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Demand for Formal Verification

• Use formal verification to increase confidence in correctness of Oracle designs
– Reduce number of bugs that escape to silicon

• Project started in summer 2013 after request for help from SPARCTM Architect
– “Catching errors is getting harder”
– “Fixing errors is becoming costlier”

• E.g., Intel 1995 Pentium Fdiv bug resulted in a quarterly statement charge of $500M
• Each extra tape-out, due to undetected bugs, costs $$$ and time to market
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Introducing Formal Verification

• Formal Verification: rigorous and automated analysis that demonstrates that an
implementation satisfies its specification for all inputs

• Main technique: symbolic simulation
– Simulation of the circuit using symbolic inputs instead of concrete values
– F(0) = 5, F(1) = 8, F(2) = 11, F(3) = 14,  …

   vs
– F(x) = 3*x + 5  for all 64-bit unsigned numbers x

• Two uses of symbolic simulation:
– Model Checking
– Theorem Proving
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Agenda

• Why Formal Verification at Oracle?
• ACL2 basics
• Hardware verification
• Software verification
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Introducing Model Checking

• Model Checking: stepping a design from one set of states to the next set of possible
states, checking that user-provided properties always hold…

    … until you visit all states or run out of time
• Applications: coherency protocols, distributed algorithms

– Typical example: “this buffer never overflows”
• Pros: automatic
• Cons: limited scalability
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• Oracle uses model checking for proving properties with modest state space
• Model checking is insufficient for verification of units with complex data path
• Oracle has a theorem proving group which is collaboration between Oracle Labs and

Microelectronics
• We use ACL2 as our main tool

Model Checking vs Theorem Proving 
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 Why ACL2 ?

• ACL2 Prover
– Programming language written in subset of Lisp
– Theorem prover written in ACL2

• Proof engine used at AMD, IBM, Centaur, Motorola, Intel
• 2005 ACM Software System Award

– Maintained at Univ. of Texas  with help from community
• ACL2 Books (~5500)

– A “book” is a library of functions and lemmas
• Arithmetic, bitops, RTL, proof and definition utilities

– Includes a Verilog parser and hardware symbolic simulator
• Support Tools: SAT solvers, waveform viewer
• Robert Boyer, J Moore, then Matt Kaufmann
• http://www.cs.utexas.edu/~moore/acl2/
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ACL2 Basics

• Lisp data types
• Programming
• Logic
• Proving
• Theorems become rules
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Lisp Data Types - atoms

• Integers:  5, -3, #x100
• Rationals:  1/2
• Complex rationals: #c(1 2)
• Characters: #\A 
• Strings:  “Hello”
• Symbols: NIL, T, +, IF, FOO, X 
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Lisp Data Types - conses

• (x . y)
• Example:              ((1 . #\A) . (“Hello” . NIL))
• List

 Example:           (A . (B . (C . NIL)))
 Abbreviated as  (A B C)

• Association list
 Example:           ((A . 1) . ((B . 2) . ((C . 3) . NIL))) 
 Abbreviated as  ((A . 1) (B . 2) (C . 3))
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Programming

• (+ 2 5)
 
• (defun sqr(x) (* x x))
 
• (sqr 5)
 
• (defun sum1(n)
  (declare (xargs :measure (if (zp n) 0 n)))
      (if (zp n) 0 (+ n (sum1 (- n 1)))))
 
• (sum1 100) 
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Reasoning Using Rewriting

• (sqr x)  ==>  (* x x)
 
• (defrule square-of-sum

  (equal (sqr (+ a b))
             (+ (sqr a) (* 2 a b) (sqr b))))

 
• (sqr (+ a b))   ==> (+ (sqr a) (* 2 a b) (sqr b))
 
• (in-theory (disable sqr))
 
• :use (:Instance sqr (x (+ a b))) 
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Induction

• (defruled sum1-thm
  (implies (natp n)
          (equal (sum1 n)
                     (* 1/2 n (+ n 1)))

   :enable sum1
   :induct (sum1 n))

• Proof obligations generated by :induct:
(IMPLIES (AND (NOT (ZP N)) (:P (+ -1 N)))
                (:P N))
(IMPLIES (ZP N) (:P N))) 
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Using Lemmas

• (defun sum2 (i n0)
 (declare (xargs :measure (if (zp i) 0 i)))

   (if (zp i) 0 (+ (+ 1 n0 (- i)) (sum2 (- i 1) n0))))
 
• (defruled sum2-as-sum1-lemma

  (implies (and (natp i) (natp n) (<= i n))
               (equal (sum2 i n)
                          (- (sum1 n) (sum1 (- n i)))))

 
• (defruled sum2-as-sum1

  (equal (sum2 n n) (sum1 n)
  :use (:instance sum2-as-sum1-lemma (i n)) 
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Ordinals < ε
0

• The ordinals less than ε
0
 can be represented by finite rooted trees.

