
EPA: A Precise & Scalable Object-Sensitive
Points-to Analysis for Large Programs

Behnaz Hassanshahi1,2, Raghavendra K.R.2

Padmanabhan Krishnan2, Bernhard Scholz2,3, and Yi Lu2

1 School of Computing,
National University of Singapore,

Singapore.
b.hassanshahi@u.nus.edu

2 Oracle Labs,
Brisbane.

{raghavendra.kr,paddy.krishnan,yi.x.lu}@oracle.com
3 School of Information Technologies,

University of Sydney,
Sydney.

bernhard.scholz@sydney.edu.au

Abstract. Points-to analysis is a fundamental static program analy-
sis technique for tools including compilers and bug-checkers. There are
several kinds of points-to analyses that trade-off precision with runtime.
For object-oriented languages including Java, “context-sensitivity” is key
to obtain sufficient precision. A context may be parameterizable, and
may consider calls, objects, types for its construction. Although points-
to analysis research has received a lot of attention in the past, scaling
object-sensitive points-to analysis for large Java code bases still remains
an open research challenge.

In this paper, we develop an Eclectic Points-To Analysis (EPA) frame-
work that computes an efficient, selective, object-sensitive points-to anal-
ysis that is client independent. This framework parameterizes context
sensitivities for different allocation sites in the program. The level of
required sensitivity is determined by a pre-analysis.

We have implemented our approach using Soufflé (a Datalog compiler)
and an extension of the DOOP framework. Our experiments on large
programs including OpenJDK4 and Jython show that our technique is
efficient and highly precise. For the OpenJDK, an instance of the EPA-
based analysis reduces 27% of runtime for a slight loss of precision, while
for Jython, the same analysis reduces 82% of runtime for almost no loss
of precision.

1 3 Work done while visiting Oracle Labs, Brisbane.
4 Java and JDK are registered trademarks of Oracle and/or its affiliates. Other names

may be trademarks of their respective owners.



2

1 Introduction

There are many applications for the points-to analysis in tools and compilers
including taint and escape analyses, compiler optimizations and specific client
analyses, such as detecting potential security vulnerabilities. Hence, points-to
analysis is a fundamental building block that is essential for programming lan-
guage tools.

Points-to analysis is a static program analysis technique that builds a heap
abstraction of the input program without executing it. The key insight in points-
to analyses frameworks is that objects are abstracted by the their object-creation
sites [And94], reducing a potentially infinite set of objects to a finite set of object-
creation sites of a given input program. This abstraction makes the points-to
analysis computable.

A heap abstraction is an over-approximation of all observable heap states of
the input program. Most points-to approaches for object-oriented languages, use
two functions to form a heap abstraction. The first function, maps variables to
sets of object-creation sites and the second function maps object-creation sites
with a given field in an object to other sets of object-creation sites [SGSB05].

The heap abstraction is also used to tighten the potential virtual methods
that might be called at a invocation site. This is achieved by wiring methods
that are invoked for the types found in the points-to sets of the receiver variables
of invocation site. A points-to analysis that tightens the set of virtual methods
using the points-to analysis refectively, is also call-graph construction on the
fly [SBL11]. Call-graph construction on-the-fly improves the precision of points-
to analyses (rather than wiring näıvely all potential methods without considering
the points-to sets of the receiver variables).

Adding context sensitivity to points-to analyses has been another method to
improve the precision. Context-sensitivity is introduced by versioning variables
and object-creation sites. Each version is attached to a context. There are many
kinds of context sensitivities including call-site-based, object-based and type-
based. Object-based context sensitivity (object sensitivity) is shown to be the
most effective context sensitivity in terms of both precision and computational
costs for object-oriented programs when compared to call-site-based and type-
based context-sensitive points-to analysis [MRR05,SBL11].

Object-sensitive points-to analysis uses objects as contexts for both invoca-
tions and object allocations. For invocations, it qualifies each method invocation
with a finite ordered sequence of objects starting from the receiver object of the
method, say o1, then the object that created o1, say o2, then the object that
created o2 and so on. Using objects as contexts for method invocations is the
method cloning idea [WL04] for object-oriented programs based on the sequence
of objects. Typically, object-sensitive points-to analysis also uses a form of heap
cloning [LLA07] in the context of object creation. Here, the heap cloning means
that the allocation sites are also qualified by a sequence of objects starting from
the creator object, say o1, creator of o1, say o2, and so on.

However, applying a sufficiently precise object-sensitive points-to analysis
uniformly to large programs is costly in with respect to the runtime and mem-



3

ory consumption. We observe that if the chosen heap cloning context is not
sufficient for a particular object, the resulting points-to relation has many spu-
rious facts for other related objects. This choice has a cascading effect on other
objects, resulting in valuable resources being spent on computing irrelevant and
unnecessary facts. The option of just increasing the level of object sensitivity
for all allocation sites in an attempt to improve precision is not always feasi-
ble because it typically incurs unacceptably high computational costs without
corresponding benefits.

