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Abstract

The rise of modern blockchains has facilitated the emergence of smart
contracts: autonomous programs that live and run on the blockchain.
Smart contracts have seen a rapid climb to prominence, with applications
predicted in law, business, commerce, and governance.

Smart contracts are commonly written in a high-level language such as
Ethereum’s Solidity, and translated to compact low-level bytecode for de-
ployment on the blockchain. Once deployed, the bytecode is autonomously
executed, usually by a virtual machine. As with all programs, smart
contracts can be highly vulnerable to malicious attacks due to deficient
programming methodologies, languages, and toolchains, including buggy
compilers. At the same time, smart contracts are also high-value targets,
often commanding large amounts of cryptocurrency. Hence, developers
and auditors need security frameworks capable of analysing low-level byte-
code to detect potential security vulnerabilities.

In this paper, we present Vandal: a security analysis framework for
Ethereum smart contracts. Vandal consists of an analysis pipeline that
converts low-level Ethereum Virtual Machine (EVM) bytecode to seman-
tic logic relations. Users of the framework can express security analyses
in a declarative fashion: a security analysis is expressed in a logic specifi-
cation written in the Soufflé language. We conduct a large-scale empirical
study for a set of common smart contract security vulnerabilities, and
show the effectiveness and efficiency of Vandal. Vandal is both fast and
robust, successfully analysing over 95% of all 141k unique contracts with
an average runtime of 4.15 seconds; outperforming the current state of the
art tools—Oyente, EthIR, Mythril, and Rattle—under equivalent condi-
tions.

∗Joint first authorship.

1



1 Introduction
Since the introduction of the Bitcoin cryptocurrency in 2008 [1], blockchain
technology has seen growing interest from economists, lawyers, the technol-
ogy industry and governments [2–5]. Blockchains are decentralized distributed
public ledgers, and have recently been used as Turing-complete computational
devices for storing and executing autonomous programs called smart contracts.
Ethereum [6] and Cardano [7] are two examples of blockchains with smart con-
tract capabilities. Ethereum has become the de facto standard platform for
smart contract development, with a market capitalization of $20B USD [8]. For
this reason, we focus exclusively on Ethereum smart contracts.

Smart contracts are typically written in a high-level language such as Solid-
ity [9], compiled to a low-level bytecode, and deployed on the blockchain. Smart-
contracts have unique addresses that are used to identify them on the block-
chain. Smart-contracts can then be invoked by users of the network or other
smart contracts, and are executed by the Ethereum Virtual Machine (EVM).
Each smart contract commands its own balance of Ether, the cryptocurrency
used in Ethereum.

Once deployed on the blockchain, a contract’s bytecode becomes immutable.
This is a high-risk, high-stakes paradigm: deployed code is impossible to patch,
and contracts collectively control billions of USD worth of Ether. As a conse-
quence, security bugs in smart contracts can have disastrous consequences. A
well-known example is the 2016 attack on a smart contract known as the “The
DAO”, where an attacker exploited a reentrancy vulnerability, gaining control
of 3.6M Ether, worth more than $50M USD at the time [10, 11]. One year later,
in July 2017, an attacker exploited a vulnerability in a library contract used
by the “Parity multisig wallet”, stealing 150k Ether worth $30M USD [12–14].
Later that year, in November 2017, an attacker exploited another vulnerability
in a newer version of the Parity multisig wallet contract, permanently freezing
over 500k Ether worth $155M USD [15]. In January 2018, an attacker exploited
an integer overflow vulnerability in the contract underpinning the “Proof of
Weak Hands” contract, making off with 866 Ether worth $2.3M USD [16].

A wide range of known security vulnerabilities have been described [17–23].
So-called unchecked send vulnerabilities arise when the success/failure return
value of a message call operation is not checked, i.e., always assuming success.
This vulnerability is one example of a larger class of vulnerabilities arising from
mishandled exceptions, and occurs surprisingly frequently [17, 18, 24]. Reen-
trancy vulnerabilities emerge when a contract is not programmed with reen-
trancy in mind, allowing an attacker to make reentrant message calls that ex-
ploit an intermediate state [17, 18, 20]. Unsecured balance vulnerabilities occur
when a contract’s balance is exposed to theft by an arbitrary caller [21]. This
may be due to programmer error; for example, a misnamed constructor func-
tion that inadvertently becomes a public function [17]. Destroyable contracts
are those which contain a selfdestruct instruction on an exposed program
path, i.e., without adequate authentication, allowing an arbitrary caller to per-
manently destroy the contract [17, 21]. Origin vulnerabilities occur when a
contract performs authentication by checking the return value of origin rather
than caller [18, 22]. In EVM, origin returns the address of the account that
initiated the transaction, whereas caller returns the address of the account
or contract that initiated the currently executing message call. An origin
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Figure 1: Logic-Driven Program Analysis Approach: a program is converted by
an “extractor” to a relational format also known as an Extensional Database
(EDB). The logic rules express the program analysis. A Datalog engine com-
putes the result of the program analysis from the EDB and the set of rules.
This result is also known as an Intensional Database (IDB), and contains inter-
mediate and final results of the analysis.

vulnerability can be exploited if control is passed to a malicious contract that
makes a message call to the vulnerable contract: the vulnerable contract checks
origin and sees the transaction initiator’s address, rather than the malicious
contract’s address. Other vulnerability classes include those related to gas con-
sumption [17, 23], locking away of Ether [21], making calls to dead or unknown
contracts [17, 21], timestamp dependence [19, 20], transaction-ordering depen-
dence [19, 20], integer overflow/underflow [19], block state dependence [19],
Ether lost in transfer [17], and EVM’s stack size limit [17].

Security vulnerabilities in smart contracts stem from a wide range of issues
including programmer error, language design issues, and toolchain bugs such as
those in the Solidity compiler [25].

To analyze and alleviate the current deficiencies in smart contract pro-
gramming methodologies, language design, and toolchains, we present Van-
dal: a new security analysis framework capable of directly analyzing smart
contract bytecode1. Vandal facilitates a logic-driven static program analysis
approach (cf. Chapter 12.3 of [26], and [27]) as depicted in Figure 1. In this
approach, Datalog is used as a domain-specific language to bridge the gap be-
tween program semantics of security vulnerabilities and the implementation of
the corresponding analyses.