• ωpm + n , where m is positive integer, p and n are ordinals
• (make-ord (p m n) ((p . m) . n)))
• ωm + n  ← (make-ord 1 m n)
• (defun ack (m n)
     (declare (xargs :measure (make-ord 1 (+ (nfix m) 1) (nfix n))))
     (if (zp m)
         (+ n 1)
         (if (zp n)
             (ack (- m 1) 1)
            (ack (- m 1) (ack m (- n 1)))))) 
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First-Order Classic Logic

• (defruled excluded-middle (or be (not be)))
 
• (defun-sk exists-twin-prime (n)
     (exists x
                (and (integerp x)
                        (> x n)
                        (primep x)
                        (primep (+ x 2)))))
 
• (defun-sk twin-primes-infinite ()
       (forall n (exists-twin-prime n))) 
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Formal Verification of Divide and Square Root Circuits

• New implementations on SPARCTM core
• 32/64-bit floating-point division and square root

– fdivd
– fdivs
– fsqrtd
– fsqrts

• 32/64-bit integer divide
– udivx
– sdivx
– udiv
– sdiv
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Our Proof Goal and Strategy
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Specification

• IEEE754 Standard on Floating-Point Arithmetic 
– 80-page document written in English
– Our ACL2 specification includes

• div, sqrt, add, mul, and fused mul-add
• all special values (+/- 0, +/-Infinity, NaNs)
• all exception flags
• denormals
• four rounding modes
• customization for NaN values 

• Validated specifications against 9.5M test vectors from Oracle’s test suite  
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Verilog Implementation
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ACL2 Model – Code List 

• Code list has some primary inputs
• Code list is a sequence of instructions
• Each instruction computes new value by applying an operation to operands
• Each operand is either primary input or result of a previous instruction
• Example:

 Inputs: in
0
, in

1
, in

2

 x
0
 = in

0
 * in

1

 x
1
 = x

0
 + in

2

 x
2
 = x

0
 – in

2

 x
3
 = x

1
 * x

2

• No loops. Limited branching: selection among results of a few code lists  
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Encoding Code Lists in ACL2 

• inp is a list of primary inputs
• Selection function for each primary input
• Each instruction is a function of inp
 
• inp is (list in0 in1 in2)
• (defun in0 (inp) (nth 0 inp))
• (defun in1 (inp) (nth 1 inp))
• (defun in2 (inp) (nth 2 inp))
• (defun x0 (inp) (* (in0 inp) (in1 inp)))
• (defun x1 (inp) (+ (x0 inp) (in2 inp)))
• (defun x2 (inp) (- (x0 inp) (in2 inp)))
• (defun x3 (inp) (/ (x1 inp) (x2 inp)))  
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Code List of Bit-Vectors 

• Bit vector of n bits is represented in ACL2 by a natural 0 <= bv < 2n

• Arithmetic operations +,-,* 
• Operation part-select selects subvector from bit vector
• (part-select :high 63 :low 32 x)
• floor ((x mod 264) * 2-32)
 
• Example: multiplier 32 x 32 → 32

 (part-select :high 63 :low 32 (* x y))
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Algorithm Extraction

• Use hardware-related ACL2 tools developed by ACL2 community
 Verilog parsing - VL
 Symbolic simulation – STV (Symbolic Trajectory Evaluation)

 Control signals are concrete
 Data signals are symbolic 
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The Goldschmidt Division Algorithm

• Input: A in [1,2), B in [1,2)
• Output: approximation of A/B
• T = table_lookup(B)
• d

0
 = B * T;

• n
0
 = A * T;

• for (int i = 0; i < MAX; i++) {
    /** invariant n

i
/d

i
 == A/B    d

i
 --> 1 */

•   r
i 
= 2 – d

i
;

•   d
i+1

 = d
i
 * r

i
;