In this paper, we address the following research problem. Given a program
P , identify the allocation sites in P that compound the generation of spurious
points-to facts, and determine the object-sensitivity depth required for each such
allocation site in P so as to make the points-to analysis scalable and precise.

To resolve these problems, we have developed an Eclectic Points-To Analysis
(EPA), a framework for scaling object-sensitive points-to analysis to large code-
bases while maintaining high precision with two stages—pre-analysis and main
analysis. The pre-analysis consists of four steps.

1. Extract a portion (which we call kernel) from the given input program. The
kernel comprises program elements that are bottlenecks when applying the
fixed object-sensitive points-to analysis on the input program.

2. Perform fixed object-sensitive points-to analysis on kernel.
3. Identify the allocation sites in the kernel along with their contexts that are

not effective in removing spurious points-to relations.
4. Calculate requisite depths of object sensitivity needed for these allocation

sites so as to maintain both good precision and computational efficiency.

The main stage performs a selective object-sensitive points-to analysis is per-
formed on the input program with the previously determined object-sensitivity
depths for specific allocation sites.

The main contributions in the EPA framework are the following:

1. A technique based on context-insensitive points-to analysis (which is inex-
pensive but very imprecise) to extract the kernel, i.e., a portion of the input
program for which fixed object-sensitive points-to analysis is computation-
ally expensive compared to the rest of the input program.

2. Novel metrics based on fixed object-sensitive points-to analysis on the kernel
that determine the allocation sites where the contexts are insufficient or
where contexts do not add much value.

3. A heuristic to identify the context-depths that will overcome the efficiency
bottleneck with/without losing precision of fixed object-sensitive points-to
analysis. That is, the metrics in the previous step are used to identify al-
location sites where contexts need to be be increased as well as to identify
allocation sites where contexts can be reduced without decreasing precision
significantly.

The rest of this paper is organised as follows. Section 2 establishes definitions
and preliminaries required to understand the technicalities of our approach. Sec-
tion 3 discusses an example that motivates the problem in detail and outlines



4

our approach. Section 4 describes our technique in detail. Section 5 describes our
implementation and experimental results. Section 6 surveys the related work in
the literature and contrasts them with our approach. Section 7 concludes the pa-
per by summarising our contributions and pointing to future directions. future
work.

2 Preliminaries

In this section, we summarise the key concepts and definitions that are used in
the sequel of the paper. We use points-to analysis of the DOOP [BS09] framework
and optimize it to Souffle Datalog engine [SJSW16]. DOOP framework uses the
domain of different sets like the set of program variables, object allocation sites,
method invocation sites, field names etc. The input program is represented as
relations on these domains. From these relations, the points-to analysis computes
another set of relations. For a detailed definitions, please refer to [SB15a].

Input Relations. We first describe the relations that capture the structure of
the input program. We assume that the domain of classes (or types), methods
and variables are defined.

Alloc(o,m) indicates that there is an allocation site labelled o in method m.
Store(b, f , v) indicates that there is an assignment of the form b.f ← v where

b and v are variables and f is a field. We overload this relation for storing
elements in an array where f represents the index. However, as we do not
distinguish the different elements in the array, the field f will represent a
wild-card.

Load(b, f , v) indicates that there is an assignment of the form v ← b.f where b
and v are variables and f is a field. As in the case of Store the field f will
represent a wild-card in case of arrays.

Computed Relations. Our framework computes the following relations and
uses them in different stages of the analysis.

PointsTo(hc, h, c, v) is the result of object sensitive points-to analysis. It states
that the variable v under the object context c points to an object h qualified
with the heap context hc.

PointsTo(h, v) is the result of context-insensitive points-to analysis. It states
that the variable v points to an object h. We overload the same relation
name both for the results of context insensitive and object sensitive points-
to analysis.

PointedToByVar(o) is the set {v | PointsTo(o, v)}.
MethodPointsTo(m) is the set {o | PointsTo(o, v) for a variable v declared in

m}.
ReachableCtx (m, c) states that method m is reachable in context c from the

program’s main entry/entries.



5

Object Sensitivity. The above definitions do not specify the exact contexts
used in the analysis. To define a general n1O+n2H object-sensitive points-to
analysis [SKB14], the terms n1O and n2H have the following meaning.

n1O: n1-Method cloning. An instance method m which is a potential tar-
get of an invocation is distinguished with respect to an ordered sequence
of objects of the form (o1, o2, . . . , on1

) where on1
is the base object of the

invocation of m, oi is the object creating oi+1. We often refer to this context
as the object context.

n2H: n2-Heap cloning. A heap object o is distinguished with respect to an
ordered sequence of objects of the form (o1, o2, . . . , on2

) where on2
is the

object creating o, oj is the object creating oj+1. We often refer to this context
as the heap context.

