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—— Abstract

Virtual machines (VMs) with dynamic compilers typically specialize compiled code to the state
of the running VM instance and thus cannot reuse the code between multiple runs of the same
application. The JIT compiler must recompile the same methods for each run of the application
separately, which can prolong the application’s warmup time. We propose a technique to reduce
compilation time by reusing a highly optimized intermediate representation (IR). We achieve this
by tracing compiler-interface calls during compilation. The validity of the specializations in the
IR is verified during a replay stage, and the replay also facilitates the relocation of runtime object
references. The IR is stored on a compilation server, which can compile it to machine code and
provide the code to local or remote VM instances. We implemented a compilation server with
IR caching for GraalVM, a high-performance production-grade Java Virtual Machine (JVM). We
present an evaluation based on four industry-standard benchmark suites. In each suite, our approach
reduces compilation time by 23.6% to 36.8% and warmup time by 13.1% to 21.2% on average while
preserving peak application performance.
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1 Introduction

Modern virtual machines (VMs) achieve high application performance by leveraging optimiz-
ing dynamic compilers. After a VM starts, the application typically experiences a warmup
phase [2] until the performance-sensitive methods are compiled at the highest optimization
level. The VM usually has to repeat these compilations for each run of the application. The
latency of the compilation tasks is one of the factors contributing to the application’s cold
start. This problem is amplified when many VM instances execute the same application,
such as in horizontally scaled deployments with demand-based elasticity and in serverless
computing [5].

The goal of our work is to reuse compilation results from a past run of the same application
on the same VM version and platform. For brevity, we refer to a single run of the application
as a VM run, and we want to reuse compilations from a source VM instance in a target VM
instance. Reusing past compilation results reduces the work performed by the JIT compiler
in a VM run (compilation time). Depending on the workload’s sensitivity to the latency of
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Reusing Highly Optimized IR in Dynamic Compilation

Listing 1 An example where the compiler may specialize the compiled log method to the state
of the running VM instance.

1 class Logger {

2 static final int level = Integer.parselnt(System
3 .getProperty("logLevel"));

4

5 static final PrintStream stream = createStream();
6

7 static void log(int logLevel, String message) {
8 if (logLevel >= level) {

9 stream.println(message);

10 }

11 }

12}

compilation tasks, we can also reduce the time it takes for the application to reach peak
performance (warmup time). However, it is challenging to reuse the code compiled by a highly
optimizing compiler because the compiled code is specialized to the source VM instance.

To illustrate how a dynamic compiler tailors code to the source VM instance, consider the
log method in Listing 1. The compiler may read the value of the level field at compilation
time and embed its value in the machine code. Similarly, the compiler can read the value of
the stream field, obtaining an object address that it can embed in the generated code.

These transformations improve performance by moving computation from run time to
the compilation stage, but they pose a challenge to code reuse. For example, the compiled
code implicitly assumes that the level field holds a particular value. The field’s value could
differ in another VM run, rendering the code incorrect for reuse. Moreover, the reference to
the Java object constant obtained from the stream field requires relocation before we can
reuse the code in another VM run. We give an overview of more problems with code reuse in
Section 2.

The main idea of our paper is that the specializations of the code to the state of the
running VM can be valid even in future VM runs of the same application. We can reuse
compilation results from the source VM instance in the target VM instance, provided that it
is possible to validate that the reused code would behave correctly in the target VM instance
and relocate the references to VM objects. Both issues are solved by recording and replaying
a compilation trace. To reduce the overall compilation time with this technique, we also need
to ensure that validation succeeds for enough compilation units when the source and target
VM instances execute the same application. We achieve this by modifying the compiler
and caching the optimized intermediate representation (IR) rather than the compiled code
because the IR is less specific to the target VM instance and easier to patch.

To reuse the IR compiled for method log, we must verify that the transformations
performed during the original compilation for the source VM instance are correct in the
target VM instance. Therefore, during compilation in the source VM instance, we record the
calls from the compiler to the VM that query the VM’s state, obtaining a compilation trace
such as the one in Listing 2. In the target VM instance, we replay these calls to validate
that they produce compatible results, and we use the computed VM object references as
relocations. %2 is a trace variable that stands for the level field, which we obtained as index
32 into the constant pool of the Logger class. The field’s value read by the compiler was 4,
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Listing 2 A snippet of a compilation trace captured during a compilation of the log method
from Listing 1.

1 (%0 is the Logger#log method)

2 declaringClass (%0) = %1 (%1 is the Logger class)

3 getBytecode (%0) = ... (the result is binary data)

4 lookupField (%1,32) = %2 (%2 is the Logger#level field)
5 isFinalField (%2) = true

6 readFieldValue (%2) = 4

7 lookupField (%1,48) = %3 (%3 is the Logger#stream field)
8 isFinalField (%3) = true

9 readFieldValue (%3) = %4 (%4 is a Java object constant)
10 isConstantNull (%4) = false

which we can validate in the target VM instance. The value read from the stream field is
an object constant stored in trace variable %4, which we can use for relocation. We explain
compilation tracing and replay in Section 3.

We implemented the approach for GraalVM [28]. GraalVM is the HotSpot [29] Java
Virtual Machine (JVM), where the C2 compiler [35] is replaced with the high-performance
GraalVM compiler. Based on the GraalVM compiler, we created a compilation server
[18, 19, 1, 24] capable of compiling code for local and remote client VM instances over the
network. The server can also cache the IR intended for reuse and compile the stored IR
into machine code. Thanks to this design, multiple client VMs can share and benefit from
the IR cache. To minimize the overall compilation latency, the client VMs employ a hybrid
compilation strategy: they offload only large compilations where the server can leverage the
IR cache. All other compilations are completed using the VM’s local JIT compiler. We
describe the design in Section 4.

We evaluate the approach on the DaCapo 23.11 MR1 [3], Renaissance 0.15 [39], and
ScalaBench 0.1.0 [44] benchmark suites. Compared to the unmodified GraalVM baseline,
hybrid compilation using a co-located compilation server with a pre-populated IR cache
decreases compilation time by 23.6% to 36.8% and warmup time by 13.1% to 21.2% in every
evaluated suite on average. We verified using the DaCapo suite that the benefits of our
approach remain substantial when the server and the client VM are separated by a local
network. We present the evaluation in Section 5 and describe the related work in Section 6.

Although we focus on the context of a modern JVM, the key concepts of the approach and

the challenges faced by our implementation are likely transferable to other similar platforms.

Specifically, the technique to cache and reuse the optimized IR assumes that there is a
well-defined and interceptable interface between the VM and the compiler and that the
compiler starts with an IR that is not overly specific to the target VM instance (other than
references to VM objects). We believe these assumptions to be a common design element of
environments with dynamic compilation, though other technical details can also influence
the practicality of the approach.

In summary, we contribute the following:

An approach to reuse highly optimized IR by compilation tracing and replay.

A case study on a production-grade VM outlining the changes to the compilation pipeline

to leverage the approach to achieve an overall improvement in compilation metrics.