In Vandal, security analysis problems are specified declaratively using logic
rules. An off-the-shelf Datalog engine then executes the specification for a
set of input relations that encode the contract (also known as the extensional
database) and produces an output relation containing a list of detected security
vulnerabilities and their locations in the bytecode. Our logic-driven approach
results in security analyzers that are easy to write, maintain, and less error-
prone compared to low-level, hand-crafted implementations. More importantly,
our approach allows users to explore the design space of security analyzers with-

1Available online: https://github.com/usyd-blockchain/vandal
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out embarking on the difficult endeavour of writing/modifying a hand-crafted
static analyzer. This paradigm is supported by a cornucopia of state-of-the-art
Datalog engines that specifically target static program analysis [27–29].

Vandal consists of two parts. First, an analysis pipeline translates low-level
bytecode to logic relations for the logic-driven security analysis. This pipeline is
represented by the “extractor” component of Figure 1. In Vandal, the logic re-
lations expose data- and control-flow dependencies of the bytecode. The second
component is a set of logic specifications for security analysis problems. Vandal
uses Soufflé [30] as a Datalog engine, which synthesizes highly performant C++
code from logic specifications.

The contributions of our work are:

• The Vandal security analysis framework that transforms low-level EVM
bytecode to logic relations, enabling a logic-driven approach for express-
ing security analyzers. Vandal’s analysis pipeline consists of a bytecode
scraper that retrieves EVM bytecode from the blockchain, a disassem-
bler that translates bytecode into opcodes, a decompiler that translates
low-level bytecode to register transfer language, and an extractor that
translates this register transfer language into logic semantic relations.

• A new decompilation technique for incrementally reconstructing control-
flow, by applying symbolic execution for basic-blocks, incremental data-
flow analysis, and node-splitting techniques to disambiguate jump targets.
The precise detection of jump targets is essential for identifying stack
locations statically so that the stack location can be assigned a register.

• A static analysis library containing logic specifications that expose control-
flow graph properties, domain-specific properties of EVM operations, and
data and control dependencies.

• A case study in which we phrase common security analyses for smart
contracts as logic specifications within Vandal. We implement analyses
for unchecked send, reentrancy, unsecured balance, destroyable contract,
and use of origin vulnerabilities in Vandal.

• A large-scale empirical analysis of all 141k unique smart contracts scraped
from the public blockchain. We demonstrate that Vandal is more robust
and efficient than Oyente [20], EthIR [31], Mythril [32], and Rattle [33],
successfully decompiling over 95% of all contracts with an average runtime
of 4.15 seconds.

The organization of this technical report is as follows: In Section 2, we in-
troduce the stages of the Vandal analysis pipeline and their implementation.
In Section 3, we provide a use-case study showing how security analyses for
common vulnerabilities can be implemented in Vandal as logic specifications.
In Section 4, we present and discuss results from our empirical analysis exper-
iments. Related work is surveyed in Section 5. Finally, in Section 6 we draw
our conclusions.
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Figure 2: Analysis Pipeline. The Scraper: extracts smart contract bytecode
in bulk from the blockchain. The Disassembler converts the bytecode into
mnemonics. The Decompiler translates the stack-based bytecode to a register
transfer language. The Extractor produces logic relations from the register
transfer language, reflecting the program semantics of the smart contract. The
security analyses that report potential security vulnerabilities in the smart con-
tracts are written in Soufflé [30].

2 The Vandal Framework
Vandal has been designed for phrasing security vulnerability analyses in a declar-
ative language called Soufflé [30]. Expressing vulnerability analyses in a declar-
ative language allows security experts to rapidly prototype new analyses and
compose existing analyses with ease [26, 27, 34]. The logic-specification driven
approach has several advantages, including this agile capability for designing
and implementing security analyses. The design space for security analyses can
be explored in terms of a precision vs. time trade-off. A traditional implementa-
tion of a security analysis would require several hundreds of thousands of lines of
code, becoming very costly to implement, test, and maintain. The performance
penalties incurred by the usage of a logic language for expressing security analy-
ses is alleviated by the presence of modern logic synthesizers such as Soufflé that
produce highly performant C++ code from logic specifications. The produced
C++ code is equivalent or better in performance than hand-written code for
program analysis [30].

The challenge in the design of Vandal is the translation of smart contracts
into logic relations. The Vandal framework utilizes an analysis pipeline to con-
vert Ethereum bytecode stored on the blockchain to logic relations that reflect
the semantics of the smart contract. This is challenging: EVM bytecode is exe-
cuted by a very low-level stack-based abstract machine. In contrast to Java vir-
tual machine bytecode, low-level EVM bytecode has no abstractions for classes
and methods, no memory management, no type checking, no class loading, and
no notion of stack frames for function calls. The EVM is a very simplistic com-
putational device created for efficient storage of smart contracts on a blockchain.
The control- and data-flows of a smart contract are obfuscated by the virtual
machine stack, making the task of static program analysis immensely difficult.
To apply a logic-driven approach for analyzing smart contracts, the EVM byte-
code must be transformed to a new program representation that reconstructs
the data- and control- flow dependencies of the original high-level language.
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For the reconstruction of program semantics from Ethereum’s low-level byte-
code, we introduce an analysis pipeline as shown in Figure 2. This pipeline
breaks up the task of translating bytecode to an analyzable form into several
stages, as follows: The Ethereum bytecode is scraped from the blockchain by
the Scraper, disassembled by the Disassembler, then decompiled into a register
transfer language by the Decompiler. The decompiler reconstructs the control-
and data-flow of the high-level language of the smart contract. After decompi-
lation, the bytecode program is expressed as a register-transfer language. The
Extractor converts the intermediate representation of the register-transfer lan-
guage to logic relations. These logic relations capture the semantics of the smart
contracts, and are stored in a simple tab-separated value format. Soufflé synthe-
sizes the security analysis to executable programs that read the logic relations
generated by the Extractor, and perform the security analysis for detecting vul-
nerabilities. Potential security vulnerabilities are reported after the execution
of the security analysis.

In the following subsections we describe the design and implementation of
each pipeline stage. Note that the decompiler requires substantial research and
implementation effort due to the incremental discovery of jump targets. It is
an intertwine approach of jump discovery, node-splitting, and incremental data-
flow analysis. With the exception of the security analyses and program analysis
library, Vandal’s infrastructure is written in Python. The Vandal framework is
open source and has been published under the BSD license [35].

2.1 Scraper
The first stage of our analysis pipeline is the scraper, which extracts the bytecode
representation of smart contracts from the live Ethereum blockchain.