3 Motivating Example

In this section, we give an example that illustrates how some spurious contexts
lead to generation of many more spurious contexts. We then make a case that
selective object sensitive points-to analysis is better than fixed object sensitive
points-to analysis.

The example program is given in Fig. 1. The points-to analysis results for
that program are shown in Table 1. We use the notation (hc, o) ← (c, v) to
indicate that the variable v in the context c points to the o in the heap context
hc. The number of elements in each hc and c depends on the chosen depth.

2O+2H 3O+3H Selective
([o3,o2],o1)←([o3,o2],arr)

([o4,o3],o2)←([o4,o3],c)
([o6,o3],o2)←([o6,o3],c)

([-,o8],o5)←([o3,o2],x)
([-,o8],o7)←([o3,o2],x)

([-,o8],o5)←([o3,o2],ret)
([-,o8],o7)←([o3,o2],ret)

([-,o8],o5)←([o4,o3],y)
([-,o8],o5)←([o6,o3],y)
([-,o8],o7)←([o4,o3],y)
([-,o8],o7)←([o6,o3],y)

([o4,o3,o2],o1)←([o4,o3,o2],arr)
([o6,o3,o2],o1)←([o6,o3,o2],arr)

([o8,o4,o3],o2)←([o8, o4,o3],c)
([o8,o6,o3],o2)←([o8, o6,o3],c)

([-,-,o8],o5)←([o4,o3,o2],x)
([-,-,o8],o7)←([o6,o3,o2],x)

([-,-,o8],o5)←([o4,o3,o2],ret)
([-,-,o8],o7)←([o6,o3,o2],ret)

([-,-,o8],o5)←([-,o4,o3],y)
([-,-,o8],o7)←([-,o6,o3],y)

([o4,o3,o2],o1)←([o4,o3,o2],arr)
([o6,o3,o2],o1)←([o6,o3,o2],arr)

([o4,o3],o2)←([o8, o4,o3],c)
([o6,o3],o2)←([o8, o6,o3],c)

([o8],o5)←([o4,o3,o2],x)
([o8],o7)←([o6,o3,o2],x)

([o8],o5)←([o4,o3,o2],ret)
([o8],o7)←([o6,o3,o2],ret)

([o8],o5)←([-,o4,o3],y)
([o8],o5)←([-,o4,o3],y)

Table 1: Points-To results for the example program



6

public class Container{
o1: arr = new Object[10];
int index=0;
public void put(Object x){

arr [index++] = x;
}
public Object get(int i){

ret = arr[ i ];
return ret;

}
}
public class C1{

public void m1(Object a1){
o2: Container c = new Container();
c.put(a1);
y = c.get(1);

}
}

public class C2 {
public void m2(Object a2) {

o3 : C1 d = new ...;
d.m1(a2);

}
}
public class C3 {

public void m3(){
o4: C2 a = new C2();
o5: Object x1 = new ...;
a.m2(x1);
o6: C2 b = new C2();
o7: Object x2 = new ...;
b.m2(x2);

}
public void main() {

o8: C3 a = new C3();
c.m3();

}
}

Fig. 1: Example Program

Here, we have an example of arrays used in a Java container class. In this
example, the program element that is the source of imprecision is arr, which
has array type. A precise points-to analysis for data structures in general (and
arrays specifically) is known to be challenging. Therefore, a common approach
for modeling this language feature is array-index insensitivity [SB15b]. The rules
used to compute array points-to do not distinguish the load and stores to different
array locations which results in imprecision.

The results in Table 1 demonstrate that the 2O+2H context sensitivity is
not enough for distinguishing points-to tuples loaded from the array to variable
y in method m3. Note that there are two spurious points-to tuples shown in the
first column and indicated in bold font. The results from 3O+3H remove these
spurious tuples because the variable y does not point to either o5 in the context
of [o6, o3] or o7 in the context of [o4, o3]. Thus, increasing context depth adds
value.

The results in Table 1 (third column) further show that the heap contexts
qualifying the objects o2 can be shortened by removing o8. Similarly, the heap
contexts qualifying the objects o5 and o7 may also be shortened. These results
show that the decreasing context depths also add value in terms of not associating
useless contexts, and thus increases efficiency.

Therefore, an algorithm, which can estimate the effectiveness of a chosen
context sensitivity (such as 2O+1H), and selectively apply deeper contexts where



7

it is necessary or likely to be necessary, is essential. Our main contribution is such
an algorithm that identifies the different heap context depths for each allocation
site.

