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Abstract

Emerging persistent memory technologies such as Intel and Micron’s 3D XPoint are
on the horizon. The combination of byte addressability, performance, and persistence
these technologies promise to deliver has the potential to significantly affect the way we
manage persistent data in future applications. Foundational concurrent data structures
and primitives may need to be revisited with persistence in mind. While traditional
concurrent algorithms largely need to address the problem of correct synchronization
between concurrent threads, persistent memory brings the additional challenge of making
sure that updates to persistent memory are persisted in the order that enables correct
recovery in the face of failures (we consider fail-stop failure semantics).

This brief announcement presents a fundamental concurrent primitive — a persistent
multi-word compare-and-swap (PMCAS). We present a novel algorithm carefully crafted to
ensure that atomic updates to a multitude of words modified by the PMCAS are persisted
in the correct order. Our algorithm leverages hardware transactional memory (HTM) for
concurrency control, and a total of 3 persist barriers in its critical path. We also overview
variants based on just the compare-and-swap (CAS) instruction and a hybrid of CAS and
HTM.
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1 Introduction

Emerging persistent memory (PM) technologies such as spin-transfer torque MRAM (STT-
MRAM) [11, 12], memristors [24], and Intel and Micron’s 3D XPoint [1] will guarantee the
persistence of traditional storage technologies (NAND flash and disks) and are expected to
come close to the performance of DRAM (100-1000x faster than state-of-the-art NAND flash).
More noteably, these technologies will be packaged in conventional DRAM form factor and
deliver the byte-addressability of DRAM which would enable a simple load/store to storage.
The implications of these features of PM could profoundly affect the way we manage persistent
data in modern applications.

The load/store interface to persistent memory is however not sufficient since the processor
state and various layers in the memory hierarchy (viz. store buffers, caches) are expected to
remain nonpersistent in the foreseeable future. Applications need better primitives to control
when data moves through the memory hierarchy layers to PM. To that end, prior research [6,
16, 21] and processor vendors such as Intel have proposed new hardware instructions [14] to
flush or write back cache lines to lower layers in the memory hierarchy (i.e., memory controller
buffers), and new forms of persistence ordering barrier instructions that can be used by
programmers to ensure that prior stores to persistent memory are persisted before subsequent
stores. With these new instructions, programmers are expected to rebuild applications to
leverage PM. This is, however, a non-trivial challenge.

Recognizing these programming challenges, several researchers and practitioners have pro-
posed use of various forms of transactions to access and manipulate data in persistent mem-
ory [3, 4, 5, 8, 17, 22, 25]. While transactions are a powerful abstraction to program PM, they
incur significant performance overheads, which is why the field continues to be a subject of
active research [18, 19]. In addition, more efficient concurrent data structure implementations
can be built without transactions [7] or with a simple multi-word compare-and-swap (MCAS)
primitive [9, 10, 20]. The principal challenge in building such algorithms centers around the
fact that the caching layers in processor memory hierarchy are not persistent, and program-
mers cannot control the order in which stores to cache lines are evicted, thereby becoming
persistent. Algorithms must carefully order persistence of stores to enable correct recovery in
the face of failures. This brief announcement presents new durably linearizable [15] variants of
a persistent multi-word compare-and-swap (PMCAS) primitive, where multiple words in PM
can be updated atomically and in a crash-tolerant manner.

2 Persistent MCAS Algorithm

In this section we describe in detail our algorithm for the PMCAS primitive. For simplicity
and due to space restrictions, we focus on PMCAS-htm, a PMCAS variant that leverages
the hardware transactional memory (HTM) feature available in some of the contemporary
processors [13, 23]. We briefly mention nonblocking reads, and compare-and-swap (CAS) and
CASHTM hybrid based variants at the end.

For each PMCAS operation, the application creates a persistent update structure that holds
the old and new values of the target addresses. We assume that the application persistently
tracks all these structures that are in use by potentially multiple threads (e.g. by having a
persistent pool of update structures reachable from a “root” object located in a persistent
region). These structures must be reachable from the recovery code to correctly recover all
in-flight PMCAS-htms after a failure.

In a nutshell, PMCAS-htm uses a HTM transaction to acquire “ownership” of each address



1  struct UpdateRecord { 57 my_upd.ur[i].old_val = old[i];
2 uint64_t =ad; 58 my_upd.ur[i].new_val = new[i];
3 uint64_t old_val; 59 }

4 uint64_t new_val; 60 flush (&my_upd);

5 }s 61 persist_barrier ();

6 62

7 enum { 63 return htm—PMCAS-run (my_upd);
8 ACTIVE = 0, 64 1

9 SUCCESS, 65

10 FAILURE 66 State htm—PMCAS-run (

11 } State; 67 Upd &my-upd) {

12 68

13 _-thread struct Upd { 69 bool committed = false;

14 State status; 70 atomic {

15 UpdateRecord ur[M]; 71 for(int i = 0; i < M; i++4) {
16 } my_upd; 72 if (read(ad[i]) != old[i]) {
17 73 commit ();

18 uint64_t read( 74

19 uint64_t =xad){ 75 }

20 76 for(int i = 0; i < M; i++4) {
21 uint64_t val = =xad; s *ad[1] = mark(&my_upd);

22 while (is-.marked (val)) { 78 }

23 val = xad; 79 committed = true;

24 } 80 }

25 return val; 81

26} 82 if (committed) {

27 83 for(int i = 0; i < M; i++4) {
28 void write_new_values (Upd xu) { 84 flush (ad[i]);

