
ColdPress: An Extensible Malware Analysis
Platform for Threat Intelligence

Haoxi Tan∗, Mahin Chandramohan†, Cristina Cifuentes†, Guangdong Bai∗ and Ryan K. L. Ko∗
∗School of ITEE, The University of Queensland, Brisbane, Australia

Email: {h.tan, g.bai, ryan.ko}@uq.edu.au
†Oracle Labs, Oracle, Brisbane, Australia

Email: {mahin.chandramohan, cristina.cifuentes}@oracle.com

Abstract—Malware analysis is still largely a manual task. This
slow and inefficient approach does not scale to the exponential
rise in the rate of new unique malware generated. Hence,
automating the process as much as possible becomes desirable.

In this paper, we present ColdPress – an extensible malware
analysis platform that automates the end-to-end process of
malware threat intelligence gathering integrated output modules
to perform report generation of arbitrary file formats. ColdPress
combines state-of-the-art tools and concepts into a modular
system that aids the analyst to efficiently and effectively extract
information from malware samples. It is designed as a user-
friendly and extensible platform that can be easily extended with
user-defined modules.

We evaluated ColdPress with complex real-world malware
samples (e.g., WannaCry), demonstrating its efficiency, perfor-
mance and usefulness to security analysts. Our demo video is
available at https://youtu.be/AwlBo1rxR1U, and the code is open
sourced on https://github.com/uqcyber/ColdPress.

Index Terms—Malware, reverse engineering, threat intelli-
gence, security automation, cybersecurity

I. INTRODUCTION

In recent years, we have witnessed the rapid rise of so-
phisticated cyber attacks targeting enterprises across various
industry verticals. Most of these attacks can be attributed
to malware, or malicious software, which is intentionally
developed to cause damage or steal information. According
to Kaspersky, more than 24 million malware samples were
reported in 2019 [1]. Despite such fast evolution of malware,
malware analysis still extensively relies on manual effort to
provide insight to interpret malware behaviors, and more
importantly, to produce threat intelligence (TI) for malware
mitigation. Nevertheless, with several new malware samples
released every minute, manual analysis of Indicators of Com-
promise (IoCs) is neither scalable nor sufficient to protect the
enterprises from these large-scale malicious attacks.

Automated and semi-automated malware analysis thus be-
comes highly desirable by security analysts. As such, con-
siderable effort has been devoted to developing approaches
and tools that perform malware analysis and produce IoCs
based on static and dynamic code analysis [2]–[5]. Despite
these, fundamental obstacles like tailoring the IoCs in the
context of enterprise-level security still exist. Malware analysis
has yet to be recognized as a multi-dimensional task that
requires the bringing together of various views of malware to
reconstruct the complete picture and context. Consequently,

very few platforms exist to support security analysts from the
perspective of integrated intelligence.

In this paper, we present ColdPress, an extensible, user-
friendly and efficient pipeline that can run selected integrated
analysis modules on malware samples and produce desired
output formats. ColdPress’s features include 1) a full auto-
mated solution that integrates both malware reverse engineer-
ing and TI, 2) high extensibility allowing any analysis module
can be easily added without modifying the core engine, and 3)
both horizontal and vertical scalability to cope with complex
real-world malware samples. To the best of our knowledge,
ColdPress is the first solution that integrates powerful Software
Reverse Engineering (SRE) frameworks and TI feeds to extract
information from malware.

II. BACKGROUND AND RELATED WORK

In this section, we will introduce the state-of-the-art con-
cepts and tools integrated into ColdPress as modules.
Decompilation. Decompilation aims to recover readable or
even recompilable source code from a given binary. Cifuentes
[6] outlined the approach to do so by lifting the binary to an
Intermediate Representation, analyzing it to produce a Control
Flow Graph (CFG), then generating pseudocode in the target
language. Today, similar approaches are used in the open
source Reverse Engineering (RE) framework Ghidra [7] to
decompile binary code into C-like source, and Radare2 [8]
uses the same techniques to generate function headers and
various graph outputs. The high level nature of these artifacts
can help analysts understand the big picture.
Hashing. Hashing is a classic technique to identify and verify
data, including files. Malware samples are often identified
by their MD5 or SHA hashes. However, these hashes are
checksums of the file and will change completely even when
the data is a single bit off. Therefore many other useful hashing
techniques had been explored before, such as fuzzy hashing
[9], which does piece-wise checksums of data and therefore
can detect small byte changes. Even more useful hashing
techniques for malware detection includes hashing PE header
information [10] and hashing the CFG [11].
Malware threat intelligence With the constant rise in scale
of malware attacks, data sharing becomes more and more
important. Malware analysis platforms such as VirusTotal [2]
share TI by producing, aggregating and correlating malware

https://youtu.be/AwlBo1rxR1U
https://github.com/uqcyber/ColdPress

Malware
Samples

Docker Container

ColdPress

Pipeline
Manager

Command Line
Tools

Threat Intel
APIs

pefile

hashlib
machoke

...