4 Eclectic Points-To Analysis (EPA)

In this section, we describe our general eclectic object-sensitive points-to anal-
ysis (EPA) framework. Fig. 2 describes the key steps and the workflow in our
framework. The approach can be separated into two stages: pre-analysis and
main analysis.

Program

Extract
Kernel

Fixed Object-Sensitive
Points-To Analysis

Identify
Candidate Objects

Determine their
Context Depth

Pre-analysis

Main analysis

Selective Object-Sensitive
Points-To Analysis

Points-to
Analysis
Results

Fig. 2: Workflow in Eclectic Points-To Analysis

The pre-analysis stage identifies the heap allocation sites that are potential
bottlenecks when applying a chosen fixed object-sensitive points-to analysis uni-
formly on the input program. It also determines the requisite depth of object
sensitivity needed for these allocation sites. The main analysis uses the infor-
mation gathered in pre-analysis (i.e., the selective sensitivity for each allocation
site) and performs the points-to analysis.

We first describe the four steps in the pre-analysis in details.



8

4.1 Extracting the Kernel

The first step is to extract the portion of the input program that contains the
allocation sites that possibly generate spurious points-to information from a fixed
object-sensitive points-to analysis. We refer to this portion of the input program
as the kernel.

How do we extract the kernel? It is done using the results of a computationally
inexpensive, context-insensitive, Anderson-style points-to analysis on the input
program. Given thresholds K1 and K2, a class c of the input program is selected
if:

– there is an object o of class c with |PointedToByVar(o)| ≥ K1, or
– there is an object o allocated in a method of class c with |PointedToByVar(o)| ≥
K1, or

– there is a method m in class c with |MethodPointsTo(m)| ≥ K2.

Then the kernel is constructed from the input program by removing all objects
except the selected classes. The intuition here is that for the remaining por-
tion of the program, a context-insensitive or a fixed object-sensitive analysis is
sufficiently precise.

Note that if there is even a single object with |PointedToByVar(o)| ≥ K1,
the entire class identified by o and all its related objects will be retained. Also
note that the kernel may not be a valid program but has the program elements
that can make context-sensitive points-to analysis less precise.

The thresholds K1 and K2 may be chosen manually using the empirical
data of multiple experiments that characterize the given set of benchmarks.
One heuristic for estimating K1 and K2 is based on statistical estimation as
depicted in Algorithm 1, which uses the context-insensitive points-to analysis
results and a timeout limit. It uses the mean sizes of PointedToByV ar and
MethodsPointsTo as the initial estimate and runs the fixed context-sensitive
points-to analysis. If the computation of this points-to analysis exceeds the re-
source bound (indicated by the timeout limit), the estimates are deemed to be
ineffective and are increased iteratively.

4.2 Fixed Object-Sensitive Analysis

The second step (as shown in Fig. 2) is to perform a fixed object-sensitive points-
to analysis on the kernel. For this step, we use the standard mO+nH points-to
analysis of the DOOP [BS09,SBL11] framework. Note that the fixed object-
sensitive points-to analysis on the original program P is expensive but applying
it on the kernel is not, as only a subset of the objects in the original program is
retained.

4.3 Identifying Candidate Objects

The third step (as shown in Fig. 2) is to identify the candidate allocation sites
from the results of the fixed object-sensitive points-to analysis on the kernel



9

Algorithm 1 Parameter Estimation

Input: A program P , results, limit
Output: Values K1 and K2

function EstimateParameters(P , results)
K1 = mean(0, max(|PointedToByV ar|)
K2 = mean(0, max(|MethodsPointsTo|)
while Ineffective(K1,K2) do

K1 = mean(K1, max(|PointedToByV ar|)
K2 = mean(K2, max(|MethodsPointsTo|)

end while
return (K1,K2)

end function

function Ineffective(K1,K2)
kernel = ExtractKernel(P,K1,K2)
if Timeout(limit, FixedCSPointsTo(kernel) then

return True
else

return False
end if

end function

where the contexts are not effective in removing spurious points-to tuples. Ob-
jects in the kernel that potentially have the compounded smashing effect, as we
call it, are selected. Typically, certain program elements are not handled pre-
cisely. For example, the elements of the arrays are smashed, i.e., they are not
distinguished in a simple points-to analysis. That means, no matter what, we
already have some amount of spuriousness. Adding context sensitivity to analyse
such program elements may have a cascading effect, leading to many spurious
points-to facts being generated. The reason could be either insufficient context
sensitivity or context sensitivity is not the way to precisely handle program
elements with compounded smashing effect.

4.4 Determinining Context Depths

The fourth and final step in the pre-analysis determines the requisite object
sensitivity depth for the candidate allocation sites selected in the previous step.
To help describe this process, we define some terms and metrics.