We implement the scraper using the JSON-RPC API of the Parity [36]
Ethereum client. For scraping all transactions, including “internal” transac-
tions, the Parity client must be synchronized with command-line flags that
enable tracing and disable pruning, as shown in Listing 1.

1 % parity --pruning archive --tracing on --no-warp

Listing 1: Parity command-line flags to enable tracing and disable pruning
The scraping procedure is outlined in Algorithm 1. The procedure traverses
through all transactions in all blocks, searching for contract creations. The
following helper functions are assumed to exist:

• Get-Code(contract) — retrieves bytecode stored at the specified contract
address from the Parity client.

• Trace-Transaction(transaction) — retrieves the execution trace of the
specified transaction from the Parity client.

• Save-Contract(transaction, contract, code) — writes the given contract’s
code to disk, along with transaction metadata.

Scraping the whole blockchain is inefficient due to its size when synchronized
with full tracing enabled (> 1.5TB), Parity’s underlying hash-based database,
and the overheads imposed by JSON-RPC HTTP requests. Parity’s use of a
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Algorithm 1 Ethereum blockchain smart contract scraping procedure.
Require: start block number s and end block number e
Require: function Get-Code(contract)
Require: function Trace-Transaction(transaction)
Require: function Save-Contract(transaction, contract, code)
1: for each block b such that s <= b < e do
2: for each transaction t in block b do
3: if t creates a contract at address c then
4: code=Get-Code(c)
5: Save-Contract(t, c, code)
6: else
7: traces← Trace-Transaction(t)
8: for each trace in traces do
9: if trace created a contract at address c then
10: code← Get-Code(c)
11: Save-Contract(t, c, code)
12: end if
13: end for
14: end if
15: end for
16: end for

hash-based key-value store, combined with a sequential scraping process, results
in slow random disk reads. Our scraper uses various implementation techniques
to reduce the runtime from several days to less than a day:

1. parallelization — splitting the blockchain into contiguous chunks and
scraping each portion in a separate instance;

2. increasing the number of JSON-RPC threads used by Parity (using the
--jsonrpc-threads and --jsonrpc-server-threads command-line flags); and

3. performing our scrapes with all I/O via a main-memory ramdisk (using a
machine with 512GB of main memory).

For each contract on the blockchain, our scraper produces a file on the local
filesystem containing the machine code of the smart contract, i.e., a sequence
of bytes that requires disassembly and decompilation in the later stages of our
pipeline. Due to legal reasons, the scraper has not been released as open source.
We will query the legal status of the scraper at a later point in time so that it
can be added to Vandal’s open source repository on GitHub [35].

2.2 Disassembler
The second stage of the analysis pipeline is the disassembler, which converts
EVM bytecode to a series of readable low-level mnemonics annotated with pro-
gram counter addresses. This conversion is performed by a single linear scan over
the bytecode, converting each instruction to its corresponding mnemonic and
incrementing a program counter for each instruction and each inline operand.
The result is a sequence of program addresses, mnemonics and their arguments.
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1 contract Factorial {
2 function fact(uint x) returns (uint y) {
3 if (x == 0) {
4 return 1;
5 } else {
6 return fact(x-1) * x;
7 }
8 }
9 }

Figure 3: Example: high-level Solidity code.

1 60606040526000357
2 c0100000000000000
3 00000000000000000
4 00000000000000000
5 00000000900480631
6 93ddd2c1460375760
7 35565b005b6042600
8 4805050605a565b60
9 40518082151581526

10 02001915050604051
11 80910390f35b60006
12 00560006000505414
13 9050606b565b9056
14

(a) Bytecode

1 0x00 PUSH1 0x60
2 0x02 PUSH1 0x40
3 0x04 MSTORE
4 0x05 PUSH1 0xe0
5 0x07 PUSH1 0x02
6 0x09 EXP
7 0x0a PUSH1 0x00
8 0x0c CALLDATALOAD
9 0x0d DIV

10 0x0e PUSH4 0x193ddd2c
11 0x13 DUP2
12 0x14 EQ
13 0x15 PUSH1 0x1a
14 0x17 JUMPI

15 0x18 JUMPDEST
16 0x19 STOP
17 0x1a JUMPDEST
18 0x1b PUSH1 0x00
19 0x1d SLOAD
20 0x1e PUSH1 0x05
21 0x20 EQ
22 0x21 PUSH1 0x60
23 0x23 SWAP1
24 0x24 DUP2
25 0x25 MSTORE
26 0x26 PUSH1 0x20
27 0x28 SWAP1
28 0x29 RETURN

(b) Disassembled bytecode

Figure 4: Disassembler: converts a stream of EVM bytecode to a list of ad-
dresses/mnemonic pairs.

Assume that a programmer deploys a Solidity smart contract as shown
in Figure 3 on the blockchain. Vandal’s scraper will capture the machine code
representation of this smart contract in the form of EVM bytecode, producing
a file such as the one illustrated in Figure 4(a). The disassembler converts the
machine code to readable EVM bytecode as shown in Figure 4(b).

The Vandal disassembler produces a similar output format to the Ethereum
Foundation’s official disassembler, but with support for basic block boundary
delineation. The disassembler and decompiler share a common bytecode parsing
implementation. An interface for declaring new instructions is provided in case
changes occur to the EVM specification.

2.3 Decompiler
The next stage in the analysis pipeline is the decompiler, which translates the
low-level EVM bytecode to a register transfer language. This register transfer
language exposes data- and control-flow structures of the bytecode. Conceptu-
ally the semantics of the newly defined language has a strong overlap with those
of EVM, i.e., the instructions of the EVM are still reflected in the register trans-
fer language of the decompiler. However, the notion of a stack is replaced by a
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set of registers, and all instructions operate on registers. An abstract syntax of
the language is given in Listing 2 below.

1 <operation> ::= Register = <rhs> | Op <args>
2 <rhs> ::= Register | Constant | Op <args>
3 <args> ::= (Register | Constant ) *

Listing 2: Syntax of the intermediate register transfer language.
The language has two types of operations: operations that are side-effect free

or have a side-effect. An operation may manipulate values in registers, mem-
ory, or storage. The right-hand side of an operation can be either a constant,
another register, or an operation that requires zero or more arguments. The
left-hand side is a register, a memory/storage location if the operation has a
side-effect. All stack-based operations of the EVM can be expressed in this reg-
ister language. Note that the the storage structure persists on the blockchain,
whereas memory exists only transiently at runtime.