An empirical evaluation on industry-standard benchmarks, which shows that the technique

reduces compilation time and can improve warmup time while preserving the application’s

peak performance.
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Listing 3 A class with a method whose compiled code may not be reusable.

class Filter {
static final Options options = getOptions();

1

2

3

4 void filter (Collection<Integer > numbers) {
5 Predicate<Integer> isOutlier =

6 (n) -> n > options.threshold;

7 numbers .removelf (isOutlier);

8

9

2  Reusability of Optimized Code

The code compiled by an optimizing dynamic compiler is usually not reusable across VM
runs. This section summarizes the obstacles to code reusability in a modern JVM [37], with
practical examples from the HotSpot JVM [29]. These challenges are caused by dynamic
code loading and by optimizations that specialize the code to the state of the target VM
instance, which are concepts relevant to many modern VMs.

2.1 Equivalence of Loaded Classes

A dynamic compiler tailors the code to the definitions of the loaded classes at a given time.
To reuse code compiled for a source VM instance, we must ensure that the classes on the
target VM instance are equivalent to the classes loaded by the source VM instance. However,
a modern JVM may generate classes at runtime and modify the bytecode for optimization
purposes. An application can trigger class loading at any time, so we must not expect that
the target VM has precisely the same set of loaded classes.

For example, consider the filter method in Listing 3. In the HotSpot JVM, the first
execution of the method runs the initialization code for the lambda expression [27], which
loads a dynamically generated class representing the function object instance. We must ensure
that even the generated classes have compatible definitions between VM runs. However,
the generated class is assigned a name that is not stable between VM runs [6]. In addition,
HotSpot modifies an operand of a bytecode instruction to link it with a function object
factory. As a result, the bytecode of the filter method may also differ between VM runs.

2.2 Specialization to Application State

The compiler may evaluate loads from static final fields and even final instance fields if the
receiver is a constant. This transformation removes a potentially expensive operation from
the code and may also enable other optimizations. For example, in the body of the lambda
expression in Listing 3, the compiler may fold the load of the options field. If threshold
is a final instance field, the compiler can fold the load of this field as well. Although these
specializations improve code quality, they restrict reusability. In future VM runs, the values
of the static and instance fields could differ, rendering the compiled code incorrect for reuse.

2.3 Speculations and Assumptions

The compiler’s optimization decisions may involve speculation [11] based on the application’s
past behavior and profiling feedback. These speculations and assumptions narrow the scope
where the compiled code is applicable, but they may improve performance.
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For example, the call to the removeIf method in Listing 3 produces a null pointer excep-
tion if the call’s receiver is null. If such a situation never occurred previously, the compiler
may speculatively omit the exception-throwing branch and instead emit a deoptimization [16].
This allows the compiler to focus only on the likely execution paths, but such compiled code
is only beneficial if removeIf is not invoked with a null argument.

The compiler can make assumptions about the loaded classes. For example, List is
an interface with possibly multiple implementations, making the removeIf call indirect.
However, if only a single implementation is loaded, the compiler converts the call to a direct
one and records the assumption about the interface having a single implementation. The VM
invalidates the compiled code when it loads another implementation of the List interface.
Such assumptions limit the reusability of the code, but they typically improve performance.

Lastly, the compiled code may contain implicit assumptions about the VM'’s state. For
example, in Java, classes have static initializers [25], which the runtime invokes when a class
is first referenced. If a class is already initialized, the compiled code does not need to check
its initialization status. However, such code may not be reusable in another VM run, where
the same classes might not yet be initialized.

2.4 Coupling with VM State

The compiler may encode absolute addresses, relative addresses, and offsets of various VM
objects in the compiled code. These values usually change between VM runs, making the
compiled code not directly reusable. For example, the call to the removeIf method in
Listing 3 is compiled with the callee’s address embedded in the machine code.

We could attempt to reuse the code by finding relocations for the referenced VM objects
and patching their values in the machine code. Java objects have identities, so we must
relocate them with identical objects to preserve the program’s correctness. However, patching
the values in the machine code is difficult because accessing the replacement value may
require a different instruction sequence than the one emitted initially.

3 Compilation Tracing and Replay

Although dynamic compilers tailor code to the running VM, these specializations can often
remain valid even in future VM runs, much like past profiles can inform future optimization
decisions. To capture all dependencies of the compilation result on the state of the running
application and source VM instance, we record the compiler’s calls through the VM’s compiler
interface, yielding a compilation trace. In the target VM instance, where we want to reuse the
compilation, we replay the compilation trace to validate that the compilation is compatible
with the actual state of the running application and to compute relocations for VM object
references.

Figure 1 shows a summary of compilation tracing, which this section explains in detail.
In a tracing stage, we compile a method in a source VM instance up to a point of reuse
to obtain the compilation unit’s optimized IR (step 1). We use the compilation trace (2)
to replace VM object references in the IR with trace variables (3). Lastly, we store the
IR (4) along with the compilation trace in the IR cache (5). The IR depicted in Figure 1
is that of the log method from Listing 1. Interpreting the IR semantics is not essential to
understanding the approach; Figure 1 uses Graal IR [10] as an illustration.

In a replay stage, we retrieve the compilation trace from the IR cache (step 6) to replay
the trace in a target VM instance and validate the results. If the validation succeeds (7),
we retrieve the cached IR (8) and replace the references to trace variables in the IR with
references to VM objects (9). Finally, we compile the IR to machine code (10) and prepare
it for execution on the target VM.
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Figure 1 Overview of compilation tracing and replay. The IR format is based on Graal IR [10];
thick lines are control-flow edges, thin lines are data-flow edges.

3.1 Point of Reuse

We cache partial compilation results (the optimized IR) [37] instead of the final compiled
code because it is less specialized to the state of the target VM instance. To enable IR reuse,
we trace the compiler-interface calls in the compiler passes up to the designated point of
reuse. The compiler can resume the compilation pipeline starting from the point of reuse in
order to compile the cached IR to machine code.

The point of reuse should be as late as possible in the compilation pipeline to minimize
the amount of work necessary to finish the compilation. However, it must be early enough so
that references to VM objects can be relocated. If the point of reuse is early enough so that
it is still possible to optimize the IR, the transformations that make the IR overly specific
to the running VM instance can be deferred [37] until after the point of reuse. With these
transformations deferred, the compiled machine code can benefit from specialization to the
target VM instance while keeping the cached IR reusable.

In summary, the advantages of caching the IR are that

(i) patching the IR is easier than the compiled code,
(ii) we avoid all coupling introduced by late compiler passes after the point of reuse, and

(i) transformations that introduce coupling to the source VM instance can be deferred
until after the point of reuse.

3.2 Tracing

Compilation tracing records inputs to the compiler that influence a method’s compila-
tion. Therefore, the trace contains all assumptions about the application’s and VM’s state.
Moreover, the trace captures the origin of every VM object reference that appears in the IR.

In the tracing stage, we run the compilation pipeline up to the point of reuse, obtaining
an IR and an associated compilation trace. The compilation trace is a list of the compiler’s
queries sent to the VM with their arguments and results.
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A value in the compilation trace may be a literal or a trace variable substituting a VM
object. For example, the bytecode of the compiled methods and the values of primitive
constants are embedded in the trace as literals. In Figure 1, trace variable %4 substitutes
a Java object constant obtained by reading the value stored in field %3. Trace variable %5
substitutes a VM’s representation of a method.