Python
Modules

binwalk
ghidra

radare2

...

Extra Artefacts

Threatminer

OTX

VirusTotal

Output
Modules

User Written
Modules

External
Module Loader

...

JSON HTML
TAXII

...

Fig. 1. ColdPress Architecture

TABLE I
INTEGRATED MODULES

Py Libs SRE TI APIs CLI tools Output
hashlib� Ghidra [7] VirusTotal [2]*� binwalk JSON�
machoke [11] Radare2 [8]� OTX [15]*� capa [14] HTML*�
pefile� ThreatMiner [16]* YarGen*
pehash [10]�
ssdeep [9]�
regex [9]�

IoCs for the community to use. Tools such as the MITRE
ATT&CK [12] framework can help map information from TI
feeds into actionable tactics, techniques and procedures used
by criminals.

III. COLDPRESS OVERVIEW

A. Modularization

Figure 1 shows the overall architecture of ColdPress. Cold-
Press is designed in a modularized manner for its extensibility.
It consists of 1) Pipeline Manager which takes as input the
malware sample(s) to analyze, and create threads for each
sample, 2) External Module Loader which manages the mod-
ules programmed by the analyst, 3) Python Modules which
include essential utilities such as file formatting, hashing and
encoding/decoding, 4) A variety of Command Line Tools such
as BinWalk [13] and capa [14] to run on the samples, 5)
Threat Intelligence APIs queried to obtain more information
such as antivirus detection and malware families, and 6)
Output Modules that performs post-processing and formatting
as desired by the analyst.

The current version of ColdPress includes a set of open
source libraries and tools, as shown in Table I. Modules
marked with * are external modules - meaning that they
are written as user-defined modules that do not modify the
ColdPress code base, and loaded into the pipeline at run time.
These also serve as templates to allow security analysts to
easily add their own modules. Modules marked with � are
“fast” modules (to be discussed in III-D).

B. Extensibility

ColdPress exposes an external module loader to allow users
to define their own modules in Python. This allows the pipeline

to be easily extended without modifying the core source code.
This is inspired by the successful architectures of security
testing frameworks such as BeEF [17] and Metasploit [18].
At the end of the pipeline, output modules can be added to
slice a view of the output data into any file format, making it
possible to automate the entire process of malware TI reporting
end-to-end.

C. Multi-threading

When the amount of modules implemented into ColdPress
increases, the pipeline may be delayed if those modules are ran
sequentially. Through analyzing the analysis process, we find
that only a few modules that are dependent by others need
to be ran sequentially before others. For example, Binwalk
[13] needs to be ran when the process starts, to extract other
embedded files from a given sample before feeding them back
into other modules. ColdPress thus runs modules other than
these in parallel, to utilize the multi-core nature of modern
CPUs.

Some malware samples may take longer to run in some
modules. For example, a sample with many functions and
control flows would cause a path-explosion in tools such as
Ghidra [7] and capa [14], clogging up the execution time. This
is solved in ColdPress via user-defined timeouts, which can be
specified per sample or in total.

All malware samples input in batch are analyzed in parallel.
Theoretically, the amount of tasks in parallel T would be
T = S ∗M , where S is number of samples and M the number
of loaded modules.

D. Fast mode

ColdPress is designed to handle malware samples with
batch processing. This allows a large amount of samples
to be analyzed concurrently, increasing workflow efficiency.
However, the number of malware samples that can be analyzed
in parallel depends on the amount of CPU power and memory
available on the computer, as all modules in all samples exe-
cute in parallel by default. To provide a lightweight analysis,
ColdPress has a built-in fast mode, which runs only modules

TABLE II
IDENTIFIED CHARACTERISTICS

characteristic CP modules description
kill switch regex

OTX
Loose regular expression matching is used to extract
strings into different categories (URL, IP, domain
names and paths). OTX also returns similar infor-
mation via its various plugins.

polymorphism hashes
pehash
machoke

Two different versions of the same WannaCry epoch
have different MD5 but same peHash and machoke
hash.

propagation OTX OTX has a Cuckoo [5] sandbox plugin that returns
dynamic analysis results when available, including
network detection of WannaCry probing its neigh-
bours

persistence capa capa detects WannaCry having embedded PE files
and writing to disk

tagged as a “fast” module. Whether a module is “fast” or
“slow” is user-defined for optimal control of the pipeline.

