
Securing the Software Supply Chain with Macaron:
A Comprehensive Tool for Analysis and Protection

Behnaz Hassanshahi - Principal Researcher, Technical Lead

Supply Chain Security Summit

March 2025

Developers can choose from thousands of libraries

2 Copyright © 2025, Oracle and/or its affiliates

Ecosystem
Total

Projects
Total Project

Versions
YoY Project

Growth

Java (Maven) 557K 12.2M 28%

JavaScript (npm) 2.5M 37M 27%

Python (PyPI) 475K 4.8M 28%

.NET (NuGet) 367K 6M 28%

An average Java project

relies on

148 dependencies

Sonatype’s 8th annual state of the software supply chain

Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

The double-edged sword of modern development practices like third-party repositories

and artifact hosting systems

• Enhance accessibility and efficiency for developers

• Inadvertently create new attack vectors for malicious actors

The ubiquity of external dependencies that cannot be fully controlled

High-risk ecosystems

• The Python ecosystem is particularly vulnerable, rapidly expanding in areas like AI

 and machine learning

The Alarming Ease of Software Supply Chain Attacks

3 Copyright © 2025, Oracle and/or its affiliates

We Cannot Trust Artifact Repositories

4

“PyPI isn’t a collection of audited software”
Building a Sustainable Python Package Index, Dustin Ingram, pybay-2019

Random files created in my home directory

Random stuff appended to my .bashrc file

Some people run git clone in their setup.py

piwheels: building a faster Python package repository for Raspberry Pi users,
Ben Nuttall, bennuttall.com

Copyright © 2025, Oracle and/or its affiliates

In just the last month, we’ve detected 12 malicious packages on PyPI!

5 Copyright © 2025, Oracle and/or its affiliates

"mstplotlib": infect core Python modules"asyncconfigreader ": key logger

"tig3r ": malicious web scraping
"asyncconfigreader ": taking screenshots

Attack Vectors Vary Across Languages and Ecosystems, But None Are Immune

6

Arbitrary Code Execution Go PHP Ruby Rust JS Python Java

Run command/scripts leveraging
install-hooks

✓ ✓ ✓

Run code in build script ✓ ✓ ✓

Run code in build extension(s) ✓

Insert code in methods/scripts
executed when importing a module

✓ ✓ ✓ ✓

Insert code in commonly-used
methods

✓ ✓ ✓ ✓ ✓ ✓ ✓

Insert code in constructor methods
(of popular classes)

✓ ✓ ✓ ✓ ✓ ✓ ✓

Run code of 3rd-party dependency
as build plugin

✓

The Hitchhiker’s Guide to Malicious Third-Party Dependencies, Ladisa et. al.

Install time

Runtime

Copyright © 2025, Oracle and/or its affiliates

Why install-time attacks are easy in Python?

7 Copyright © 2025, Oracle and/or its affiliates

pypi.org

8

pypi.org

.tar.gz

Packaged source code, containing a
setup.py file
that runs during installation

Why install-time attacks are easy in Python?

Copyright © 2025, Oracle and/or its affiliates

9

.tar.gz .whl

Contains a single distribution as it
would be installed (so can be
platform specific)
PEP 427, The Wheel Binary Package Format

Packaged source code, containing a
setup.py file
that runs during installation

Why install-time attacks are easy in Python?

Copyright © 2025, Oracle and/or its affiliates

pypi.org

10

.tar.gz .whl

“you should always upload both an sdist and one or more wheel”

packaging.python.org/en/latest/discussions/package-formats/

Contains a single distribution as it
would be installed (so can be
platform specific)
PEP 427, The Wheel Binary Package Format

Packaged source code, containing a
setup.py file
that runs during installation

Why install-time attacks are easy in Python?

Copyright © 2025, Oracle and/or its affiliates

pypi.org

11

setup.py will only be run if no wheel file is present, and the source
distribution must be used for installation

.tar.gz .whl

“you should always upload both an sdist and one or more wheel”

packaging.python.org/en/latest/discussions/package-formats/

Contains a single distribution as it
would be installed (so can be
platform specific)
PEP 427, The Wheel Binary Package Format

Packaged source code, containing a
setup.py file
that runs during installation

Why install-time attacks are easy in Python?

Copyright © 2025, Oracle and/or its affiliates

pypi.org

12

Suspicious?! setup.py will only be run if no wheel file is present, and the source
distribution must be used for installation

.tar.gz .whl

“you should always upload both an sdist and one or more wheel”

packaging.python.org/en/latest/discussions/package-formats/

Contains a single distribution as it
would be installed (so can be
platform specific)
PEP 427, The Wheel Binary Package Format

Packaged source code, containing a
setup.py file
that runs during installation

Why install-time attacks are easy in Python?