After obtaining the IR and the compilation trace, we replace all references to VM objects
in the IR with the trace variables. Finally, we store the IR and the compilation trace in the
IR cache.

3.3 Replay

In the replay stage, we retrieve the IR and the associated compilation trace from the IR
cache. The goal is to verify that we can safely reuse the IR without causing the application
to misbehave and to finish compiling the IR to machine code.

We replay the trace by iterating over the individual operations. For each operation, we
first replace the trace variables in the argument list with the instances of VM objects they
substitute. After that, we execute the operation in the target VM and examine its return
value. If the trace’s result is a trace variable referenced for the first time, then the return
value of the operation defines the value of that trace variable. Otherwise, we validate that
the return value is compatible with the result captured in the trace. Compatibility can be
verified by checking that the results are equal or with an operation-specific check, as we
explain in Section 4.

If the validation fails for an operation, we cannot use the IR for the target VM instance
at this time. If the validation succeeds, all trace variables have assigned values. We proceed
by substituting the trace variables in the IR with their values. Finally, we run the rest of the
compilation pipeline, starting from the IR and obtaining the machine code for the target
VM instance.

4 Implementation

Compilation tracing serves as a blueprint for validating the reusability of prior compilation
results. To improve the overall compilation time using this approach, we must ensure that
the cached IR is generally reusable, and we need a mechanism to share it among multiple
VMs that might execute on different machines.

We implemented compilation tracing in GraalVM [28]. GraalVM is the HotSpot JVM [29]
where the GraalVM compiler replaces the C2 compiler [35]. On top of this, we created a
compilation server [19, 24] capable of IR caching, allowing local or remote VM instances to
share a single IR cache.

Figure 2 shows an overview of our design, which this section explains in detail. In a
training run (left side of Figure 2), a source VM instance executes an application and offloads
compilation tasks to the compilation server (step 1). The server queries information from the
source VM instance (2), caches the compilation result (3), and returns the compiled code to
the source VM (4).

A subsequent run of the application may be executed as a replay run, which is sketched
on the right side of Figure 2. In a replay run, the target VM obtains a compilation trace from
the server (step A1), replays and validates it (A2), and returns the computed relocations to
the server (A3). The server compiles the cached IR (A4, A5) and returns the compiled code
to the target VM (A6). Compilation tasks that the target VM decides not to offload to the
server are completed using the VM’s local JIT compiler (step B1).

25:7
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Figure 2 Overview of the implementation with a compilation server.

The compilation server is a standalone Java application that uses the GraalVM compiler
as a library. The compilation client is implemented as an additional entry point of the
GraalVM compiler, with some modifications and additions to the compiler and the VM’s
compiler interface.

4.1 Practical Compilation Tracing

We implemented compilation tracing by instrumenting the classes comprising the VM’s
compiler interface, creating wrapper classes with a compatible interface. The traced operations
generally align with the granularity of the compiler-interface [40] calls exposed by the VM.
A key challenge of compilation tracing is handling information that varies between VM runs,
such as the bytecode, profiles, and dynamically generated classes.

Reusing Graal IR. The GraalVM compiler’s compilation pipeline is divided into two stages:
the front end and the back end. The front end parses the bytecode into a sea-of-nodes-based
IR [10], optimizes it, and lowers the IR to a control-flow-graph-based representation for the
back end. The compiler performs the majority of the optimization effort in the front end.
Based on our measurements (Section 5), the compiler spends on average about 81% of the
time in the front end, 14% in the back end, and 5% in the garbage collector triggered after
compilation or waiting for the VM to prepare the compiled code for execution. We cache and
reuse the IR at a point relatively late in the front end — before the compiler lowers portable
address nodes to machine-specific nodes. This allows us to patch the IR with VM-specific
information and defer the folding of field loads after the point of reuse (Section 4.2), while
still saving a significant portion of compilation time.

Tracing Profiling Information. The IR stored in the cache is compiled using profiles recorded
by the source VM instance. When the target VM instance reuses the IR from the cache, the
compiled code should be performant and unlikely to deoptimize [16] in the future. Therefore,
the cached IR should ideally be compiled using accurate and mature profiles.

After a target VM instance starts, we want to reuse IR as early as possible to leverage the
performance of the compiled code. By reusing cached IR early in an application’s lifecycle,
we can potentially benefit from the fact that the profiles used to compile the IR may more
accurately characterize the application’s future behavior than the profiles collected by the
target VM instance up to that point. For this reason, the replay stage does not verify the
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Listing 4 Encoding of the operation that returns the recorded receiver types.

1 getReceiverTypes (%0, 42) = {

2 com.example.Map/com.example.Main: %1,
3 com.example.Set/com.example.Main: %2,
4 3}

equivalence of profiling information between the source and target VM instances, and the

compilation trace does not capture any profiling information other than receiver-type profiles.

Receiver-type profiles are used during replay to locate some VM objects.

Receiver-Type Profiles. The VM records the types of receiver objects at virtual call sites
to guide the inlining [38] heuristics. The compiler queries the receiver-type profiles from
the VM, and the receiver types may be referenced in subsequent operations. Therefore, we
must assign trace variables to the recorded receiver types. We do this by capturing the
receiver-type profiles in the compilation trace.

Listing 4 illustrates the encoding of these profiles in the form of globally unique type
identifiers mapped to trace variables. In the example, the getReceiverTypes operation

returns the receiver types for a particular call site identified by the bytecode offset 42.

The recorded receiver types are com.example.Map and com.example.Set assigned to trace
variables %1 and %2, respectively.
Since multiple class loaders may load a class with the same name, the globally unique

identifier of a type comprises the class name and an identification of the type’s class loader.

We identify the class loader using the heuristic introduced by JITServer [19]: the loader’s
identifier is the name of the first class it loaded. In the above example, com.example.Main
is the class loader’s identifier.

In the replay stage, the goal is to map the trace variables to the respective types identified
by the globally unique name. If we cannot find a type (it may not be loaded yet), the replay
cannot continue and ends with a validation failure.

Dynamically Generated Classes. During execution, the VM may dynamically generate
classes whose class name is not a stable identity across VM runs. For example, the HotSpot
JVM loads generated classes to support lambda expressions and other core features. These
generated classes are loaded as hidden classes [6], which are intentionally designed not to be
discoverable by name, and their VM-assigned names vary between VM runs. The VM may

compile the methods of hidden classes, and they may also appear in profiles and get inlined.

To successfully validate compilation traces referencing hidden classes, we create stable class
names based on a digest computed from the binary data that defines the hidden class and
also from the Java objects passed to the static initializer of the hidden class.

Additionally, the code of an application may dynamically generate classes without using
the hidden class feature. We can successfully reuse the compilations referencing these classes

if their definitions are stable between VM runs and their class names uniquely identify them.