E. Containerization

The system is containerized and shipped with Docker [19].
This makes ColdPress easier to deploy on different Operating
Systems. This means that every time the system starts, a fresh
copy of the code will be copied into a docker container with
a fresh environment, and that malware files will be analyzed
in an isolated environment for safety.

By containerizing the environment and building ColdPress
to be parallel via multi-threading, the pipeline can be scaled
easily both vertically (adding/removing of resources), and
horizontally (by having multiple containers across multiple
machines). This design is to best fit the contemporary data
center and cloud-centric computing environment.

IV. EVALUATION

As ColdPress is developed to extract threat intelligence
to facilitate malware analysis, our evaluation focuses on the
following three research questions.

• RQ1 (Information usefulness). Is the intelligence Cold-
Press generates useful to aid the security analysts?

• RQ2 (Information quantity). What information can Cold-
Press extract from the malware samples?

• RQ3 (Efficiency). How efficiently does ColdPress work
against real-world malware samples?

A. Information usefulness

To evaluate the usefulness of ColdPress, we use it to
analyze two WannaCry PE (Portable Executable) samples.
The the identified characteristics of the malware are listed in
Table II, along with the ColdPress module(s) responsible for
extracting the related information. The evaluation shows that
ColdPress can extract different types of useful information to
aid understanding of the malware samples.

B. Information quantity

The extracted information from ColdPress can also be used
for the “machine” use case, such as machine learning and
malware clustering. Therefore, there needs to be sufficient
types of data points available.

TABLE III
COMPARISON OF EXTRACTED INFORMATION

# - Hashing, 	 - SRE Tools, � - Threat Intel API, ~ - Dynamic Analysis
CP CP Fast IntelOwl HybridAnalysis

Hashes and metadata
md5 # # # #
sha1 # # #
sha256 # # #� #
ssdeep # # #
pehash # #
machoke #	
imphash #	 #	 #
strings 	 	 	 	~
AV detection informa-
tion
YARA generation 	 	~
YARA detection � � �
detected malware families � � � �
MITRE ATT&CK 	� � � ~
PE specific information
compilers & packers 	� 	� � 	
imports 	 	 	 	
exports 	 	 	 	
sections 	 	 	 	
compile timestamps 	� 	� 	� 	
Program semantics and
functionality
embedded files 	 � 	~
symbols 	 	 �
function headers 	 	
CFG 	 	
crossref graph 	 	
decompilation 	
disassembly 	
capabilities 	� � 	� ~
Network related IoCs
IP addresses � � � ~
DNS � � � 	~
URLs 	� 	� � 	~
Host related IoCs
windows event logs � � � ~
accessed registry keys 	� 	� � ~
executed commands 	� 	� � ~

The output from ColdPress is evaluated against two other
industry malware analysis platforms: IntelOwl [3], a web ap-
plication focused on threat intel querying, and HybridAnalysis
[4], a dynamic malware analysis service. They are chosen
because they represent mature solutions with slightly different
goals than ColdPress, which integrated more software reverse
engineering tools than the two. Table III compares the types
of information available between ColdPress, ColdPress in fast
mode, and the two platforms.

Table III clearly shows the strength of ColdPress in Reverse
Engineering results compared to the other two platforms.
Having a way to extract information from SRE frameworks
alleviate time from manual analysis using those platforms,
and although the output presentation is not as nice as inside
the frameworks’ UI, having extensible output formatting in
ColdPress sets ground for future improvements. It is worth
noting that TI API results are subject information available
on those platforms, and therefore not always available in
ColdPress and IntelOwl.

Fig. 2. Performance in full and fast mode

C. Efficiency

Benchmarking of ColdPress was done by putting in different
amount of malware samples through the system in batch then
profiling run time in seconds, CPU and memory usage. The
experiment is conducted on a Intel x64 Linux system, with
the specs of Intel i5 processor with 8 logical cores and 16 GB
(approx. 15GiB) of RAM.

Time measurement is built into ColdPress, for while pro-
filing of CPU and memory usage is done by running docker

stats while ColdPress is running. Both full and fast mode
are tested with a varying number of samples taken randomly
from theZoo [20] dataset. The number of seconds per file, the
maximum memory use in GiB and the maximum CPU use (in
cores, where 1 is max utilization of a single core) are shown
for both full (all modules enabled) and fast mode in Figure 2.