•   n
i+1

 = n
i
 * r

i
;

• }
• return n

MAX
;
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Error Analysis of Goldschmidt Algorithm

• Error analysis is a crucial part of complete proof 
 If error in computed approximation is “small enough,” then the rounding step will return

the correct IEEE 754 result 
• Precise error analysis provides opportunity for improvement

 Error analysis may permit optimization of the lookup tables, and thereby reduction of
chip area or power consumption or latency
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Error Analysis

• T from table lookup is an approximation for 1/B
• u is the negation of relative error in T:  u = (1/B - T)/(1/B) = 1 - B*T
• d

0
 = B*T = 1-u

• n
0
 = A*T = A*T

• r
0
 = 2 – d

0
 = 1+u

• d
1
 = d

0
*r

0
 = 1 – u2

• n
1
 = n

0
*r

0
 = A*T*(1+u) 

• r
1
 = 2 – d

1
 = 1 + u2

• n
2
 = n

1
*r

1
 = A*T*(1+u+u2+u3)

• A/B =  A*T /(1-u) =  A*T*(1+u+u2+u3+u4+u5+ ...)
• error

2
 = n

2
 – A/B = A*T*(-u4-u5-...) 
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Error Analysis and Finite Hardware Precision

• Fixed-point operations, each multiplication result is truncated from 2M bits to M bits
• Each rounding error ed

i
, en

i  
is in interval (-2-M,0]

• d
0
 = B*T = 1-u + ed

0

• n
0
 = A*T = A*T + en

0

• r
0
 = 2 – d

0
 = 1+u - ed

0
 + er

0

• d
1
 = d

0
*r

0
 = 1 – u2  + (1-u)*(-ed

0
+er

0
) + (1+u)*ed

0
+ed

0
*(-ed

0
+er

0
) + ed

1
 

• n
1
 = n

0
*r

0
 = A*T*(1+u) + A*T*(-ed

0
+er

0
)+(1+u)*en

0
+en

0
*(-ed

0
+er

0
) + en

1

• . . .
• Total-error = n

2
 – A/B = A*T*(-u4-u5-…) + …

• Make canonical multivariate polynomial for total error above (exactly)
• Evaluate it in interval arithmetic 
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Multivariate Polynomials

 Fixed list of variables: u, A, T, en
0
, ed

0 
…

• Polynomial is represented by a list of terms
 Term is a product of a rational coefficient and a monomial

 Example:            3/7 * u2*A*T
 Represented as ( (2 1 1 0 0) . 3/7) 

 Operations on polynomials: +, scale, -, *
 Point evaluation of polynomial at point vector
 Interval evaluation of polynomial at interval vector
 Theorems:

 Point evaluation of a sum is a sum of point evaluations
 If point vector is in interval vector, then point evaluation is in interval evaluation 
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Global Error Bounds

• T = table_lookup(B)
• table_lookup is a step function. 

 table_lookup(B) = T
i
 when B in [B

i
, B

i+1
)

• Relative error in T is given by u:  u = 1 – B*T
• u in (1 – B

i+1
*T

i
, 1 – B

i
*T

i
]    when B in [B

i
, B

i+1
)  

• Do interval evaluation of error polynomial for each segment [B
i
, B

i+1
)

 
• First we coded this in Java using interval library JInterval
• Error bounds were inside tolerance, though table segments were too small
• We suggested smaller table with larger segments and still good error bounds
• Designers accepted the table temporarily, we continued ACL2 proofs
• Finally ACL2 proofs confirmed error bounds
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Verification and Improvements

• We proved correctness of computation of significands using the Goldschmidt algorithm
• We also proved correctness of rounding, exponent handling, exception flags
• In summary we proved that the ACL2 model satisfies the IEEE 754 specification

 ACL2 model = Floating-point divide implementation
 ACL2 model = Floating-point square root implementation

 Furthermore:
 The formal verification resulted in significant reduction of lookup tables
 Formal verification effort also resulted in simplification of square root implementation

and its proof
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Formal Verification of JDK methods

• Java or JVM ?
• Which methods ?
• JVM models in ACL2
• A small method
• Transcendental functions
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Java or JVM ?

• Should we trust Java compiler ?
• Multiple languages: Java, Scala, Kotlin, Jython, Ruby
• Classes generated on the fly
 
• JVM class files
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Which Methods ?

