
Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Theorem Proving with ACL2 for Industry Artifacts
Dmitry Nadezhin
Oracle Labs

June 14, 2016

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Demand for Formal Verification

• Use formal verification to increase confidence in correctness of Oracle designs
– Reduce number of bugs that escape to silicon

• Project started in summer 2013 after request for help from SPARCTM Architect
– “Catching errors is getting harder”
– “Fixing errors is becoming costlier”

• E.g., Intel 1995 Pentium Fdiv bug resulted in a quarterly statement charge of $500M
• Each extra tape-out, due to undetected bugs, costs $$$ and time to market

2

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Introducing Formal Verification

• Formal Verification: rigorous and automated analysis that demonstrates that an
implementation satisfies its specification for all inputs

• Main technique: symbolic simulation
– Simulation of the circuit using symbolic inputs instead of concrete values
– F(0) = 5, F(1) = 8, F(2) = 11, F(3) = 14, …

 vs
– F(x) = 3*x + 5 for all 64-bit unsigned numbers x

• Two uses of symbolic simulation:
– Model Checking
– Theorem Proving

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Agenda

• Why Formal Verification at Oracle?
• ACL2 basics
• Hardware verification
• Software verification

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Introducing Model Checking

• Model Checking: stepping a design from one set of states to the next set of possible
states, checking that user-provided properties always hold…

 … until you visit all states or run out of time
• Applications: coherency protocols, distributed algorithms

– Typical example: “this buffer never overflows”
• Pros: automatic
• Cons: limited scalability

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

• Oracle uses model checking for proving properties with modest state space
• Model checking is insufficient for verification of units with complex data path
• Oracle has a theorem proving group which is collaboration between Oracle Labs and

Microelectronics
• We use ACL2 as our main tool

Model Checking vs Theorem Proving

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

 Why ACL2 ?

• ACL2 Prover
– Programming language written in subset of Lisp
– Theorem prover written in ACL2

• Proof engine used at AMD, IBM, Centaur, Motorola, Intel
• 2005 ACM Software System Award

– Maintained at Univ. of Texas with help from community
• ACL2 Books (~5500)

– A “book” is a library of functions and lemmas
• Arithmetic, bitops, RTL, proof and definition utilities

– Includes a Verilog parser and hardware symbolic simulator
• Support Tools: SAT solvers, waveform viewer
• Robert Boyer, J Moore, then Matt Kaufmann
• http://www.cs.utexas.edu/~moore/acl2/

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

ACL2 Basics

• Lisp data types
• Programming
• Logic
• Proving
• Theorems become rules

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lisp Data Types - atoms

• Integers: 5, -3, #x100
• Rationals: 1/2
• Complex rationals: #c(1 2)
• Characters: #\A
• Strings: “Hello”
• Symbols: NIL, T, +, IF, FOO, X

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Lisp Data Types - conses

• (x . y)
• Example: ((1 . #\A) . (“Hello” . NIL))
• List

 Example: (A . (B . (C . NIL)))
 Abbreviated as (A B C)

• Association list
 Example: ((A . 1) . ((B . 2) . ((C . 3) . NIL)))
 Abbreviated as ((A . 1) (B . 2) (C . 3))

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Programming

• (+ 2 5)

• (defun sqr(x) (* x x))

• (sqr 5)

• (defun sum1(n)
 (declare (xargs :measure (if (zp n) 0 n)))
 (if (zp n) 0 (+ n (sum1 (- n 1)))))

• (sum1 100)

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Reasoning Using Rewriting

• (sqr x) ==> (* x x)

• (defrule square-of-sum

 (equal (sqr (+ a b))
 (+ (sqr a) (* 2 a b) (sqr b))))

• (sqr (+ a b)) ==> (+ (sqr a) (* 2 a b) (sqr b))

• (in-theory (disable sqr))

• :use (:Instance sqr (x (+ a b)))

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Induction

• (defruled sum1-thm
 (implies (natp n)
 (equal (sum1 n)
 (* 1/2 n (+ n 1)))

 :enable sum1
 :induct (sum1 n))

• Proof obligations generated by :induct:
(IMPLIES (AND (NOT (ZP N)) (:P (+ -1 N)))
 (:P N))
(IMPLIES (ZP N) (:P N)))

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Using Lemmas

• (defun sum2 (i n0)
 (declare (xargs :measure (if (zp i) 0 i)))

 (if (zp i) 0 (+ (+ 1 n0 (- i)) (sum2 (- i 1) n0))))

• (defruled sum2-as-sum1-lemma

 (implies (and (natp i) (natp n) (<= i n))
 (equal (sum2 i n)
 (- (sum1 n) (sum1 (- n i)))))

• (defruled sum2-as-sum1

 (equal (sum2 n n) (sum1 n)
 :use (:instance sum2-as-sum1-lemma (i n))

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Ordinals < ε
0

• The ordinals less than ε
0
 can be represented by finite rooted trees.