InFlow For a given object o, and field f , InFlowf (o) gives a measure on the heap
contexts related to the heap objects that are stored in the field f of object o,
as given by the fixed object-sensitive points-to analysis on the kernel. Recall
that for arrays, the field f is ignored. To simplify the presentation we ignore
the field f in all cases – but technically the Load and Store pairs are matched
up via the named field f . Thus we use InFlow(o) in our presentation.



10

InFlow(o) =

(h, hc, oc)

∣∣∣∣∣∣
Store(b, ∗, v) for some variables b, v
PointsTo(oc, o, c, b) and
PointsTo(hc, h, c, v) for some context c


An example of InFlow is shown in Fig. 3. The left side of the figure shows
the variable v in some context c pointing to three different objects and
the variable b in the same context pointing to two different objects. The
right side shows the result of the Store(b, ∗, v) operation, where the fields or
member elements are smashed, indicated by ∗. This smashing causes each
of the objects that b was pointing-to to now point to all the objects that v
earlier pointed to. That is, the points-to results for both of o1 and o2 are
updated with 〈hc1, h1〉, 〈hc2, h2〉 and 〈hc3, h3〉. Spuriousness in the points-to
of b causes many spurious points-to results after the store operation, which
is an example of compounded smashing effect—the larger the set InFlow
of an object o, the greater the effect of spuriousness. Hence, we investigate
objects o whose |InFlow(o)| is greater than a threshold K4. The value of
K4 depends on the set of benchmarks and can be empirically estimated. We
treat K4 as an input parameter for our framework.

〈hc1, h1〉

〈c, v〉
66

//

((
〈hc2, h2〉

〈hc3, h3〉

〈c, b〉 //

((
〈oc1, o1〉

〈oc2, o2〉

〈hc1, h1〉

〈oc1, o1〉
55

//

))
〈hc2, h2〉

〈hc3, h3〉

〈c, b〉

;;

  
〈hc1, h1〉

〈oc2, o2〉
55

//

))
〈hc2, h2〉

〈hc3, h3〉

Fig. 3: Example of InFlow

OutFlow For a given variable v, object o, field f and a context oc, OutFlowf (v,
o, oc) gives a measure on the heap contexts related to the heap objects that
are loaded from the field f of the object o qualified with context oc for v. But
as in the case of InFlow , we ignore the field f to simplify the explanation.

OutFlow(v, o, oc) =

(c, h, hc)

∣∣∣∣∣∣
Load(b, ∗, v) for some variable b
PointsTo(oc, o, c, b) and
PointsTo(hc, h, c, v)





11

The intuition behind OutFlow is analogous to InFlow and captures the cas-
cading or multiplier effect of the Load operation. However, note that this set
is defined per (loaded) variable and per heap cloning context.

ContextValue For an object o and a context oc, ContextValue(o, oc) estimates
the value of the heap context oc generated for o. In other words, it determines
the effectiveness of the context generated for an object. More precisely, we
define

ContextValue(o, oc) = min
v

|InFlow(o)| · |CtxInOutFlow(v, o, oc)|
|OutFlow(v, o, oc)|

where

CtxInOutFlow(v , o, oc) = {c | (c, h, hc) ∈ OutFlow(v, o, oc) for some h, hc}.

Intuitively, for an object o with sufficiently large InFlow , if ContextValue(o,
oc) = 1, it means that the context oc has not distinguished any points-to
facts. If ContextValue(o, oc) is greater than a threshold, say K3, then context
oc is valuable as it has distinguished some points-to facts. Similar to K4, we
treat K3 also as an input parameter for our analysis.

We now design an oracle to determine the necessary depth of heap-cloning,
object-sensitive contexts by using the metric ContextValue. The depth can range
from 0 (representing context-insensitive analysis) to the maximum desired value
k + 1 (input to our framework). This oracle is described in Algorithm 2.

Algorithm 2 combines the steps of fixed object-sensitive analysis, identifying
candidate objects and determining context depths. The thresholds K3,K4 and
the maximum heap-cloning object sensitivity to be explored k are taken as in-
puts. Line 2 computes fixed object-sensitive points-to analysis, say, of the order
mO + nH, on the kernel. Function ComputeMetrics in line 3 computes the sets
InFlow , OutFlow and the metric ContextValue using the fixed object-sensitive
points-to analysis results. Line 4 identifies the candidate objects along with their
heap contexts (o, oc) in the kernel, which can have compounded smashing effect.
If |InFlow(o)| is smaller than K4 then we retain the current heap context depth
for o in line 17. Similarly we retain the context of the fixed object-sensitive anal-
ysis if the ContextValue(o, oc) is greater than K3, as it is already adding good
value. Otherwise, we check if extending the context to depth k+1 adds any value
using ContextCorrelation in line 6. If so, we set the depth parameter for those
objects to k + 1. To generate the context depth of k + 1 for such an object, we
may need to generate deeper contexts for other objects. This context generation
is captured in the sequence of statements in lines 8 to 12. If we determine that
it is not useful to extend the context using ContextCorrelation then we switch
off the context sensitivity for that object in line 14, as we already know that the
current context oc is also not adding value. One could choose to not switch off
the context sensitivity and have a purely increasing context sensitivity also.