0x0: V0 = 0x60
0x2: V1 = 0x40
0x4: M[0x40] = 0x60
0x5: V2 = 0x10...0
0x23: V3 = 0x0
0x25: V4 = CALLDATALOAD 0

x0
0x26: V5 = DIV V4 0x10

...0
0x27: V6 = 0xb95d228
0x2d: V7 = EQ V5 0

xb95d228
0x2e: V8 = 0x33
0x30: JUMPI 0x33 V7

0x31: JUMPDEST
0x32: STOP

0x33: JUMPDEST
0x34: V9 = 0x4a

0x36: V10 = 0x4
0x38: V11 = CALLDATALOAD

0x4

0x39: JUMPDEST
0x3a: V121 = 0x0
0x3d: V13 = 0x0
0x3f: V14 = EQ 0x0 S0
0x40: V15 = ISZERO V14
0x41: V16 = 0x65
0x43: JUMPI 0x65 V15

0x45: V17 = 0x1
0x47: V18 = 0x60
0x49: JUMP 0x60

0x4a: JUMPDEST
0x4b: V19 = 0x40
0x4e: V20 = M[0x40]
0x51: M[V20] = S0

0x52: V21 = M[0x40]
0x56: V22 = SUB V20 V21
0x57: V23 = 0x20
0x59: V24 = ADD 0x20 V22
0x5b: RETURN V21 V24

0x5c: JUMPDEST
0x5d: V25 = MUL S0 S1

0x60: JUMPDEST
0x64: JUMP {0x4a, 0x5c}

0x65: JUMPDEST
0x67: V26 = 0x5c
0x69: V27 = 0x1
0x6c: V28 = SUB S1 0x1
0x6d: V29 = 0x39
0x6f: JUMP 0x39

Figure 5: Example: register transfer language.

For example, consider the code in Figure 5 that was decompiled from the
EVM bytecode of Figure 4. The first EVM instruction 0x00 PUSH1 0x60 pushes
the constant value 0x60 onto the EVM stack, as shown in the example of Fig-
ure 4. In Figure 5, the decompiler replaces this EVM instruction with the
register transfer instruction 0x0: V0 = 0x60. The output is generated such
that instruction opcodes generally correspond directly to EVM instructions ex-
cluding stack operations. The instructions have a program address followed by
a colon. Note that M[x] represents a memory location x. Registers are denoted
Vn where n is a number. Register values can be read from or written to, how-
ever, our register transfer language does not permit indirect access to registers.
An operation may have several arguments that are separated by spaces (e.g.
EQ V5 0xb95d228). Due to limitations of the decompilation, we may not be
able to determine jump addresses uniquely and we use curly braces to denote
sets of possible jump addresses — e.g. JUMP {0x4a, 0x5c} For the translation
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work it is important to realize that the decompiler does not produce executable
register transfer language code due to the indeterminism caused by unknown
jump addresses. The main purpose of the translation is the detection of security
vulnerabilities and hence the indeterminism can be seen as a precursor to the
program analysis expressed in logic.

To achieve the translation, the decompiler assigns to stack positions to reg-
isters. However, the control-flow of a smart contract is obfuscated by stack-
based data-dependencies. Hence, the decompiler must comprehend the con-
tract’s stack access patterns, necessitating a deep program analysis.

The control-flow of an EVM bytecode program is initially unknown, requir-
ing an incremental analysis to iteratively construct the flow and determine the
stack locations. To get a handle on the problem, we incrementally build a
control flow graph (CFG) [26] and statically propagate constant values for to
identify potential jump addresses. Note that in EVM bytecode, all valid jumps
must jump to a jumpdest instruction. Using this property, we can easily slice
the disassembled bytecode into basic blocks. However, determining the desti-
nation of a jump operation is difficult since the EVM jump instructions do not
have explicit arguments, and instead pop their operands from EVM’s stack at
runtime. These dependencies may be distinctly non-local, in that a value may
be used only after following a number of jumps. So in order to resolve these
dependencies, jump destinations must have been resolved beforehand. Yet these
destination values may themselves have been defined non-locally. So the byte-
code, even when disassembled into a sequence of more-readable opcodes, has
very little structure.

We use two phases to build the control-flow structure:

• In the first phase, we determine the basic blocks of the smart contract and
assume a symbolic stack with symbolic values. We symbolically execute
each basic block and de-stackify its operations. Some registers may point
to stack locations whose values were produced by the prior basic blocks.
Other registers may point to stack locations that were produced by the
current basic block. We introduce symbolic labels for stack locations that
are used to express data-dependencies across basic blocks, and try to re-
solve them via registers in the second phase. For example, an add EVM
instruction that is placed as the first instruction of a basic block would
generate a new register transfer operation V = ADD S0 S1, where S0 and S1
are the top symbolic stack elements which were written by an ancestral
block, and V is a new register holding the result of the addition, which is
pushed to the symbolic stack.

• The second phase builds the control-flow graph incrementally. It resolving
symbolic stack locations from the first phase, and new jump addresses
emerge as a side effect. These new jump addresses, in turn, may lead to
further addresses being discovered during the next iteration. This second
phase is expressed as a fixed-point algorithm that propagates constant
values that may carry jump addresses.

After decompilation, most jump addresses or sets of potential jump addresses
for basic blocks have been determined. For example, the corresponding control
flow graph of Figure 5 is shown in Figure 6.

10



0x44

0x60

0x65

0x39

0x33

0x4a

0x0

0x31

0x5c

Figure 6: Control flow graph for the Factorial contract, as output by Vandal.

In order to obtain a precise dataflow analysis and resolve as many jump des-
tinations as possible, we implemented a node splitting technique in which CFG
nodes with multiple outgoing edges are split into several paths, each originating
at at a distinct common ancestor. For example, consider the CFG in Figure 7a,
and suppose that the jump address used in block 0xE is pushed in 0xA’s pre-
decessors. In this case, we have a set of two possible values {0x10, 0x12} —
one value from each of 0xA’s predecessors. However, if we split node 0xE by
cloning the path from 0xE to 0xA for each of 0xA’s predecessors, we can resolve
the jump address at 0xE to a constant value for each path. This information
can then be propagated down the graph during data flow analysis and used to
determine values in deeper nodes more precisely. The result of splitting at node
0xE is shown in Figure 7b.
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0x0

0xa

0xe

0x10 0x12

0x5

(a) Before node splitting.