• Easy specification, difficult proof
• Math methods
• java.math.BigInteger
• java.lang.Math
• java.lang.StrictMath
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JVM Models in ACL2

• Defensive Java Virtual Machine  - Richard M. Cohen 1997
• http://www.computationallogic.com/software/djvm/
• JVM M5 - J Strother Moore and George Porter
• https://github.com/acl2/acl2/blob/master/books/models/jvm/m5/m5.lisp
• JVM M6 – Hanbing Liu
• https://github.com/haliu/M6
 
• Floating-point instructions are not implemented in any of them
• Choose M5 because it is in official ACL2 repository
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Small Method java.math.MutableBigInteger.inverseMod32

• /**
     * Returns the multiplicative inverse of val mod 2^32.  Assumes val is odd.
     */
    static int inverseMod32(int val) {
        // Newton's iteration!
        int t = val;
        t *= 2 - val*t;
        t *= 2 - val*t;
        t *= 2 - val*t;
        t *= 2 - val*t;
        return t;
    }
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Specification of inverseMod32 in Terms of JVM M5

• To prove that result after execution of inverseMod32 by JVM
● Using thread th, starting in state s, and odd input value val
● (val * result) mod 232 = 1

• (defrule |inverseMod32 correct|
     (implies
       (and (poised-to-invoke-inverseMod32 th s val)
               (integerp val) (oddp val))
       (equal (int-fix (* val (top (stack (top-frame th (run (repeat th 37) s))))))
                  1)))

37
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Proof of inverseMod32

• Define  defect
i
 = (1 – val * t

i
) mod 232

• defect
0
 = (1 – val * val) mod 232

• defect
0
 mod 23 = 0

• defect
i+1

 = (1 – val * t
i+1

) mod 232 = (1 – val * t
i
 * (2 – val * t

i
)) mod 232

                 = (1 – 2 * val * t
i
 + (val * t

i
)2) mod 232 = defect

i

2 mod 232 

• defect
1
 mod 26 = 0

• defect
2
 mod 212 = 0

• defect
3
 mod 224 = 0

• defect
4
 = 0
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Transcendental Functions in JDK

• Portable – sin(x) returns the same result on all platforms
• William Kahan coined the term “The table maker's dilemma” for the unknown cost of

rounding transcendental functions
• sin(x) in [l,u], where l and u are adjacent floating-point numbers
• Which of l and u must the method sin(x) return?
• Correct rounding says “nearest” - too costly, JDK declines this
• java.lang.Math says “any if them” - not portable
• java.lang.StrictMath says “the same as C library Fdlibm 5.3” - portable though a little

arbitrary
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What Is the Meaning of Fdlibm Functions

• C code
• Compilation to LLVM
• Compilation to specific ISA like X64
 
• Parse C by libclang and write FdlibmTranslit.java 
• Compile C to llvm
• Compile FdlibmTranslit.java to FdlibmTranslit.class
• Prove equivalence of LLVM and FdlibmTranslit.class
 
• Designers write Fdlibm.java manually
• Prove equivalence of FdlibmTranslit.class and Fdlibm.class
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Conversion of libclang Tree to FdlibmTranslit.java

• A few Java helper methods
• static int[] __AMP(double x)  - view double as a pair of 32-bit integers
• static double __HI(double x, int high)
• static int compareUnsigned(int x, int y)
 
• Libclang tree contains types. It is easy to write tree patterns which modify code
• (ui >> 16)   →  (ui >>> 16)
• (ui > 0x100) → Integer.compareUnsigned(x, 0x100) > 0
• *( ((int *) (& d)) + 1)   →  _AMP(d)[1]
• Lab: S1; S2; if (p) goto Lab; → Lab: for(;;) { S1; S2; if (p) continue Lab; break; }
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Prove Equivalence of Fdlibm.llvm and FdlibmTranslit.class

• Function in LLVM is a control flow graph.
• Its nodes are basic blocks
• A basic block contains a list of instructions
• Each basic block has predecessors and successors
 
• We can build control flow graph from bytecode of JVM method
• Control flow graphs are almost the same except
• Jump chains: LLVM has empty basic blocks, bytecode resolves them
• Translation of simple condition expressions (p ? 1 : -1) – Cselect instruction in LLVM
 
• LLVM has unbounded number of registers, JVM has local stack and local variables
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