrated receiver demonstrated -18.9dBm sensitivity at 5Gb/s for a BER of 10-12. In addition, we will discuss our Mux/Demux strategy and present our devices with small footprints and low tuning energy.
Venue : N/A
File Name : Sun_SpieOpto2009_LowPowerSiPhotonics.pdf