However, these conditions are not always satisfied: for example, the Catalyst Optimizer [13]
from the Apache Spark framework generates and assigns the exact same name to every
generated class. Our prototype does not support such a use case and experiences validation
failures. The problem could be fixed by adding a digest of the class definition to the class
name.
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Bytecode Modification. The VM can modify the operands of some bytecodes for optimiza-
tion purposes in a way that is not stable across runs. The compiler may use these values as
arguments in compiler-interface calls. To ensure the replayability of the compilation trace,
we do not embed any VM-specific operand values in the compilation trace. Instead, we use
an indirection specifying where to find the actual value in the target VM instance.

For example, our compiler interface offers an operation called lookupInvoke, which takes
a class and index argument and returns the representation of the method invoked at that
index. The compiler may obtain the index from an operand of a bytecode instruction and call
the lookupInvoke operation with the operand value. In the compilation trace, we encode
the operand value indirectly using the expression operandValue (%0, 16).

lookupInvoke (%1, operandValue (%0, 16)) = %2

During replay, we find the concrete index as the value in the bytecode of the %0 method
at bytecode offset 16. Then, we can replay the lookupInvoke operation with the concrete
argument value specific to the target VM instance.

Lastly, we must also validate that the bytecode of a particular method on the target VM
instance matches the bytecode of this method on the source VM instance. We do this by
comparing a canonicalized version of the bytecode, which does not contain any VM-specific
values.

4.2 Improving IR Reusability

To improve the overall compilation time using our approach, we need to increase the chances
that the IR stored in the cache passes validation so that we can reuse it. To this end, we
validate the results of some operations with less strict checks than equivalence. Moreover, we
use heuristics to defer optimizations that could break the IR’s reusability.

Relaxed Validation Checks. We reuse the cached IR even if it is more general than required
by the target VM instance. Specifically in the context of Java, if the cached IR leverages
an assumption about the loaded classes (e.g., only a single implementation of an interface
is loaded), we must check that the assumption holds in the target VM instance. However,
if such a fact holds in the target VM instance but the cached IR does not leverage it, we
consider this a validation success. Such a situation is expected when the cached IR is more
mature than the state of the target VM instance.

Similarly, classes, methods, and fields in Java have initialization stages [25]. To facilitate
IR reuse, we only require that a class, method, or field is in the same or later initialization
stage on the target VM instance as in the source VM instance.

Patterns Preventing Reuse. If the compiler specializes the IR to computed constants whose
values could change between VM runs, the IR may not be reusable. For example, consider
the ThreadLocal implementation [4] shown in Listing 5. When a ThreadLocal instance is
initialized, the threadLocalHashCode field is assigned a value based on a global counter. If a
thread-local value is stored in a static final field, the thread-local’s hash code is likely to differ
between VM runs. The compiler may embed this field’s value into methods that manipulate
the thread-local value, leading to non-reusable IR and replay failures. In OpenJDK, the
ClassValue implementation [41] also uses the same pattern, and similar patterns may appear
in the code of applications. We can mitigate these problems using deferred optimization.
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Listing 5 A snippet of the ThreadLocal implementation in OpenJDK (simplified).

1 class ThreadLocal {

2 final int threadlLocalHashCode = next.getAndAdd (INCREMENT) ;
3 static AtomicInteger next = new AtomicInteger();

4 3}

Deferred Optimization. We can allow the compiler to fold loads of computed constants
while keeping the IR reusable by deferring [37] this optimization to the replay stage. In the
context of Java, if we know that a particular field like the one in Listing 5 hinders reusability,
we do not allow the compiler to fold a load of this field in the tracing stage. The compiler
folds the field load in the replay stage when the VM-specific value of the field is known.

Deferring the folding of all fields is a disruptive change that leads to performance
degradation [37]. Therefore, we target only fields that may cause validation failures. Our
prototype implementation uses a simple condition: if the field’s type is int and its name
contains hash, we defer the folding. A more refined approach could select these fields based
on past observations: if validation fails due to mismatching values read from a field, the
field’s folding would be deferred in future tracing stages.

4.3 Remote Compilation

We implemented a compilation server [19, 1, 24] with the capability to reuse the IR from
past compilations. This allows multiple client VMs to share a single IR cache. Figure 2
shows a summary of the design. We implemented remote compilation and IR caching only
for the top-tier GraalVM compiler since the low-tier C1 compiler [20] completes compilation
tasks quickly and with a lower optimization level. To minimize compilation latency, the
client VMs utilize hybrid compilation, in which a heuristic decides whether a method should
be compiled by the VM’s local JIT compiler or using the cached IR on the server.

Compilation Server. In a remote compilation setup, a client VM sends compilation requests
to the server. The server compiles methods for the client VM’s platform, utilizing only
the information provided by the client. It is usually not possible to pack all the necessary
information [19] in the forwarded compilation request. Instead, the server queries the client’s
VM state via remote callbacks. We employ aggressive caching and prefetching to minimize
the number of remote callbacks. After completing the compilation, the server returns the
compiled code to the client VM.

Training Run. The compilation server starts with an empty IR cache, which gets populated
by a client VM that connects in training mode. In a training run, the compilation server
handles requests with compilation tracing enabled. When the compilation pipeline reaches
the point of reuse, the server stores the compilation trace and copies the IR into the cache.
After that, the server completes the rest of the compilation pipeline and returns the compiled
code to the client VM.

The IR cache is indexed by a symbolic representation of the compilation request. This
symbolic representation comprises the fully qualified name, arguments, and the return value
of the method to be compiled and the entry point if it is an on-stack-replacement (OSR) [12]
compilation.
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Replay Run. In a replay run, the client VM either chooses to compile locally or issues a
remote compilation request. The decision is based on a server-provided list of compilation
requests and other conditions, which we summarize later. In case of a remote compilation,
the server looks up a cached compilation result in the IR cache and transfers the stored
compilation trace to the client VM. The client VM replays and validates the trace. If
validation succeeds, the client replies with the computed mapping of trace variables to VM
objects. The server substitutes the trace variables with the VM object references in the IR,
completes the compilation, and returns the compiled code. In case of a validation failure,
the client VM completes the compilation request using its local JIT compiler instead.

The client VM must also handle recompilations. A recompilation of a method previously
compiled from the cached IR may occur after deoptimization [16] or a violated assumption
about the class hierarchy. In such a case, we cannot reuse the same IR to get a usable
compilation result and prevent endless deoptimization. For this reason, the client VM handles
recompilations by compiling from scratch using the local JIT compiler.

Permanent and Transient Validation Failures. Retrying to replay a compilation trace that
previously failed can improve the latency of some compilation tasks. As explained above,
the VM compiles a method using the local JIT compiler if the validation of a compilation
trace fails. However, the code compiled by the local JIT may get invalidated later, and the
VM may reissue an identical compilation request. We attempt to replay and validate the
compilation trace again if the reason for the past failure is an uninitialized or unresolved
class, unresolved field, or an uninitialized method. We consider these failures to be transient
because they may be resolved by the VM performing the required initialization [25]. We
consider other kinds of validation failures to be permanent, and the client VM never retries
to replay the same compilation trace again.

Hybrid Compilation. To improve the overall compilation time, client VMs offload only the
compilation requests where the IR cache is expected to bring a benefit. If there is no expected
benefit, the client VM should avoid increasing compilation latency by communicating with
the server. We estimate the potential savings based on the time the server spent compiling
the bytecode to the reusable IR in the training run, which we refer to as the pre-compilation
time. The pre-compilation time is an upper-bound estimate of the time a client VM can save
by compiling the cached IR on the server rather than locally from scratch. Therefore, at the
beginning of a replay run, the client VM obtains a list of compilation requests from the server
for which the server has cached IR and the pre-compilation time above a client-provided
threshold.