12

Algorithm 2 Determining the required object-sensitivity depth

Input: kernel, thresholds K3, K4, bound on object sensitivity k with k > n
Output: depth, an associative array

1: procedure DetermineContextDepth(kernel, K3,K4, k)
2: results = mO+nH-object-sensitive-points-to(kernel)
3: (InFlow ,OutFlow ,ContextValue) = ComputeMetrics(results)
4: for every (o, oc) in kernel with compounded smashing effect do
5: if ContextValue(o, oc) < K3 and |InFlow(o)| > K4 then
6: if ContextCorrelation(oc, k + 1) then
7: let oc = (o1, . . . , ol, . . . , on) and l = min(n, k − n)
8: depth[o] = k + 1
9: depth[o1] = k

10: depth[o2] = k − 1

11:
...

12: depth[ol] = k − l + 1
13: else
14: depth[o] = 0
15: end if
16: else
17: depth[o] = n
18: end if
19: end for
20: return depth
21: end procedure



13

This step of determining context depths completes the pre-analysis. We now
have a set of pairs 〈oi, di〉 where di represents the depth necessary for the object
oi.

Now the main analysis is straightforward. It applies a selective object-sensitive
points-to analysis on the whole input program. This analysis applies a fixed ob-
ject sensitivity to objects not in the kernel. For every object in the kernel, the
context depth as identified by the pre-analysis is applied.

5 Implementation and Experiments

We implemented eclectic points-to analysis (EPA) in DOOP framework [BS09]
using the Soufflé Datalog engine [SJSW16]. We used SQLite to compute the met-
rics of Section 4. We ran our experiments on a Xeon E5-2699 2.30GHz machine
having 396 GB RAM with Soufflé using up to 8 cores in parallel.

For our experiments, we considered two programs: OpenJDK7-b147 and
Jython 2.1 (called OpenJDK and Jython in the sequel respectively). Open-
JDK is one of the largest java program (more precisely a library) available.
From [SKB14], Jython is one of the toughest programs in the DaCapo bench-
mark [BGH+06], to analyze precisely. The size of these programs are given in
Table 2. The numbers are in thousands.

Program Variables Invocations Heap Allocations
OpenJDK 1440 312 185

Jython 275 81 28
Table 2: Program Sizes

As JDK is a library, the points-to analysis is extended with the construc-
tion of the Most General Application (MGA) [AKS15] modeling the open-world
(unknown application) assumptions.

For the purposes of our experiments, we set the default maximum context-
sensitivity to be 3O+3H. Note that it is not feasible to compute 3O+3H context-
sensitive points-to analysis for either of the OpenJDK and the Jython libraries
in a reasonable amount of time.

5.1 Applying the EPA framework

As our EPA technique depends on identifying a suitable kernel, we have to
ensure that the identification cost is reasonable. Otherwise, the benefits of a
faster points-to analysis is offset by the cost of identifying the kernel.

We experimented with multiple values of thresholds on these programs and
selected the best among our experiments. With K1 = 20000 and K2 = 50000,



14

we extract the kernel from OpenJDK. The extracted kernel for the OpenJDK7
has 92% of the object allocation sites and 70% of the invocations, and takes
about 19 minutes to compute. With K1 = 10000 and K2 = 10000 we extract the
kernel from Jython. The kernel for Jython has 82% of the object allocations sites
and 87% of the invocations, and takes less than 5.5 minutes to compute. We use
objects of type Arrays as the candidate objects and set the thresholds K3 = 200
and K4 = 200 for computing the metrics for both OpenJDK and Jython.

5.2 Advantages of EPA

Table 3 contrasts the runtime (minutes) and memory requirements (gigabytes)
of EPA for standard fixed 2O+1H object-sensitive and context-insensitive (CI)
points-to analysis on the benchmarks. Essentially, it shows that we reduce 27%
and 82% of runtime in analyzing OpenJDK and Jython respectively.

Program CI 2O+1H EPA
OpenJDK 5.6 min, 6.5 G 270 min, 186 G 198 min, 153 G
Jython 4.2 min, 2.7 G 56 min, 50 G 10 min, 13 G

Table 3: Computational efficiency of EPA

We compare the precision of EPA and 2O+1H using three clients—size of
variable to object points-to relation, size of alias relation and size of call graph
edges relation . Fig. 4 shows the percentage of tuples (variable x object) removed
from the context-insensitive points-to analysis. Fig. 5 shows the percentage of tu-
ples removed from the context-insensitive alias relation—the greater the number,
the higher the precision. In regards to size of the relation representing call graph
edges, EPA maintains the same precision as 2O+1H analysis. For OpenJDK,
both the analyses remove 51.3% of context insensitive call graph edges and for
Jython, they remove 98.3% of context insensitive call graph edges. From these
clients, it is clear that for a possible slight loss of precision we gain substantial
efficiency.

