Private Federated Learning with Domain Adaptation
Private Federated Learning with Domain Adaptation
01 March 2022
Federated learning (FL) was originally motivated by communication bottlenecks in training models from data stored across millions of devices, but the paradigm of distributed training is attractive for models built on sensitive data, even when the number of users is relatively small, such as collaborations between organizations. For example, when training machine learning models from health records, the raw data may be limited in size, too sensitive to be aggregated directly, and concerns about data reconstruction must be addressed. Differential privacy (DP) offers a guarantee about the difficulty of reconstructing individual data points, but achieving reasonable privacy guarantees on small datasets can significantly degrade model accuracy. Data heterogeneity across users may also be more pronounced with smaller numbers of users in the federation pool. We provide a theoretical argument that model personalization offers a practical way to address both of these issues, and demonstrate its effectiveness with experimental results on a variety of domains, including spam detection, named entity recognition on case narratives from the Vaccine Adverse Event Reporting System (VAERS) and image classification using the federated MNIST dataset (FEMNIST).
Venue : A Springer book entitled “Federated and Transfer Learning”
File Name : private_fl_da.pdf
File Name : CAL_ST_EN_Springer (1).docx