0xa_0x0

0xe_0x0

0x120x10

0xe_0x5

0x5

0xa_0x5

0x0

(b) After splitting at node 0xE.

Figure 7: Demonstration of node splitting within Vandal.

After data flow analysis is complete, we merge duplicated nodes back to-
gether, so that our final output is consistent with the input program, and does
not contain duplicated program counters, for instance.

2.4 Extractor
The next step in the analysis pipeline is the extractor that translates the register
transfer language to logic relations. Logic relations are comma-separated files
that can be later read by the security analyses expressed in Soufflé [30]. The logic
relations express the register transfer language of an EVM bytecode program.

The logic relations use various domains such as the set of statements S, and
the set of registers V in a smart contract. There are other domains such as
O for the set of operations in the EVM. Edges of the control-flow graph are
expressed by the relation edge ⊆ S × S. The first statement in the control-flow
graph is given by the singleton set entry ⊆ S. For tracking data flow of smart-
contracts, we introduce def-use sets [26] that track where registers are written
to and read from, i.e., relation def ⊆ V × S enumerates all write positions of a
register, and relation use ⊆ V ×S enumerates all read positions of a register in a
smart-contract. The relation op ⊆ S×O associates the op-code to a statement.
The relation value ⊆ V × N associates constant values to registers if the set
of potential constant values for the register is known. The logic relations are
defined in Soufflé as shown in Listing 3.

We have other relations that pre-compute dominance and post-dominance
relations outside of Datalog such that control-dependencies in smart contracts
can be expressed in few lines of logic. We have specific logic relations for memory,
storage, and jump operation to reflect the semantics of the smart contract in
more detail. These relations are required for the detection of some security
analyses that are presented in the next section.
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1 .type Statement
2 .type Variable
3 .type Opcode
4 .type Value
5
6 .decl entry(s:Statement)
7 .decl edge(h:Statement, t:Statement)
8 .decl def(var:Variable, stmt:Statement)
9 .decl use(var:Variable, stmt:Statement, i:number)

10 .decl op(stmt:Statement, op:Opcode)
11 .decl value(var:Variable, val:Value)
12 .input entry, edge, def, use, op, value

Listing 3: Definition of logic relations in Soufflé.

3 Use-Case Study: Security Analyses in Vandal
To demonstrate the user experience for defining vulnerability analyses, we de-
scribe some common vulnerabilities and how they can be implemented within
Vandal using Souffle Datalog code. For simplicity, our explanations of each
vulnerability use snippets of Solidity source code.

3.1 Vulnerability: Unchecked Send
Explanation. Solidity does not have exceptions that may be caught, so some
low-level operations report a success/failure status via a boolean return value.
One such operation is the address.send() method, which performs a message
call and transfers Ether to a specified address. If this operation fails, then
any execution that occurred up until the point of failure is rolled back, but
execution of the calling function continues as normal. Hence, failing to check
for and handle an error state can lead to unintended effects, and is therefore
considered to be dangerous behaviour.

Consider the Solidity function in Listing 4 which transfers 100 wei to a
creditor using creditor.send, provided they have not already been paid:

1 function pay() {
2 require(!paid);
3 creditor.send(100);
4 paid = true;
5 }

Listing 4: Vulnerable – return value
of send is not checked

1 function pay() {
2 require(!paid);
3 require(creditor.send(100));
4 paid = true;
5 }

Listing 5: Safe – return value of send
is checked and failure handled

Assume that the account at the creditor address is itself a smart contract,
and its execution throws an exception. In this case, the funds will not be
transferred and the called function will fail. However, the state of the contract
is still updated as if the creditor had been paid as the next operation in pay()
sets paid to true. The state of the contract has fallen out of sync with the reality
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that it is supposed to represent. The creditor will no longer be able to obtain
what they are owed as the funds are now locked in the contract.

The correct implementation of this pay() must check the return code of
creditor.send(100). If the return code indicates failure, it must not update the
contract state, e.g. by throwing an exception as shown in Listing 5.

Implementation. On the bytecode level, address.send corresponds directly
to EVM’s call instruction An analysis implementation for unchecked send is
shown in Listing 6. Here, we check that the return value u of a call operation
(line 4) is neither used to control the execution of a throw (line 5), nor an update
to persistent storage (line 6). In other words, if no tangible action is taken based
on the return value of call, then the operation is flagged as vulnerable.

1 .decl uncheckedCall(u:Statement)
2
3 uncheckedCall(u) :-
4 callResult(_, u),
5 !checkedCallThrows(u),
6 !checkedCallStateUpdate(u).

Listing 6: Analysis implementation in Vandal for unchecked send.
The relations callResult, checkedCallThrows, and checkedCallStateUpdate are all pro-
vided by Vandal’s static analysis library.

3.2 Vulnerability: Reentrancy
Explanation. Another common mistake that can be much harder to spot is
caused by reentrancy. When an Ethereum contract performs a message-call to
another contract by sending value or calling a function on the other contract, the
recipient contract may perform an arbitrary execution before returning control
to the caller. The recipient contract may, for example, call another contract,
or even the original contract. If the original contract is not reentrancy-safe,
i.e., guarantees that contract state is always correct independent of reentering
calls, then a malicious contract can make reentrant calls that take advantage of
intermediate state. In 2016, a reentrancy vulnerability was infamously exploited
by an unknown attacker to “steal” then-equivalent of over $50M USD from a
contract known as TheDAO [10, 11].

In Listing 7 we show an excerpt from a contract that stores Ether for several
users and keeps track of how much Ether is owned by each user in an accounts
map. The contract allows users to withdraw their share of Ether by calling
withdraw(), which reads the caller’s balance from accounts, sends the Ether, and
sets the new account balance to 0. However, if the caller is a contract, it can
make a reentrant call to withdraw() when control is passed to it by the message
call on line 3. At that point, the accounts map has not yet been updated, so the
caller’s balance would be sent again. Recursive reentrant calls of this nature
would allow an attacker to drain all Ether from the contract. Note, however,
that recursion is not a requirement: depending on the code, a single reentrancy
could be just as destructive.
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1 function withdraw() public {
2 uint balance = accounts[msg.sender];
3 msg.sender.call.value(balance)();
4 accounts[msg.sender] = 0;
5 }

Listing 7: Vulnerable – accounts is
updated after message call

1 function withdraw() public {
2 uint balance = accounts[msg.sender];
3 accounts[msg.sender] = 0;
4 msg.sender.call.value(balance)();
5 }

Listing 8: Safe – all state is updated
before message call

There is no way to prevent reentrant calls in Ethereum. Hence, all func-
tions must be reentrancy-safe. This can be achieved by using send() instead
of call.value()(), which does not forward enough gas for the callee to perform
computations. Alternatively, ensuring that all state changes occur before any
external calls would prevent an attacker from taking advantage of intermediate
state. Our revised function in Listing 8 demonstrates the latter approach, by
simply swapping lines 3 and 4 of the vulnerable code.