6 Related Work

In this section we discuss the related works on context-sensitive points-to analysis
and show the essential difference to our work. These works can be classified into
client-independent and client-dependent/demand-driven analyses.

6.1 Client-independent Analyses

Object sensitivity was first introduced by Milanova et al. [MRR05]. They empir-
ically show that object sensitivity is better than call-site sensitivity for object-
oriented programs. They also introduce a parametric object sensitivity for tar-
geted context sensitivity. The first kind of parameters specify the depth of object



15

95

96

97

98

99

100

96
.7

99
.7

96
.8

99
.7

EPA
2O+1H

OpenJDK Jython

Fig. 4: % of CI Points-to removed

20

25

30

35

40

45

50

55

60

26
.4

55
.6

27
.1

55
.6

OpenJDK Jython

Fig. 5: % of CI Aliases removed

sensitivity for each allocation site. The second kind is on local variables specify-
ing whether they need to be distinguished by the receiver object of the method
they are in. Here, the framework user must identify the parts of the program
where more or less object sensitivity is required. Our main distinguishing contri-
bution in this paper is to identify these parts of the program and their required
context depths.

Smaragdakis et al. [SKB14] proposed an introspective context sensitive points-
to analysis in DOOP framework. There are two steps in this technique. First, a
context-insensitive, Anderson-style points-to analysis is done. Based on metrics
such as PointedToByVar, MethodPointsTo, they then determine allocation sites
and method invocation sites where contexts are necessary. Finally, they perform
a fixed object-sensitive analysis switching off context sensitivities at allocation
sites and method invocation sites that do not satisfy the selected heuristic. Our
experiments on JDK showed that by applying these proposed heuristics on a
2O+1H points-to analysis, the precision did not improve significantly. It removed
out only 35% of the context-insensitive points-to facts, whereas EPA removed
96.7%. Hence, we started investigating for techniques that go beyond the bi-
nary selection between context-insensitive and a fixed object sensitivity. Thus
our technique applies a spectrum of context sensitivities to different parts of the
program and achieves scalability without losing precision significantly.

Wei et al. [WR15] propose adaptive context-sensitive points-to analysis for
JavaScript programs. Similar to ours, they also do a context-insensitive points-
to analysis on the given program as the first stage. Based on its results they



16

collect characteristics of each function in the program. Then a machine-learning
algorithm is used to relate these function characteristics to the kind of context
sensitivity to be applied. The four context sensitivities considered are: insensi-
tive, 1 call-site, 1 object, ith-parameter object. Based on the associated context
sensitivities for each function, they finally do a selective context sensitive points-
to analysis on the whole program. As JavaScript mixes programming paradigms
from object-oriented to functional programming style they investigate call-site
as well as object-sensitive analyses. Another limitation is that they do not go
beyond depth 1 of context sensitivity. For our focus on object-oriented Java
programs, we considered only object-sensitive analyses, as has been clearly es-
tablished as the way to gain precision in Milanova et al. [MRR05] work. We
then investigated varied depths of object sensitivity for different allocation sites,
which helped us to scale to large programs.

6.2 Client-dependent Analyses

In general, client-dependent analysis suffers from its non-generality, because the
technique and the results may not work for a different client. Our objective of
points-to analysis is to extract the basic structure of the program, so that many
clients such as call-graph construction, taint analysis, escape analysis, make use
of it. This objective is the fundamental distinction of the client-dependent con-
text sensitive points-to analysis works.

Oh et al. [OLH+14] use an impact pre-analysis to determine at a program
point whether call-site context (with predefined depth) is necessary for a method.
Here, they deal with C programs, hence the focus is only on method contexts and
not heap cloning. First, they fix a call-site context depth. Then they do an impact
pre-analysis, i.e., they do the context-sensitive (with the defined depth) analysis
of the whole program but with a simpler or the simplest abstract domain, such
as (>,⊥). From the results of this analysis, they determine whether to apply
context sensitivity (of the defined depth) for a method. This technique is not
applicable for our objective of constructing points-to sets for object-oriented
programs. This is because finding a very simple abstract domain for points-to
analysis for which the context sensitivity can scale to large programs producing
relevant information so as to decide the applicability of context sensitivity is not
known.