In the evaluated prototype, we set the pre-compilation time threshold to 20 milliseconds.
The optimal threshold value depends on the workload, the communication latency between
the client and the server, and the computing resources available to the client and server.

In summary, a client VM offloads a compilation request to the server if and only if all
conditions are satisfied:

(i) The compilation request is in the server-provided list.

(ii) There was no previous attempt to complete this compilation request that ended with a
permanent validation failure.

(iii) This compilation request was not already completed using the cached IR.
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5 Evaluation

The goal of this section is to understand how hybrid compilation impacts the performance
characteristics of standard Java and Scala workloads. We evaluate the workloads from major
benchmark suites [3, 39, 44]. To ensure that the improvements are not achieved by offloading
work to an additional machine or allocating more resources to the JIT compiler, we run
the compilation server co-located on the same machine as the client VM, and we do not
increase the number of concurrent compilation tasks. We first show the impact on key
compilation metrics reported by the HotSpot JVM [29]. Then, we analyze the impact on
peak performance and warmup time. Lastly, we evaluate how successful our prototype is
in reusing and validating the cached IR and explain the reasons for the observed validation
failures.

In a setup where a client VM connects to a remote server, the network latency adds to
the compilation latency. For this reason, we consider low-latency environments (e.g., a fast
local network) the most appropriate deployment option. The benefits would likely diminish
in environments with higher latency. To demonstrate that the presented improvements are
applicable to deployments on the local network, we also conduct experiments using the
DaCapo benchmarks [3] where the client VM connects to a dedicated remote compilation
server through the local network. We do not increase the number of concurrent compilation
tasks to keep the results comparable to the co-located and baseline setups.

Notes on Performance Evaluation. Every benchmark suite we evaluate contains multiple
benchmarks. The harness of every suite executes a benchmark by iterating a fixed workload
multiple times in a dedicated JVM instance. The iterations usually get progressively faster
as the VM warms up. The harness repeats the workload until it executes for at least the
preset duration (e.g., 12 minutes). Due to the inherent non-determinism of the JVM, we also
need to execute each benchmark for multiple VM runs [14]. The key metrics we evaluate are
the wall-clock time it takes to complete an iteration (iteration time or duration) and the

timestamps of their completion since the start of the JVM instance (iteration timestamp).

In the rest of the section, we always aggregate absolute metric values using the arithmetic
mean and relative metric values (ratios) using the geometric mean.

Hardware and Software. We executed the experiments on 20 identical blade servers, each

equipped with an Intel Xeon CPU E3-1230 v6 (with four cores) and 32 GB of main memory.

The blades are located in the same enclosure with separate 1 Gbps Ethernet network cards
connected through a dedicated network router. We disabled hardware multithreading and
power management. The blades run Fedora Linux 35 with kernel version 5.16.11.

We implemented our prototype on top of a development version of GraalVM Enterprise
based on a development version of OpenJDK 22. We use the same binaries and the same
JVM options for the modified and baseline runs, using additional JVM options to enable the
remote JIT functionality. This avoids the potential variance introduced by the ahead-of-time
compilation of the compiler itself. In every benchmark run, we use a JVM option to disable
compressed class pointers (-XX:-UseCompressedClassPointers) because our prototype
does not implement patching the compression parameters in the cached IR. We disable
isolation between compiler threads (-XX:JVMCIThreadsPerNativeLibraryRuntime=0) to
enable data sharing required by the client’s compilation threads. In addition, we prevent the
VM from shutting down the compiler runtime after a period without compilation activity
(-XX: JVMCICompilerIdleDelay=0) to avoid potentially costly reinitialization of the runtime
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for the client. The options -Xms12G and -Xmx12G set a fixed Java heap size, and we use the
default garbage collector (-XX:+UseG1GC). Lastly, we use options to enable selected counters
and timers in the GraalVM compiler to collect compilation statistics.

We use modified versions of the DaCapo 23.11 MR1 [3] harness and the ScalaBench
0.1.0 [44] harness to collect additional statistics. We execute the Renaissance 0.15 [39] bench-
mark suite with additional plugins to collect the same statistics. All DaCapo benchmarks
are executed using the default workload size. We execute the ScalaBench benchmarks with
default or larger sizes, selected to ensure the iterations are not excessively short. We exclude
the workloads incompatible with OpenJDK 22.

5.1 Compilation Metrics

Experimental Setup. We measure the compilation metrics described below by running each
benchmark for 12 minutes. On our platform, 12 minutes is typically sufficient time for the
VM to warm up and then perform multiple iterations with peak performance. We manually
verified that the tested benchmarks warmed up in the first 6 minutes of the run by plotting
the iteration durations. For each benchmark, we repeat 30 VM runs of the baseline setup
and the same number of VM runs with the hybrid setup that uses the cached IR for selected
compilations. The client VM with hybrid compilation connects to a server running either on
the same machine or a remote machine. In the co-located setup, the server runs on the same
machine. In the remote setup, the compilation server runs on a dedicated machine, and all
client VMs connect through the local network. Since the server is a Java application, we
warm it up! with three unmeasured training and replay runs. Before each measured run of
the client VM, we populate the IR cache of the compilation server with a single 12-minute
training run of the same benchmark. To capture the potential variability between training
runs, we do not reuse one training run for multiple replay runs.

Metrics. We collect the metrics reported by the JVM using the option -XX:+CITime.
Compilation time is the sum of the wall-clock durations of all compilation tasks. Therefore,
for the client VM with hybrid compilation, the compilation time metric includes the time
spent on communication and serialization, as well as any failed attempts to reuse the cached
IR. Compiled bytecodes is the total size of the bytecodes compiled in every compilation task,
comprising the bytecode size of the root method and inlinees. Compiled methods is the total
number of completed compilation tasks. Although we cache the IR only for the top-tier
GraalVM compiler and not the C1 compiler [20], we report the sums of values for both
compilers to present a complete picture. For multiple benchmark runs in the same setup, we
report the arithmetic average of each metric value.

Statistical Evaluation. To ensure that the reported averages are not excessively impacted
by random fluctuations, we used bootstrapping to compute 99% confidence intervals for
all relative compilation and performance metrics reported in the paper. We did this by
resampling with replacement from the VM runs of every benchmark in a particular setup.
Because the confidence intervals are narrow relative to the reported effect size for every
metric except peak performance, where the change is insignificant, we omit them from the
presentation to enhance readability.