It is obvious to see in Figure 2 that the time per sample
is not affected by the number of samples analyzed in parallel
(average 30s/file for full mode, and 4s/file in fast mode). How-
ever, ColdPress full mode did not scale beyond 10 samples in
this experiment, as spinning up many instances of memory-
intense modules such as Ghidra, which invokes the Java Virtual
Machine leads to RAM being the bottleneck. ColdPress is
much more scalable in fast mode, while still extracting lots
of information according to Table III.

V. COLDPRESS USAGE

ColdPress is written in Python and built as a Docker
container. To run ColdPress, one could spawn a shell inside the
Docker container docker run -it coldpress bash and then
run the main script run.py inside the container.

For better usability, a shell script docker_start.sh is
available for quick spawning of the Docker container. It takes

a directory as the first argument to mount into the Docker
container.

To batch-analyze an entire folder of samples:

./docker_start.sh /sample/path/to/mount <args>

To analyze only one sample inside a directory, assuming
that the file “filename” exists within that directory:

./docker_start.sh /sample/path/to/mount filename

<args>

There are many command-line switches, such as -T <total

timeout>, -x <m1,m2,..> to exclude modules by name, -m

<m1,m2,..> to include modules by name, and so on. They
can be added at the end of the arguments. For example, to run
in fast mode:

./docker_start.sh /sample/path/to/mount filename -F

VI. CONCLUDING REMARKS

In this paper, we present the design, implementation and
evaluation of ColdPress, an extensible malware analysis
pipeline with integrated reverse engineering tools and threat
intelligence API querying. By automatically extracting nu-
merous types of information from malware, the workflow of
malware analysts has been made more efficient, and the output
data can be further used for report generation and machine
learning purposes.

The current version of ColdPress is limited to PE files, and
it also does not perform malware de-obfuscation. In the future,
we plan to extend it with more external modules, including dy-
namic analysis integration with sandboxes, malware unpacking
APIs and more output formats.

ACKNOWLEDGMENTS

This project is funded by Oracle Labs through the CEED
program.

REFERENCES

[1] “Kaspersky security bulletin 2019. statistics.” https://securelist.com/
kaspersky-security-bulletin-2019-statistics/95475/.

[2] “Virustotal.” https://www.virustotal.com.
[3] “Intelowl.” https://github.com/intelowlproject/IntelOwl.
[4] “Hybrid analysis.” https://www.hybrid-analysis.com.
[5] Bremer, “Cuckoo: open source automated malware analysis,” in Black-

Hat Conference 2013, 2013.
[6] C. Cifuentes and K. J. Gough, “Decompilation of binary programs,”

Software: Practice and Experience, vol. 25, no. 7, pp. 811–829, 1995.
[7] “Ghidra re.” https://ghidra-sre.org/.
[8] “Radare 2.” https://www.radare.org/n/.
[9] J. Kornblum, “Identifying almost identical files using context triggered

piecewise hashing,” Digital Investigation, vol. 3, pp. 91–97, Sept. 2006.
[10] G. Wicherski, “pehash: A novel approach to fast malware clustering.,”

LEET, vol. 9, p. 8, 2009.
[11] CONIX, “Machoke.” https://www.conix.fr/machoke-hashing, 2017.
[12] “Mitre att&ck.” https://attack.mitre.org.
[13] “Binwalk.” https://github.com/ReFirmLabs/binwalk.
[14] “capa.” https://github.com/fireeye/capa.
[15] “Alienvault otx.” https://otx.alienvault.com/.
[16] “Threatminer.” https://www.threatminer.org/.
[17] “Beef browser exploitation framework.” https://beefproject.com/.
[18] “Metasploit.” https://www.metasploit.com/.
[19] “docker.” https://www.docker.com/.
[20] “hezoo - a live malware repository.” https://github.com/ytisf/thezoo.

https://www.corptech.com.au/
https://securelist.com/kaspersky-security-bulletin-2019-statistics/95475/
https://securelist.com/kaspersky-security-bulletin-2019-statistics/95475/
https://www.virustotal.com
https://github.com/intelowlproject/IntelOwl
https://www.hybrid-analysis.com
https://ghidra-sre.org/
https://www.radare.org/n/
https://www.conix.fr/machoke-hashing
https://attack.mitre.org
https://github.com/ReFirmLabs/binwalk
https://github.com/fireeye/capa
https://otx.alienvault.com/
https://www.threatminer.org/
https://beefproject.com/
https://www.metasploit.com/
https://www.docker.com/
https://github.com/ytisf/thezoo

	Introduction
	Background and Related Work
	ColdPress Overview
	Modularization
	Extensibility
	Multi-threading
	Fast mode
	Containerization

	Evaluation
	Information usefulness
	Information quantity
	Efficiency

	ColdPress Usage
	Concluding Remarks
	References