Zhang et al., [ZMG+14] proposed a counter-example guided approach to it-
eratively clone a method, thus adding call-site sensitivity, for a given set of client
queries. Cloning methods based on call-sites is proven to be a unviable way to
increase precision for object-oriented programs [MRR05]. Similarly, employing
context-insensitive points-to analysis and MAXSAT solver multiple times itera-
tively is not a feasible method when our objective is to scale large programs of
the order of JDK.

Shape analysis [TCR13,GCRN11,SRW99] addresses the problem of analyzing
arrays and data structures with the focus on precision. Shape analysis typically
analyzes a particular property about data structures (such as cyclicity in lists)
and are in general very expensive. Though we have to deal with data structures,



17

their properties are not central to our objective of making points-to analysis
more precise independent of the client. Hence, to scale to large Java programs,
works on shape analyses are not directly applicable.

7 Conclusion

In this paper we have presented a framework to scale object-sensitive points-to
analysis for large object-oriented programs. It involves identifying and experi-
menting on the kernel of the program. Then based on our metrics, a selective
object-sensitive points-to analysis is applied on the input program. Our exper-
iments on large programs from DaCapo [BGH+06] benchmarks show the effec-
tiveness of our technique.

As part of future work, we would like to investigate machine-learning tech-
niques to train and identify allocation sites in the program where deeper/shal-
lower contexts are useful.

References

[AKS15] Nicholas Allen, Padmanabhan Krishnan, and Bernhard Scholz. Combining
type-analysis with points-to analysis for analyzing Java library source-code.
In Proceedings of the SOAP Workshop, pages 13–18. ACM, 2015.

[And94] Lars Ole Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, DIKU, University of Copenhagen, Fall
1994.

[BGH+06] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khan,
Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z Guyer, Martin Hirzel, Antony Hosking, Maria Jump,
Han Lee, J Eliot B Moss, Aashish Phansalkar, Darko Stefanovic, Thomas
VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis. In OOPSLA 06:
Proceedings of the 21st annual ACM SIGPLAN conference on Object-
Oriented Programming, Systems, Languages, and Applications, 2006.

[BS09] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specifi-
cation of sophisticated points-to analyses. In Proceeding of the 24th ACM
SIGPLAN Conference on Object-Oriented Programming Systems Languages
and Applications, OOPSLA ’09, pages 243–262. ACM, 2009.

[GCRN11] Bhargav S. Gulavani, Supratik Chakraborty, G. Ramalingam, and
Aditya V. Nori. Bottom-up shape analysis using lisf. ACM Trans. Pro-
gram. Lang. Syst., 33(5):17:1–17:41, November 2011.

[LLA07] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-
sensitive points-to analysis with heap cloning practical for the real world.
In Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’07, pages 278–289. ACM, 2007.

[MRR05] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized ob-
ject sensitivity for points-to analysis for Java. ACM Transaction on Software
Engineering Methodolology, 14(1):1–41, January 2005.



18

[OLH+14] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun
Yi. Selective context-sensitivity guided by impact pre-analysis. In ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), pages 475–484. ACM, 2014.

[SB15a] Yannis Smaragdakis and George Balatsouras. Pointer analysis. Foundations
and Trends in Programming Languages, 2(1):1–69, 2015.

[SB15b] Yannis Smaragdakis and George Balatsouras. Pointer analysis. Foundations
and Trends in Programming Languages, 2(1):1–69, April 2015.

[SBL11] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your
contexts well: Understanding object-sensitivity. In Proceedings of the 38th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’11, pages 17–30. ACM, 2011.

[SGSB05] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bod́ık. Demand-
driven points-to analysis for java. In Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’05, pages 59–76, New York, NY,
USA, 2005. ACM.

[SJSW16] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. On
fast large-scale program analysis in Datalog. In Proceedings of the 25th
International Conference on Compiler Construction (CC), pages 196–206.
ACM, 2016.

[SKB14] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspec-
tive analysis: Context-sensitivity, across the board. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 485–495. ACM, 2014.

[SRW99] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape anal-
ysis via 3-valued logic. In Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’99, pages 105–
118, New York, NY, USA, 1999. ACM.

[TCR13] Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival. Reduced prod-
uct combination of abstract domains for shapes. In Verification, Model
Checking, and Abstract Interpretation, 14th International Conference, VM-
CAI 2013, Rome, Italy, January 20-22, 2013. Proceedings, pages 375–395,
2013.

[WL04] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In Proceedings of the ACM
SIGPLAN 2004 conference on Programming language design and implemen-
tation, PLDI ’04, pages 131–144. ACM, 2004.

[WR15] Shiyi Wei and Barbara G. Ryder. Adaptive context-sensitive analysis for
javascript. In 29th European Conference on Object-Oriented Programming
ECOOP, volume 37 of LIPIcs, pages 712–734. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015.

[ZMG+14] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang.
On abstraction refinement for program analyses in Datalog. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI. ACM, 2014.