1 We could avoid the server’s warmup by compiling it ahead of time, similarly to how the GraalVM
compiler is built.
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Table 1 Compilation metrics in DaCapo benchmarks with a co-located server (lower is better).

compilation time compiled bytecodes  compiled methods

benchmark

baseline hybrid baseline hybrid baseline  hybrid
eclipse 155.68s —28.6% 16.25MB -9.5% 30342 —-5.1%
pmd 115.08s —42.8% 8.52MB —-13.2% 18188 —5.0%
fop 95.19s —-33.6% 8.83 MB -4.1% 20191 —-3.0%
spring 85.38s —17.9% 9.71 MB -3.7% 25970 —-1.7%
tomcat 72.84s —15.2% 9.82 MB —7.4% 25230 —3.3%
cassandra 61.71s —-18.6%  6.34MB -9.6% 19851 —2.9%
jython 56.75s —38.4% 6.24 MB —5.7% 9591 —6.0%
zxXing 48.87s —59.3% 3.01MB -21.3% 5705 —7.6%
kafka 46.88s —27.9% 5.40 MB -9.5% 18418 —2.9%
h2 40.83s —33.0% 3.19MB —-21.7% 5749 —8.2%
batik 3891s —20.4% 2.45MB —10.8% 6302 —3.1%
xalan 18.76s —28.2% 1.69 MB -3.4% 4521 —0.6%
luindex 18.31s  —33.8% 2.23MB —8.2% 5950 —2.9%
lusearch 16.12s —45.1% 1.63MB —14.9% 4160 —2.8%
jme 12.43s —40.2% 1.43MB —-11.3% 4480 —2.1%
sunflow 9.24s -53.2% 0.89MB -18.4% 2277 —3.8%
graphchi 9.04s -43.2% 0.65MB —17.0% 2389 —2.6%
biojava 8.75s —51.4% 0.82MB -13.3% 2553  —3.7%
avrora 8.30s —-45.0% 0.88MB -19.9% 3209 —2.4%

Table 2 Changes in compilation metrics for every benchmark suite (lower is better).

benchmark suite server setup compilation time compiled bytecodes compiled methods

DaCapo co-located —36.8% -11.9% -8.7%
Renaissance co-located —23.6% —8.6% -3.5%
ScalaBench co-located —35.9% -9.8% -4.3%
DaCapo remote —31.8% -11.0% -3.3%
Results. Table 1 lists the compilation metrics for the individual DaCapo benchmarks with

a co-located compilation server. The columns marked baseline show the arithmetic average
of a metric value for all baseline runs of the given benchmark. The columns marked hybrid
show the change in the arithmetic average of a metric value for the hybrid runs relative to
the baseline. Hybrid compilation significantly reduces compilation time for every benchmark
from 15.2% up to 59.3%. The size of the compiled bytecodes decreases by 3.4% to 21.7%,
and the number of compiled methods decreases by up to 8.2%.

Table 2 summarizes the changes in compilation metrics in every evaluated suite. We
aggregate the metric values for a benchmark suite as the geometric mean of the relative
metric values of the individual benchmarks. In the setup with a co-located compilation
server, the overall decrease in compilation time ranges between 23.6% and 36.8%, the size
of the compiled bytes decreases by between 8.6% and 11.9%, and the number of compiled
methods decreases by between 3.5% and 4.3%. The overall improvements in the DaCapo
suite with a remote server are substantial but slightly lower than those in the co-located
setup.
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Discussion. The drop in compilation time is large in all benchmark suites, which is a
result of multiple factors. The cached IR directly decreases compilation time by reducing
the amount of work performed. As an indirect effect, faster compilations can lead to fewer
compilation tasks being scheduled. This is because compilation tasks for the JIT compilers
are scheduled when method invocation and loop back-edge counters overflow. By speeding
up the compilation tasks, the compiled methods (including inlined methods) are executed
via the compiled code that does not increment the counters. Consequently, these counters
have fewer opportunities to overflow, and fewer compilation tasks may be scheduled. The
data shows that both the total size of the compiled methods and their number decreased
significantly, which is evidence of less work scheduled for the JIT compilers.

Another indirect effect that can save compilation time is the higher maturity of the cached
IR, i.e., the compilations may have a lower chance of deoptimizing [16] on an assumption
or speculation [11] and requiring a recompilation. This is because the cache stores the last
completed compilation of a method from the training run, and, potentially, the IR, may not
contain speculations or assumptions that are bound to be violated later during the VM run.

During development, we found that our prototype can sometimes suffer from an excessive
number of recompilations. This happens when the compiler deoptimizes from a compiled
method to an earlier block in the control-flow graph, and the VM executes the bytecode
instruction that triggered the deoptimization as part of a more mature compiled method
rather than in the interpreter. Consequently, the VM fails to update the profiles for future
recompilations. Our prototype can trigger this problem due to the presence of compiled code
of varying maturity (from the IR cache and locally compiled). Changing how speculations are
tracked in the IR [11] could improve the results, and we reported the issue to the GraalVM
compiler developers. A few runs of the DaCapo luindex benchmark in the remote setup
seem to suffer from excessive recompilation, inflating the difference between the co-located
and remote setups. Without luindex, the compilation time savings in the remote setup are
33.6% instead of 31.8%.

The improvements vary between the benchmarks because multiple variables determine
the success of our approach. For example, some benchmarks use code patterns that lead
to non-reusable code, which we analyze later. In some workloads, the VM often compiles
different methods across two VM runs, leading to cache misses. Lastly, compilation units
differ in their size, and IR caching may benefit larger compilations more.

The difference between the co-located and remote setups can likely be attributed to the
communication latency. A possible mitigation for this problem is hiding the latency by
increasing the number of concurrent compilation tasks [18, 19].

5.2 Performance Metrics

We use the measurement data collected from the experiment introduced above to analyze
how our approach impacts peak performance and warmup time.

Peak Performance. The quality of the code compiled by a dynamic compiler is sensitive to
factors such as the timing of compilation tasks. Therefore, we consider it a good practice
to confirm that performance is unaffected. We measure the peak performance in terms of
the average iteration time when the VM is warmed up. We acknowledge that the workloads
may not reach a single steady state [2], and variation in iteration time is expected. As a
pragmatic choice, we compute the arithmetic average of the durations of iterations completed
after the 6-minute mark since VM start (lower is better). Note that the workloads typically
warm up in the first 6 minutes of the run on our platform.
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Figure 3 Iterations from the beginning of a baseline run of the DaCapo spring benchmark,
highlighting the warmup threshold (horizontal line) and the warmup time (vertical line).

Warmup Time. There are multiple options for precisely defining warmup, but there is no
standard and straightforward option. Related work [19] uses 90% of peak throughput as the
threshold to consider an application warmed up. Since we evaluate benchmarks consisting of
multiple workload iterations, we define warmup time as the timestamp of the first iteration
where the iteration time is below a warmup threshold. We compute the warmup threshold
analogously to the related work [19] as 1/(90%) of the mean iteration time after the 6-minute
mark (the peak performance metric). We performed a sensitivity analysis to verify that the
overall results vary by no more than a few percent with values of the warmup threshold
parameter between 1/(80%) and 1/(95%). Due to performance anomalies that we explain
below, we exclude the scala-kmeans and gauss-mix benchmarks from the warmup time
evaluation in the Renaissance suite.

To visualize our warmup detection method, Figure 3 plots the iteration timestamps and
durations of the DaCapo spring benchmark from the start of a single run. The horizontal
line is the computed warmup threshold. The vertical line marks the computed warmup time.