29 for (int i=0; i<M; i++) { 85

30 if (unmark(*xu—>ur[i].ad) == u){ 86 persist_barrier ();

31 *u—>ur[i].ad 87

32 = u—>ur[i].new_val; 88 my-upd.status = SUCCESS;

33 flush (u—>ur[i].ad); 89 flush (&my_upd.status);

34 90 persist_barrier ();

35 3 91

36 persist_barrier (); 92 write_new_values(&my_upd);
37} 93 } else {

38 94 my_upd.status = FAILURE;

39 void restore_old-values (Upd xu) { 95 flush (&my_upd.status);

40 for(int i = 0; 1 < M; i++4) { 96 persist_barrier ();

41 if (unmark(*xu—>ur[i].ad) = u){ 97 }

42 *u—>ur[i].ad 98

43 = u—>ur[i].old_val; 99 return my_upd.status;

44 flush (u—>ur[i].ad); 100 }

45 3 101

46 } 102 void recover () {

47 persist_barrier (); 103 for (Upd *upd all_updates) {
48 104 if (upd—>status == SUCCESS) {
49 105 write_new_values (upd);

50 State htm—PMCAS(Upd &my-_upd, 106 } else

51 uint64_tx ad[], 107 if (upd—>status == ACTIVE) {
52 uint64_t old ][], 108 restore_old_values (upd);
53 uint64_t newl[]) { 109 ¥

54 110 1

55 for(int i = 0; i < M; i++4) { 111}

56 my_upd.ur[i].ad = ad[i];

Figure 1: PMCAS-htm: Persistent MCAS using HTM

being updated. The operation then applies (and persists) the updates on the owned addresses,
thereby releasing the ownership. This straightforward approach turns out to be surprisingly
tricky when we consider (fail-stop) failures at arbitray points in the algorithm: How can
recovery determine if an operation was already applied or failed? How can recovery determine
the state of a partially persisted PMCAS-htm and then complete or rollback that state?

The C language style pseudocode of the full PMCAS-htm algorithm is shown in Figure
1. Our main algorithm begins at line 50. It uses the least-significant-bit of each target word
to represent a “transitory” state of the address being modified; as an effect, we assume that
this bit is not used by the application. In addition to the target addresses, their expected
old values, and the new values, the PMCAS-htm operation takes an update structure as its
argument. This update structure is used to correctly apply PMCAS-htm. Internally, the
update itself contains a status field and a set of M update records (M can vary between



different PMCAS-htms), each of which contains a target address, expected old value, and the
new value to be applied in the PMCAS (lines 1 — 15). The update structure is the first to be
updated with addresses, old and new values. These updates are persisted before proceeding
with the PMCAS (lines 55 — 63).

PMCAS-htm goes through two states during its execution. It always begins with the
ACTIVE state, and eventually switches over to either the SUCCESS or the FAILURE state,
denoting success or failure respectively of the PMCAS-htm. The state transitions must also
be correctly persisted for recovery to determine the action needed to recover a PMCAS-htm —
roll forward or roll back.

After initializing and persisting the update structure, PMCAS-htm uses a hardware trans-
action (represented by the atomic block at lines 70—80) to first check if all the target addresses
have the expected values. In the same transaction, if the check succeeds, we acquire exclusive
ownership of the target addresses by installing a “marked” pointer pointing to the update
structure of the PMCAS-htm in the target addresses. The ownership acquisition success is
indicated by a local committed flag, which is subsequently used to determine what state the
PMCAS-htm transitions to. On success, the ownership acquisitions are all persisted (lines
83 — 86), the PMCAS-htm’ status is updated to SUCCESS and persisted. Finally, the new
values are written back to the target addresses and persisted (line 92 and 28 — 37). In case
of failure, the PMCAS-htm’s status is updated to FAILURE and persisted (lines 94 — 96). No
roll back is needed since ownership acquisition of the target addresses did not happen on the
failure path (line 73).

Recovery proceeds as follows: For all the updates supplied by the application to the
PMCAS-htm recovery subsystem, it rolls forward the PMCAS-htms whose status is SUCCESS,
and rolls back the rest. Rolling forward simply requires calling write_new_values() for the
PMCAS-htm. Rolling backward applies to only the ACTIVE PMCAS-htmes since their partial
updates may have persisted (between lines 80 and 89). Rolling back such a PMCAS-htm may
sound like a conservative approach, however it is correct and keeps recovery simple, logically
serializing the crash before the rolled back PMCAS-htms.

PMCAS variants: PMCAS-htm blocks any readers from reading an address that is owned
by a concurrent updater (lines 18 — 26). However, we can avoid blocking by accessing the old
value through the marked pointer written by the updater. This optimization however requires
a lazy reclamation or garbage collection based scheme for persistent memory management [2].
The HTM transaction can be avoided using a loop that uses CAS instructions to acquire
ownership of the target addresses. We must ensure that the target addresses are ordered in a
global total order to avoid conflicts between concurrent updaters resulting in spurious failures
of PMCAS-htms. A HTM-CAS hybrid algorithm would attempt to acquire ownerships with a
transaction and fall back to the CAS version if the hardware transaction fails to commit. In
all these variants, the recovery algorithm remains unchanged.

This work is ongoing, and we plan to evaluate these algorithms in future work. Our future
work will also focus on developing lock-free variants of this algorithm.
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