• ωpm + n , where m is positive integer, p and n are ordinals
• (make-ord (p m n) ((p . m) . n)))
• ωm + n ← (make-ord 1 m n)
• (defun ack (m n)
 (declare (xargs :measure (make-ord 1 (+ (nfix m) 1) (nfix n))))
 (if (zp m)
 (+ n 1)
 (if (zp n)
 (ack (- m 1) 1)
 (ack (- m 1) (ack m (- n 1))))))

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

First-Order Classic Logic

• (defruled excluded-middle (or be (not be)))

• (defun-sk exists-twin-prime (n)
 (exists x
 (and (integerp x)
 (> x n)
 (primep x)
 (primep (+ x 2)))))

• (defun-sk twin-primes-infinite ()
 (forall n (exists-twin-prime n)))

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Formal Verification of Divide and Square Root Circuits

• New implementations on SPARCTM core
• 32/64-bit floating-point division and square root

– fdivd
– fdivs
– fsqrtd
– fsqrts

• 32/64-bit integer divide
– udivx
– sdivx
– udiv
– sdiv

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Our Proof Goal and Strategy

18

?

?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Specification

• IEEE754 Standard on Floating-Point Arithmetic
– 80-page document written in English
– Our ACL2 specification includes

• div, sqrt, add, mul, and fused mul-add
• all special values (+/- 0, +/-Infinity, NaNs)
• all exception flags
• denormals
• four rounding modes
• customization for NaN values

• Validated specifications against 9.5M test vectors from Oracle’s test suite

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Verilog Implementation

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

ACL2 Model – Code List

• Code list has some primary inputs
• Code list is a sequence of instructions
• Each instruction computes new value by applying an operation to operands
• Each operand is either primary input or result of a previous instruction
• Example:

 Inputs: in
0
, in

1
, in

2

 x
0
 = in

0
 * in

1

 x
1
 = x

0
 + in

2

 x
2
 = x

0
 – in

2

 x
3
 = x

1
 * x

2

• No loops. Limited branching: selection among results of a few code lists

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Encoding Code Lists in ACL2

• inp is a list of primary inputs
• Selection function for each primary input
• Each instruction is a function of inp

• inp is (list in0 in1 in2)
• (defun in0 (inp) (nth 0 inp))
• (defun in1 (inp) (nth 1 inp))
• (defun in2 (inp) (nth 2 inp))
• (defun x0 (inp) (* (in0 inp) (in1 inp)))
• (defun x1 (inp) (+ (x0 inp) (in2 inp)))
• (defun x2 (inp) (- (x0 inp) (in2 inp)))
• (defun x3 (inp) (/ (x1 inp) (x2 inp)))

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Code List of Bit-Vectors

• Bit vector of n bits is represented in ACL2 by a natural 0 <= bv < 2n

• Arithmetic operations +,-,*
• Operation part-select selects subvector from bit vector
• (part-select :high 63 :low 32 x)
• floor ((x mod 264) * 2-32)

• Example: multiplier 32 x 32 → 32

 (part-select :high 63 :low 32 (* x y))

23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Algorithm Extraction

• Use hardware-related ACL2 tools developed by ACL2 community
 Verilog parsing - VL
 Symbolic simulation – STV (Symbolic Trajectory Evaluation)

 Control signals are concrete
 Data signals are symbolic

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

The Goldschmidt Division Algorithm

• Input: A in [1,2), B in [1,2)
• Output: approximation of A/B
• T = table_lookup(B)
• d

0
 = B * T;

• n
0
 = A * T;

• for (int i = 0; i < MAX; i++) {
 /** invariant n

i
/d

i
 == A/B d

i
 --> 1 */

• r
i
= 2 – d

i
;

• d
i+1

 = d
i
 * r

i
;

• n
i+1

 = n
i
 * r

i
;

• }
• return n

MAX
;

25

A A x T x r
0
 x r

1
 x r

2
 .. Q

B B x T x r
0
 x r

1
 x r

2
 .. 1=

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Error Analysis of Goldschmidt Algorithm