Benchmarks with high iteration times present a potential problem for our and similar
warmup detection methods. Because we determine warmup only after an iteration completes,
we risk overestimating small changes in warmup time that occur within an iteration. This
concern is reduced in benchmarks with low iteration times. We verified that restricting the
evaluation to 25% of the benchmarks with the lowest baseline iteration time yields similar
overall results.

We encountered these performance anomalies that are relevant to warmup detection:

1. high variance in iteration time within a VM run (in DaCapo xalan and other benchmarks),

2. the application experiences a small but continuous speedup (in DaCapo fop and other
benchmarks),

3. slowing down after the first iteration (in DaCapo kafka), and

4. large shifts in performance (in Renaissance scala-kmeans and gauss-mix).

These anomalies occur in both the baseline and hybrid setups. We manually inspected
plots similar to Figure 3 to verify that the problems caused by the first three anomalies are
mitigated by the warmup threshold. In DaCapo kafka, the first iteration is already below the
warmup threshold, so the warmup detection yields reasonable results. The performance shifts
in Renaissance scala-kmeans and gauss-mix cause significant variance in the measured
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Table 3 Performance metrics in DaCapo benchmarks with a co-located server (lower is better).

warmup time iteration time
benchmark

baseline hybrid baseline  hybrid

cassandra 104.69s —15.2% 11.73s —0.2%

pmd 84.15s —45.1% 1.99s +0.8%
eclipse 76.03s —24.6% 12.43s  +0.2%
spring 64.23s  —17.7% 527s  +0.1%
jython 63.63s —5.6% 2.99s -1.0%
fop 54.69s —37.5% 0.48s —4.7%
h2 45.36s —7.0% 8.46s —1.0%
tomcat 35.75s —-0.3% 30.24s —-0.1%
luindex 32.12s —16.6% 4.50s —0.1%
zxing 30.85s —60.5% 4.04s +0.5%
lusearch 25.558 —-6.9% 9.17s —-0.6%
graphchi 23.76's —-0.7% 529s —-0.2%
sunflow 22.54 s -7.3% 8.96s +1.5%
biojava 17.77s -4.2% 6.33s  +0.2%
xalan 16.50s —23.1% 2.63s —0.3%
jme 16.11s -1.0% 6.88s  +0.1%
kafka 15.19s -0.7% 14.20s  —1.4%
batik 13.45s —21.0% 1.54s  +0.4%
avrora 6.15s +4.0% 493s -0.3%

Table 4 Changes in performance metrics for every benchmark suite (lower is better).

benchmark suite server setup warmup time iteration time

DaCapo co-located -17.4% —0.3%
Renaissance co-located -13.1% -0.2%
ScalaBench co-located -21.2% 0.0%
DaCapo remote -17.3% —-0.2%

warmup time. In multiple runs, warmup is detected at the point of a performance drop
occurring several minutes into the run, which can substantially impact the average warmup
time. The performance shifts may be caused by inlining instability [36], which is a known
compiler issue that manifests in these benchmarks. For the above reasons, we consider these
benchmarks unsuitable for comparing warmup time between two systems, and we exclude
them when computing the overall warmup change in the Renaissance suite. The DaCapo
and ScalaBench suites do not experience performance shifts of this nature.

Results. Table 3 lists the performance metrics for the individual DaCapo benchmarks with
a co-located compilation server. As before, we show the absolute values for the baseline runs
and the relative values for the hybrid runs. Our approach improves the warmup time for
almost all DaCapo benchmarks. The peak performance of the hybrid runs is usually close to
the baseline, with few minor deviations in both directions.
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Table 4 summarizes the changes in performance metrics for every evaluated setup. In
the setup with a co-located server, the overall decrease in warmup time is between 13.1%
and 21.2%. The iteration time of the hybrid setup does not significantly deviate from the
baseline. The overall warmup improvement in the DaCapo suite with a remote server is
similar to that of the co-located setup.

Discussion. Our approach significantly improves warmup time in most workloads, which
we likely achieve primarily by reducing the latency of compilation tasks. When compilation
latency is reduced, the VM can start executing efficient code earlier. However, due to the
nature of dynamic compilation, compilation time reductions do not transfer linearly to
warmup improvements. Just by changing the latencies of compilation tasks, we also impact
the collected profiles, the methods selected for compilation, and, consequently, how the
compiler optimizes code. Lastly, compilation speed is only one of the many factors that
influence warmup.

The presented approach aims not to degrade peak performance. In the vast majority of
benchmarks, there is no significant impact, and the overall change is also small. However,
in individual benchmarks, our approach can change when a particular method is compiled
(compared to the baseline), which in turn impacts profiles and optimization. In the Renais-
sance suite, a small number of workloads are susceptible to performance changes in either
direction. These changes are likely caused by inlining instability [36].

5.3 Analysis of IR Reusability

We evaluate the success of our prototype in reusing the cached IR based on the relative size
of the bytecode compiled from the cache, which we refer to as the cache hit rate. We also
analyze the reasons for the observed validation failures and discuss the options for improving
IR reusability in future work.

Cache Hit Rate. In every 12-minute run of the hybrid setup, we compute the cache hit
rate as the ratio of the bytecode size of the compilation tasks served from the IR cache and
the total bytecode size of all compilation tasks. We use the geometric mean to aggregate the
metric.

In the co-located setup, the cache hit rate is about 69% in the DaCapo suite, 64% in the
Renaissance suite, and 77% in the ScalaBench suite. In the DaCapo suite with a remote
server, the cache hit rate is 71%.

The results show that the majority of the compiled bytecodes originate from the IR cache.
The client VMs never reach a cache hit rate of 100% in any of the runs since we deliberately
try to compile small methods using the local JIT compiler to keep compilation latency low.
The other factors that decrease the cache hit rate are cache misses, recompilations, and
validation failures.

Transient Validation Failures. The evaluated benchmarks experience a varying number
of validation failures. Transient failures are the most common type of validation failures,
comprising between 89% and 96% of the validation failures in every evaluated benchmark
suite. As explained before, they are caused by the cached IR referencing a class that is
not yet loaded by the target VM or referencing a class, method, or field that is in an
earlier initialization stage than required to reuse the IR. These failures occur in almost every
benchmark because we attempt to reuse mature IR as early as possible. The average number
of transient failures varies between benchmarks. DaCapo eclipse experiences these failures
most frequently, averaging more than 250 failures per run.
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Permanent Validation Failures. All other types of validation failures are permanent and
together comprise between 4% to 11% of the observed failures in every benchmark suite.
The vast majority of Renaissance workloads are affected by permanent failures. In contrast,
about half of the DaCapo benchmarks and the vast majority of ScalaBench benchmarks do
not experience permanent failures at all.

Class hierarchy mismatch is a permanent failure that occurs when a class hierarchy query
on the target VM returns an incompatible result. For example, it occurs when an interface has
a single loaded implementation during the tracing stage but multiple loaded implementations
during the replay stage. This kind of failure occurs in most Renaissance benchmarks and
in about a third of DaCapo benchmarks, but only a low number of compilation tasks are
affected on average: no DaCapo benchmark experiences more than 4 of these failures per
run.

