A Parallel and Scalable Processor for JSON Data.

A Parallel and Scalable Processor for JSON Data.

23 March 2018

Increasing interest in JSON data has created a need for its efficient processing. Although JSON is a simple data exchange format, its querying is not always effective, especially in the case of large repositories of data. This work aims to integrate the JSONiq extension to the XQuery language specification into an existing query processor (Apache VXQuery) to enable it to query JSON data in parallel. VXQuery is built on top of Hyracks (a framework that generates parallel jobs) and Algebricks (a language-agnostic query algebra toolbox) and can process data on the fly, in contrast to other well-known systems which need to load data first. Thus, the extra cost of data loading is eliminated. In this paper, we implement three categories of rewrite rules which exploit the features of the above platforms to efficiently handle path expressions along with introducing intra-query parallelism. We evaluate our implementation using a large (803GB) dataset of sensor readings. Our results show that the proposed rewrite rules lead to efficient and scalable parallel processing of JSON data.


Venue : EDBT