1 function mutexProtected() {
2 require(!mutex);
3 mutex = true;
4 <protected CALL code>
5 mutex = false;
6 }

Listing 9: Example of a non-reentrant call protected by a mutex.

Implementation. At the bytecode level, we will consider any call operation
to be reentrant if it can be reached in a recursive call to the enclosing contract.
This simple definition can be generalised to a mapping from specific CALL
operations to program points they reach in a reentrant manner. We also require
that it forwards any remaining gas on to the callee, so that there is sufficient gas
for further execution to take place. Finally, we require that reentrant statements
are not protected by a mutex-like structure. For example, Listing 9 is not
reentrant, because the update of the mutex field is carried through to recursive
calls.

1 .decl reentrantCall(stmt: Statement)
2
3 reentrantCall(stmt) :-
4 op(stmt, "CALL"),
5 !protectedByLoc(stmt, _),
6 gassy(stmt, gasVar),
7 op_CALL(stmt, gasVar, _, _, _, _, _, _).

Listing 10: Analysis implementation in Vandal for reentrancy.
An analysis for reentrancy vulnerabilities can be implemented in Vandal as

shown in Listing 10. Here, protectedByLoc is defined by Vandal, and protectedByLoc(stmt, _)
means that statement stmt is protected by a mutex. The gassy relation is also
defined by Vandal, with gassy(stmt, var) implying that statement stmt uses a
variable var that depends on the result of a gas operation. In other words, a
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call is flagged as reentrant if it forwards sufficient gas and is not protected by
a mutex.

3.3 Vulnerability: Unsecured Balance
Explanation. Unsecured balance vulnerabilities arise when a contract’s bal-
ance is left exposed to theft. This can arise due to programmer error: for
example, in Solidity, a contract’s constructor function is not qualified with a
dedicated keyword and giving it a name that differs from the contract’s name
turns it into a public function. Since it is a common pattern in contract con-
structors to set a state variable to define the “contract owner”, i.e., an address
that can perform privileged actions, a misnamed constructor often allows any
caller to assume ownership and access to privileged functionality. Such a vul-
nerability was discovered in the wild in the “Rubixi” Ponzi scheme contract [17].
The Rubixi developers had renamed their contract at some point, but failed to
rename the constructor, allowing anyone to assume ownership and withdraw
Ether intended for the contract owner.

The contract in Listing 11 contains a misnamed constructor called TaxOffice(),
which becomes a public function instead of a constructor. Anyone could call
TaxOffice() to take ownership of the contract and then, by calling collectTaxes(),
withdraw Ether intended for the contract’s rightful owner.

1 contract TaxMan {
2 address private owner;
3 ...
4 function TaxOffice() {
5 owner = msg.sender;
6 }
7 function collectTaxes() public {
8 require(msg.sender == owner);
9 owner.send(tax);

10 }
11 }

Listing 11: Vulnerable – misnamed
constructor TaxOffice() sets owner

1 contract TaxMan {
2 address private owner = msg.sender;
3 ...
4 function collectTaxes() public {
5 require(msg.sender == owner);
6 owner.send(tax);
7 }
8 }

Listing 12: Safe – owner is initialised
directly during contract creation

In Listing 12, the constructor function is eliminated altogether in favour of
direct initialization of the owner state variable. Here, owner is initialised when
the contract is first created and is never updated from within a function.

Implementation. We say that a contract is vulnerable if an arbitrary caller
can force it to transfer Ether, and can manipulate the address to which that
Ether is transferred.

Our example analysis implementation is shown in Listing 13. At the EVM
level, Ether transfers are handled by the call instruction. Hence, this specifi-
cation checks for a call instruction that:

1. has a destination address that can be manipulated (line 5); and

2. transfers a nonzero amount of Ether (lines 5-7); and

16



1 .decl unsecuredValueSend(stmt:Statement)
2
3 unsecuredValueSend(stmt) :-
4 op_CALL(stmt, _, target, val, _, _, _, _),
5 nonConstManipulable(target),
6 def(val, _),
7 !value(val, "0x0"),
8 !fromCallValue(val),
9 !inaccessible(stmt).

Listing 13: Analysis implementation in Vandal for unsecured balance.

3. does not simply forward the Ether from in the incoming message call (line
8); and

4. can be executed by an arbitrary caller (line 9).

The relations fromCallValue(var) and inaccessible(stmt) are provided by Vandal’s
static analysis library, with inaccessible(stmt) meaning that the operation at
stmt is either unreachable code, or its execution is conditionally dependent on a
value that can not be manipulated by an arbitrary caller.

3.4 Vulnerability: Destroyable Contract
Explanation. An EVM instructions exists that is capable of nullifying the
bytecode of a deployed contract: selfdestruct. When called, it halts EVM
execution, deletes the contract’s bytecode, and sends any remaining value to a
designated address. In a pattern that is similar to exposed ownership control,
this can be exploited if this function is accessible for non-authorized callers.

Listing 14 shows such an accessible selfdestruct vulnerability. The public
function destroy() should probably only be called by authorized callers, but
performs no authentication before calling selfdestruct().

1 function destroy() public {
2 selfdestruct(msg.sender);
3 }

Listing 14: Vulnerable – code path to
selfdestruct() is not protected

1 function destroy() public {
2 require(msg.sender == owner);
3 selfdestruct(msg.sender);
4 }

Listing 15: Safe – selfdestruct() may
only be executed by the contract
owner

Listing 15 shows how easily this can be mitigated by requiring that the caller
of destroy() be the contract’s owner.

Implementation. We implement this in Vandal as shown in Listing 16 by
requiring that a selfdestruct instruction exists (line 5), and is directly reach-
able from the contract’s entry point with its execution not conditional upon a
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value outside the attacker’s control (line 4). The inaccessible relation is defined
by Vandal.