The field value mismatch permanent validation failure occurs when the compiler folds a
read of a static final field and the value differs from the expected one. The failure occurs
in most Renaissance benchmarks and in about a third of the DaCapo benchmarks. The
cassandra benchmark is the most affected in the DaCapo suite, experiencing about 13 such
failures on average.

Lastly, type definition mismatch and method definition mismatch are permanent failures
occurring due to an incompatible definition of a class or a method. For example, an
incompatible class may have different fields, and an incompatible method may have different
bytecodes. These failures occur frequently in only a few of the benchmarks. In the Renaissance
dec-tree benchmark, these incompatibilities are caused by the classes generated by the
Catalyst Optimizer [13] from the Apache Spark framework. As we explained previously, our
prototype cannot distinguish between the multiple generated classes in this case since they
all share the same class name.

Mitigating Validation Failures. We invested a substantial engineering effort to minimize
the number of validation failures, and there are still options for further improvement. One of
the problems with our prototype is recording the compilation trace also for the expanded
inlining candidate methods [38], even if these candidates are not ultimately inlined. There is
an opportunity to avoid the validation failures caused by the inlining candidates, which we
could achieve by filtering out the operations irrelevant to the inlined methods.

We could mitigate many of the transient validation failures by loading pre-initialized
classes [47], which is a planned but so far unrealized feature of the OpenJDK project
Leyden [15]. The client VM could trigger the loading of a pre-initialized class when the class
is first referenced in a compilation trace. Pre-initialization requires caching [48] the values of
the static final fields, which would also mitigate the failures caused by field value mismatch.
Together, these features would open up the option for eagerly compiling [18] the cached IR
and prefetching the code compiled at the highest optimization level.

6 Related Work

Reusing Compilation Results. Shared Class Cache (SCC) [17] is a technology to improve
startup and warmup performance in the OpenJ9 JVM. SCC stores preprocessed class data
in a memory-mapped file, and it can also store compiled code. Reusability of the code is
achieved by compiling it with a lower optimization level [19] and patching the compiled
machine code [8]. Due to the lower performance of the cached code, the JIT compiler must
recompile the hottest methods to reach peak throughput. SCC uses a process similar to
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compilation tracing to establish the provenance of VM objects [9], such as methods and
classes. However, the mechanism is not used to facilitate specializing the code for the
running VM instance. In our approach, we leverage compilation tracing almost without any
restrictions on the optimizations that can be applied. Thus, the code compiled from our
IR cache achieves peak performance and does not require recompilation. ShareJIT [46] and
ShMVM [7] are systems similar to SCC that facilitate sharing code compiled with reduced
optimization level on a single machine. jaotc [21, 22] was a tool to precompile Java class
files ahead of time to native code for the HotSpot JVM.

Pecimith et al. [37] explain the reasons why highly optimized code is not reusable in
GraalVM. The authors suggest caching the IR and making it reusable by deferring all
optimizations that potentially specialize the IR to the running VM. However, this approach
reduces peak performance in many workloads. In our work, we instead let the compiler
perform the optimizations that specialize the IR to the VM, and we employ compilation
tracing to facilitate IR reuse without sacrificing peak performance.

The Truffle language implementation framework [45] can store the compiled code along
with other data structures in a file [31] to improve warmup in future VM runs. The guest
language running in this mode (e.g., JavaScript) must satisfy specific conditions. For example,
the language implementation cannot speculate on object identity, since it would lead to a
guaranteed deoptimization. The approach we present does not have this restriction because
replaying the compilation trace allows us to relocate object references in the IR.

R+ [26] is a system to reuse compiled code for the R language. In R+, the compiler
tracks its assumptions and stores them along the compiled code. The code repository may
contain multiple versions of the same function, each fit to a different context. At run time,
calls are dispatched to the appropriate version based on the current context. Although the
HotSpot JVM does not perform such contextual dispatch, our IR cache could potentially
benefit from storing multiple versions of a method. For example, the most mature version
of a method is sometimes not usable early in the application’s lifetime due to assumptions
about the loaded classes.

Remote Compilation. JITServer [19, 18] is a remote JIT compilation server for the OpenJ9
JVM. The design of our compilation server, with callbacks for VM runtime information and
the caching of their results, is inspired by JITServer. JITServer leverages compiled-code
caching based on OpenJ9’s SCC [17] infrastructure. Therefore, the code loaded from the
cache requires recompilation at the highest optimization level. The main use case presented
by the authors is remote compilation for resource-constrained containers in cloud data
centers. Resource-constrained containers benefit from the offloading of compilation tasks

to a remote server and achieve warmup improvements even without requiring code caching.

The compilation server running on another, non-constrained machine effectively extends the
computing resources available to the VM running in a container. JITServer can hide the
latency of the offloaded compilation tasks by issuing more concurrent compilation tasks. It
can also trigger remote compilation eagerly and prefetch [18] the compiled code to the client
VMs.

In contrast, our work focuses on reusing the IR compiled at the highest optimization
level without needing recompilation to reach peak performance. We decrease the compilation
latency by reusing the cached IR. We present an evaluation where the compilation server is
co-located with the client without increasing the number of concurrent compilation tasks or
dedicating more computing resources to JIT compilation.
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Cloud Native Compiler [1] is a production-grade compilation server that can reuse profiles
from past JVM runs. However, there is little technical information available. The compilation
server for Jikes RVM by Lee et al. [24] is an earlier work in which compilation tasks are
served in a single request without callbacks. However, this is difficult to achieve in a modern
JVM due to the dynamicity of the runtime and method inlining.

Improving Warmup. OpenJDK project Leyden [15] is a comprehensive effort addressing
the startup and warmup phase of Java applications via various techniques, such as storing
compiled code in class-data archives [42], ahead-of-time loading of classes in the linked [23] or
initialized [47] state, and other techniques that may require new language features. OpenJDK
project CRaC [30] mitigates warmup time by checkpointing running Java applications
(creating snapshots), which can then be restored. However, the checkpointed application
must manage resources such as open files and sockets, so the process is not transparent to
the programmer. Jump-Start [34] is a technique that improves warmup by sharing profiling
information for the HipHop VM, which eliminates the overhead of collecting profiles.

Ahead-of-Time (AOT) Compilation. Native Image [32] builds native executables by
compiling Java class files ahead of time with the closed-world assumption (i.e., classes cannot
be loaded at run time). AOT compilation can eliminate warmup but may impact peak
performance. The performance of dynamic languages like JavaScript often depends on
speculation and runtime feedback, so AOT compilers [43, 33] usually cannot produce as
efficient code as JIT compilers.

7 Conclusion

This paper introduces a novel technique to reuse highly optimized IR in dynamic compilers.
We do this by tracing the arguments and results of compiler-interface calls, allowing us to
verify that the assumptions made during a compilation of reusable IR hold in a particular
target VM instance. Using this approach, we can relocate the IR’s VM object references and
compile the IR for the target VM instance. A compilation server caches the IR from previous
runs of the application and can compile it to machine code for local or remote client VMs.
An empirical evaluation based on the GraalVM compiler and industry-standard benchmark
suites shows that the approach reduces compilation time by 23.6% to 36.8% and warmup
time by 13.1% to 21.2% in each suite without hindering peak performance.
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