• Error analysis is a crucial part of complete proof
 If error in computed approximation is “small enough,” then the rounding step will return

the correct IEEE 754 result
• Precise error analysis provides opportunity for improvement

 Error analysis may permit optimization of the lookup tables, and thereby reduction of
chip area or power consumption or latency

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Error Analysis

• T from table lookup is an approximation for 1/B
• u is the negation of relative error in T: u = (1/B - T)/(1/B) = 1 - B*T
• d

0
 = B*T = 1-u

• n
0
 = A*T = A*T

• r
0
 = 2 – d

0
 = 1+u

• d
1
 = d

0
*r

0
 = 1 – u2

• n
1
 = n

0
*r

0
 = A*T*(1+u)

• r
1
 = 2 – d

1
 = 1 + u2

• n
2
 = n

1
*r

1
 = A*T*(1+u+u2+u3)

• A/B = A*T /(1-u) = A*T*(1+u+u2+u3+u4+u5+ ...)
• error

2
 = n

2
 – A/B = A*T*(-u4-u5-...)

27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Error Analysis and Finite Hardware Precision

• Fixed-point operations, each multiplication result is truncated from 2M bits to M bits
• Each rounding error ed

i
, en

i
is in interval (-2-M,0]

• d
0
 = B*T = 1-u + ed

0

• n
0
 = A*T = A*T + en

0

• r
0
 = 2 – d

0
 = 1+u - ed

0
 + er

0

• d
1
 = d

0
*r

0
 = 1 – u2 + (1-u)*(-ed

0
+er

0
) + (1+u)*ed

0
+ed

0
*(-ed

0
+er

0
) + ed

1

• n
1
 = n

0
*r

0
 = A*T*(1+u) + A*T*(-ed

0
+er

0
)+(1+u)*en

0
+en

0
*(-ed

0
+er

0
) + en

1

• . . .
• Total-error = n

2
 – A/B = A*T*(-u4-u5-…) + …

• Make canonical multivariate polynomial for total error above (exactly)
• Evaluate it in interval arithmetic

28

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Multivariate Polynomials

 Fixed list of variables: u, A, T, en
0
, ed

0
…

• Polynomial is represented by a list of terms
 Term is a product of a rational coefficient and a monomial

 Example: 3/7 * u2*A*T
 Represented as ((2 1 1 0 0) . 3/7)

 Operations on polynomials: +, scale, -, *
 Point evaluation of polynomial at point vector
 Interval evaluation of polynomial at interval vector
 Theorems:

 Point evaluation of a sum is a sum of point evaluations
 If point vector is in interval vector, then point evaluation is in interval evaluation

29

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Global Error Bounds

• T = table_lookup(B)
• table_lookup is a step function.

 table_lookup(B) = T
i
 when B in [B

i
, B

i+1
)

• Relative error in T is given by u: u = 1 – B*T
• u in (1 – B

i+1
*T

i
, 1 – B

i
*T

i
] when B in [B

i
, B

i+1
)

• Do interval evaluation of error polynomial for each segment [B
i
, B

i+1
)

• First we coded this in Java using interval library JInterval
• Error bounds were inside tolerance, though table segments were too small
• We suggested smaller table with larger segments and still good error bounds
• Designers accepted the table temporarily, we continued ACL2 proofs
• Finally ACL2 proofs confirmed error bounds

30

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Verification and Improvements

• We proved correctness of computation of significands using the Goldschmidt algorithm
• We also proved correctness of rounding, exponent handling, exception flags
• In summary we proved that the ACL2 model satisfies the IEEE 754 specification

 ACL2 model = Floating-point divide implementation
 ACL2 model = Floating-point square root implementation

 Furthermore:
 The formal verification resulted in significant reduction of lookup tables
 Formal verification effort also resulted in simplification of square root implementation

and its proof

31

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Formal Verification of JDK methods

• Java or JVM ?
• Which methods ?
• JVM models in ACL2
• A small method
• Transcendental functions

32

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Java or JVM ?

• Should we trust Java compiler ?
• Multiple languages: Java, Scala, Kotlin, Jython, Ruby
• Classes generated on the fly

• JVM class files

33

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Which Methods ?