1 .decl destroyable(stmt:Statement)
2
3 destroyable(stmt) :-
4 !inaccessible(stmt),
5 op(stmt, "SELFDESTRUCT").

Listing 16: Analysis implementation in Vandal for accessible selfdestruct.
Any code path leading to a selfdestruct instruction, that can be executed

by an arbitrary caller, is almost certainly unintended behaviour and is flagged
by this implementation.

3.5 Vulnerability: Use of ORIGIN
Explanation. Solidity’s low-level tx.origin contains the address of the ac-
count that made the first message call in the currently executing transaction.
Hence, its use should be avoided when authenticating the sender of a message
call, otherwise a malicious intermediary contract could perform authenticated
message calls. Instead, programmers should use msg.sender, which contains the
address that created the currently executing message call.

1 function protected() public {
2 require(tx.origin == self.admin);
3 // do something sensitive
4 }

Listing 17: Vulnerable
– authentication mechanism checks
tx.origin.

1 function protected() public {
2 require(msg.sender == self.admin);
3 // do something sensitive
4 }

Listing 18: Safe – authentication
mechanism checks msg.sender.

A simple example of a broken authentication mechanism is shown in List-
ing 17, with a correct version shown in Listing 18.

Implementation. In bytecode form, tx.origin corresponds to EVM’s origin
instruction, and msg.sender to caller. We can implement an analysis in Vandal
by checking that an origin instruction exists, and that its result is used in some
other potentially sensitive operation such as a conditional or a write to storage.
This is demonstrated in Listing 19.

1 .decl originUsed(stmt:Statement)
2
3 originUsed(stmt) :-
4 op(stmt, "ORIGIN"),
5 def(originVar, stmt),
6 depends(useVar, originVar),
7 usedInStateOrCond(useVar, _).

Listing 19: Analysis implementation in Vandal for use of origin.
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Here, op and def are relations output by Vandal’s decompiler. The depends
relation is defined by Vandal, with depends(x,y) meaning that the value in vari-
able x depends on the value in variable y. The usedInStateOrCond relation is also
defined by Vandal, with usedInStateOrCond(var, stmt) meaning that variable var
is used in stmt, and stmt is an operation corresponding to a conditional or a
write to storage.

4 Experimental Evaluation
We perform an empirical evaluation of Vandal using a corpus consisting of all
141k unique smart contracts currently deployed on the live Ethereum blockchain,
in bytecode form. We compare Vandal’s performance to that of the Oyente [20],
EthIR [31], Rattle [33], and Mythril [32], and show that Vandal outperforms all
systems in terms of average runtime.

4.1 Bytecode Corpus
We build our corpus by running Vandal’s scraper (see Section 2) on the live
Ethereum blockchain to retrieve bytecode for every contract deployed as of
block number 6237983 (2018-08-30). In total there are 7.4M contracts, of which
only 141k have unique bytecode.

The total amount of Ether controlled by each unique bytecode in our corpus
is shown in Figure 8. We use the number of basic blocks as a simple measure of
complexity, and define ‘balance’ to be the sum of the balances of all contracts
with the same bytecode. We observe that bytecodes with a higher complex-
ity control greater amounts of Ether, and that most bytecodes are non-trivial,
consisting of between 100 and 1k basic blocks. Figure 9 shows all bytecodes
that have a positive balance and occur more than once among all 7.4M. We
observe that many heavily-duplicated contracts control balances greater than
100 Ether, which is equivalent to $29k USD as of this writing. These bytecodes
are high-value targets: an exploit in just one of these would allow an attacker
to compromise and drain thousands of contract accounts.
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Figure 8: Number of basic blocks and Ether balance for all unique bytecodes.
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Figure 9: Duplication frequency and Ether balance for all unique bytecodes.

4.2 Comparison of Tools
We compare Vandal’s performance to that of Oyente, EthIR, Rattle, and Mythril
using our corpus of 141k unique contract bytecodes. In our experiments, a time-
out of 60s is used for decompilation of each contract. This is necessary to bound
the overall runtime of the experiment. All experiments were run on a machine
with an Intel Xeon E5-2680 v4 2.40GHz CPU and 512GB of RAM. Other than
our experimental workload, the machine was idle. We used 56 concurrent anal-
ysis processes, since our machine has 56 logical cores.
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Tool Min (s) Max (s) Average (s) Total (h)
Oyente 0.26 60.00 13.68 9.69
EthIR 0.25 59.99 11.99 8.89
Mythril 1.47 59.99 11.10 13.51
Rattle 0.12 60.00 4.47 3.56
Vandal 0.29 59.99 4.15 8.08

Table 1: Runtime statistics for each tool for all successfully analyzed contracts.
The total runtime includes both successful and unsuccessful contracts.

As can be seen in Table 1, Vandal outperforms all existing tools in terms of
average runtime per contract. The total runtimes shown here represent total
wall clock time, which is not correlated with the averages because it includes
contracts that time out or cause the tool to exit in an error state. We ob-
serve that the average runtime of all tools for successfully-decompiled contracts
is more than four times below our timeout threshold of 60s, indicating that
increasing the timeout further would likely result in diminishing returns.
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Figure 10: Percentage of contracts that resulted in successful decompilation,
timeout, or error states with each analysis tool.

In Figure 10 we show the percentages contracts that were successfully ana-
lyzed, vs. the percentages that resulted in an error or timed out after 60s, for
each tool. We see that Vandal has the highest success rate and lowest error
rate in comparison to every other tool, successfully decompiling over 95% of all
contracts and exiting in an error state for only 0.1% of contracts.
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Vulnerability Analysis Vandal Mythril Oyente

Destroyable 3 3 7
Reentrancy 3 3 3
Unchecked Send 3 3 7
Unsecured Balance 3 3 7
Use of origin 3 3 7

Table 2: Comparison of tool support for our chosen vulnerability analyses.
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Figure 11: Percentage of contracts flagged as vulnerable for each analysis with
Vandal and Mythril.

Out of these tools, only Vandal, Oyente, and Mythril are capable of flagging
security vulnerabilities. The detection capabilities of each tool with respect to
the analyses described in Section 3 are shown in Table 2. (Note that Oyente
and Mythril both implement analyses for a wider range of vulnerability classes
than just those shown in Table 2.) In Figure 11 we compare the percentage of
successfully-decompiled contracts that were flagged by Vandal and Mythril for
each analysis. With the exception of reentrancy, we observe that Vandal flags
a higher percentage of contracts for all analyses. This is expected: Vandal’s
use of abstract interpretation ensures that all possible executions are explored,
whereas Mythril’s concolic analysis examines only a subset of execution traces,
possibly missing some true positives. For reentrancy, the difference between
Mythril and Vandal in Figure 11 is less than 1%. We attribute this discrepancy
to noisy data, given the high error rate of Mythril (see Figure 10). Although
Vandal flags more than 50% of contracts for reentrancy and unchecked send,
some of the flagged contracts may not be practically exploitable, and others
may be false positives.
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5 Related Work
Approaches and tools for analysis and verification of smart contracts have re-
ceived widespread attention in the literature due to the high-risk environment
of smart contract development.

Decompilers for Smart Contracts. Porosity [37] is a high-level decompiler
from EVM bytecode to Solidity-like source that was introduced by M. Suiche
at DEF CON 25. Porosity is implemented in C++ and is intended to be a pre-
liminary prototype for decompiling EVM bytecode to high level Solidity source
code. The EthIR [31] framework is built upon the trace-based Oyente tool [20]
and performs high-level analysis of Ethereum bytecode. It outputs an interme-
diate representation in which local variables are introduced to each basic block,
simplifying the analysis. Although EthIR reconstructs fragments of high-level
control- and data-flows from Oyente traces, it does not improve on Oyente’s
control-flow graph recovery capability. Mythril is a security analysis tool for
Ethereum smart contracts [32]. Mythril performs decompilation aided by a
dynamic symbolic execution engine (Laser-EVM). It produces traces that are
used to generate an intermediate representation and it therefore suffers similar
incompleteness issues as EthIR. Similarly, Rattle [33] also constructs an IR in
SSA form [38] and performs program analysis on it. The teEther [39] exploit
generation tool, although not a decompiler, operates on EVM bytecode and
uses a form of iterative data-flow analysis to reconstruct contract control flow
graphs. teEther automatically generates exploits for vulnerable contracts us-
ing symbolic execution with the Z3 constraint solver to solve path constraints.
It generates exploits by focusing on “critical paths” in the control flow graph;
those containing sensitive state-changing operations such as inter-contract calls
and writes to persistent storage. Unlike our Vandal framework’s Datalog inter-
face, however, teEther does not have a focus on usability and rapid prototyping
of new vulnerability analyses. teEther is implemented in Python and will be
released as open source, but is not yet available as of this writing.

Exploit Identification and Analysis. Previous works which applied static
program analysis for smart contracts can be classified according to their un-
derlying techniques, including dynamic symbolic execution, formal verification,
and abstract interpretation.

Systems including Oyente [20], maian [21], gasper [23] and recent work [40]
use an approach based on dynamic symbolic execution or trace semantics, which
is fundamentally unsound since only some program paths can be explored.

Semi-automated formal verification approaches have also been proposed [41–
46] for performing complete analyses of smart contracts using interactive theo-
rem provers such as Isabelle/HOL [47], F* [48], Why3 [45], and K [49]. These
approaches have a common theme: a formal model of a smart contract is con-
structed and mathematical properties are shown via the use of a semi-automated
theorem prover. Recently, a complete small-step semantics of EVM bytecode
has been formalized for the F* proof assistant [41]. Other systems such as
KEVM [42] use the K framework based on reachability logic. Due to their
reliance on semi-automated theorem provers which require substantial manual
intervention for proof construction, these formal verification approaches do not
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scale for analysing the millions of smart contracts currently deployed on the
blockchain.

In contrast to formal verification work for smart contracts, abstract inter-
pretation approaches [19, 50] do not require human intervention; however, they
introduce false-positives. The zeus framework [19] translates Solidity source
code to LLVM [51] before performing the actual analysis in the SeaHorn verifi-
cation framework [52]. An alternative approach is that of [50], in which Solidity
code is abstracted to finite-state automata.

The approach of our Vandal framework [54] is also partly that of abstract
interpretation. However, in contrast to the aforementioned abstract interpreta-
tion frameworks, Vandal performs analysis directly on EVM bytecode using a
purpose-built decompiler that translates EVM bytecode to an analyzable inter-
mediate representation.

Coverage of Vulnerabilities by Existing Tools. Oyente [20] identifies
four vulnerabilities: transaction-ordering dependence, timestamp dependence,
exceeding the call stack limit of 1024 (callstack attack) and reentrancy. The
formal verification tool by [44] detects three classes of vulnerabilities, two of
which were covered by Oyente. These include checking the return value of ex-
ternal address calls, and reentrancy. However, an upper bound analysis on gas
required for a given transaction was created. These patterns were verified in
F* by translating the contracts into F* code, from which patterns were ap-
plied to detect vulnerabilities. Similarly, the FSolidM framework [50] checks
for reentrancy and transaction ordering vulnerabilities. It can also detect cod-
ing patterns such as time constraint and authorization issues [55]. The maian
framework [21] focuses on finding vulnerabilities in smart contracts such as lock-
ing of funds indefinitely, leaking funds to arbitrary users, and smart contracts
that can be killed by anyone. The gasper [23] tool identifies gas-costly patterns
in contract bytecode, often caused by inefficiencies in the Solidity compiler.
The zeus system [19] conducts policy checking for a set of policies including
reentrancy, unchecked send, failed send, integer overflow, transaction state de-
pendence/order and block state dependence. teEther has support for detecting
vulnerabilities that allow an attacker to take control of funds, execute third
party code, or kill the contract. Another work focuses exclusively on detecting
non-callback free contracts. [40]

6 Conclusion
We presented Vandal, a new static analysis framework for detecting security vul-
nerabilities in smart contract bytecode. Vandal consists of an analysis pipeline,
including a decompiler that performs abstract interpretation to translate byte-
code to a higher level intermediate representation in the form of logic relations.
Vandal uses a novel logic-driven approach for defining security vulnerability
analyses, and includes a static analysis library to ease the development of new
analysis specifications. Through a use-case study, we demonstrated the ease
with which vulnerability analyses can be implemented in Vandal, often requir-
ing only a few lines of Soufflé code. Finally, we performed a large-scale empirical

1Soundy: “as sound as possible without excessively compromising precision and/or scala-
bility” [53]
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experiment by running Vandal on all 191k unique smart contracts scraped from
the Ethereum blockchain. We showed that Vandal outperformed the Oyente,
EthIR, Mythril, and Rattle analysis tools in terms of average analysis time and
error rate.
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