• Easy specification, difficult proof
• Math methods
• java.math.BigInteger
• java.lang.Math
• java.lang.StrictMath

34

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

JVM Models in ACL2

• Defensive Java Virtual Machine - Richard M. Cohen 1997
• http://www.computationallogic.com/software/djvm/
• JVM M5 - J Strother Moore and George Porter
• https://github.com/acl2/acl2/blob/master/books/models/jvm/m5/m5.lisp
• JVM M6 – Hanbing Liu
• https://github.com/haliu/M6

• Floating-point instructions are not implemented in any of them
• Choose M5 because it is in official ACL2 repository

35

http://www.computationallogic.com/software/djvm/

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Small Method java.math.MutableBigInteger.inverseMod32

• /**
 * Returns the multiplicative inverse of val mod 2^32. Assumes val is odd.
 */
 static int inverseMod32(int val) {
 // Newton's iteration!
 int t = val;
 t *= 2 - val*t;
 t *= 2 - val*t;
 t *= 2 - val*t;
 t *= 2 - val*t;
 return t;
 }

36

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Specification of inverseMod32 in Terms of JVM M5

• To prove that result after execution of inverseMod32 by JVM
● Using thread th, starting in state s, and odd input value val
● (val * result) mod 232 = 1

• (defrule |inverseMod32 correct|
 (implies
 (and (poised-to-invoke-inverseMod32 th s val)
 (integerp val) (oddp val))
 (equal (int-fix (* val (top (stack (top-frame th (run (repeat th 37) s))))))
 1)))

37

result after execution on JVM

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Proof of inverseMod32

• Define defect
i
 = (1 – val * t

i
) mod 232

• defect
0
 = (1 – val * val) mod 232

• defect
0
 mod 23 = 0

• defect
i+1

 = (1 – val * t
i+1

) mod 232 = (1 – val * t
i
 * (2 – val * t

i
)) mod 232

 = (1 – 2 * val * t
i
 + (val * t

i
)2) mod 232 = defect

i

2 mod 232

• defect
1
 mod 26 = 0

• defect
2
 mod 212 = 0

• defect
3
 mod 224 = 0

• defect
4
 = 0

38

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Transcendental Functions in JDK

• Portable – sin(x) returns the same result on all platforms
• William Kahan coined the term “The table maker's dilemma” for the unknown cost of

rounding transcendental functions
• sin(x) in [l,u], where l and u are adjacent floating-point numbers
• Which of l and u must the method sin(x) return?
• Correct rounding says “nearest” - too costly, JDK declines this
• java.lang.Math says “any if them” - not portable
• java.lang.StrictMath says “the same as C library Fdlibm 5.3” - portable though a little

arbitrary

39

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

What Is the Meaning of Fdlibm Functions

• C code
• Compilation to LLVM
• Compilation to specific ISA like X64

• Parse C by libclang and write FdlibmTranslit.java
• Compile C to llvm
• Compile FdlibmTranslit.java to FdlibmTranslit.class
• Prove equivalence of LLVM and FdlibmTranslit.class

• Designers write Fdlibm.java manually
• Prove equivalence of FdlibmTranslit.class and Fdlibm.class

40

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Conversion of libclang Tree to FdlibmTranslit.java

• A few Java helper methods
• static int[] __AMP(double x) - view double as a pair of 32-bit integers
• static double __HI(double x, int high)
• static int compareUnsigned(int x, int y)

• Libclang tree contains types. It is easy to write tree patterns which modify code
• (ui >> 16) → (ui >>> 16)
• (ui > 0x100) → Integer.compareUnsigned(x, 0x100) > 0
• *(((int *) (& d)) + 1) → _AMP(d)[1]
• Lab: S1; S2; if (p) goto Lab; → Lab: for(;;) { S1; S2; if (p) continue Lab; break; }

41

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Prove Equivalence of Fdlibm.llvm and FdlibmTranslit.class

• Function in LLVM is a control flow graph.
• Its nodes are basic blocks
• A basic block contains a list of instructions
• Each basic block has predecessors and successors

• We can build control flow graph from bytecode of JVM method
• Control flow graphs are almost the same except
• Jump chains: LLVM has empty basic blocks, bytecode resolves them
• Translation of simple condition expressions (p ? 1 : -1) – Cselect instruction in LLVM

• LLVM has unbounded number of registers, JVM has local stack and local variables

42

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Acknowledgements

• Jo Ebergen for his mentorship and for help with these slides
• J Moore, Matt Kaufmann, Warren Hunt Jr. for ACL2
• David Rager, Austin Lee, Ben Selfridge, Cuong Chau for team work
• David Russinoff, Jared Davis, Sol Swords, Hanbing Liu – for their ACL2 books

43

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