Copyright © 2025, Oracle and/or its affiliates

pypi.org

Example: mstplotlib-3.10.2

13

Change timestamp to avoid detection

setup.py

Inject code to run every time Python
starts up

Typosquats matplotlib

Copyright © 2025, Oracle and/or its affiliates

Macaron: Our Open-Source Software Supply Chain Security Tool

Copyright © 2025, Oracle and/or its affiliates14

https://github.com/oracle/macaron

https://github.com/oracle/macaron

100+ malicious packages reported to PyPI security in recent
months

Upcoming Features

• More robust code analysis capabilities

• New techniques developed through our joint collaboration
with the National University of Singapore [1]

Macaron's Malware Detection Check

15

[1] "Detecting Python Malware in the Software Supply Chain with Program Analysis", to be presented at ICSE-SEIP 2025.

Copyright © 2025, Oracle and/or its affiliates

https://rshariffdeen.com/paper/ICSE25-SEIP.pdf

16

Other Existing Malware Detection Tools

GuardDog

Semgrep
Analyze packages using metadata
heuristics and source-code patterns
with Semgrep

Bandit4Mal

Extend source code security linter
Bandit by adding rules for suspicious
patterns

semgrep.dev

github.com/DataDog/guarddog github.com/lyvd/bandit4mal

Advantage:

Low False-positive

Disadvantage:

High False-negative

Copyright © 2025, Oracle and/or its affiliates

"Detecting Python Malware in the Software Supply Chain with Program Analysis", to be presented at ICSE-SEIP 2025.

Advantage:

Low False-negative

Disadvantage:

High False-positive

https://rshariffdeen.com/paper/ICSE25-SEIP.pdf

Core Capabilities

Macaron can do a lot more!

17

Extensible Framework and Policy Engine
• Customizable checks for diverse security needs
• Applies declarative policies recursively to dependencies

Artifact Traceability
• Automatic detection of commits associated with

artifacts
• Repository and commit validation for source integrity

Attestation Discovery

• Identifies and verifies existing attestations for artifacts
• Enhances trust in software components

Build Information Extraction
• Analyzes GitHub Actions and Jenkins configurations,

etc.
• Enables security assessment and build reproducibility

Copyright © 2025, Oracle and/or its affiliates

Core Capabilities

Macaron can do a lot more!

18 Copyright © 2025, Oracle and/or its affiliates

Extensible Framework and Policy Engine
• Customizable checks for diverse security needs
• Applies declarative policies recursively to dependencies

Artifact Traceability
• Automatic detection of commits associated with

artifacts
• Repository and commit validation for source integrity

Attestation Discovery

• Identifies and verifies existing attestations for artifacts
• Enhances trust in software components

Build Information Extraction
• Analyzes GitHub Actions and Jenkins configurations,

etc.
• Enables security assessment and build reproducibility

Dataset: 1,200 most popular Java artifacts from libraries.io (as of November 2024)

Methodology: Macaron's "Find Artifact Pipeline" Check

• Attestation detection: Searches for and verifies existing build attestations

• Build process analysis: Identifies specific build and deploy commands used

• Metadata verification: Cross-references build information with metadata on Maven Central

Key Findings

• Lack of transparency: 84% of top artifacts do not provide clear visibility into their build processes

• Implications: Significant gap in software supply chain security and traceability

Industry impact

• Highlights a critical area for improvement in open-source development practices

Study: Transparency in Build and Publication Processes
of Popular Open-Source Java Projects

19 Copyright © 2025, Oracle and/or its affiliates

Core Capabilities

Macaron can do a lot more!

20 Copyright © 2025, Oracle and/or its affiliates

Extensible Framework and Policy Engine
• Customizable checks for diverse security needs
• Applies declarative policies recursively to dependencies

Artifact Traceability
• Automatic detection of commits associated with

artifacts
• Repository and commit validation for source integrity

Attestation Discovery

• Identifies and verifies existing attestations for artifacts
• Enhances trust in software components

Build Information Extraction
• Analyzes GitHub Actions and Jenkins configurations,

etc.
• Enables security assessment and build reproducibility

OpenSSF SLSA (Supply chain Levels for Software Artifacts)

• Provides specs to produce provenances & attestations

• Proactive protection through a secure-by-design approach

Macaron's role

• Automatically detects and verifies SLSA provenances & attestations for artifacts

• Enables custom policy enforcement based on provenance & attestation content

• Generates Verification Summary Attestations (VSA)

Key benefits

• Mitigates manual-upload and impersonation attacks

• Facilitates non-human compliance and auditing processes, reducing manual effort

• Traceability: enhances transparency across the software supply chain

Attestation Discovery

21

slsa.dev

Adopters

Copyright © 2025, Oracle and/or its affiliates

Build process overview

• Graal Development Kit (GDK) builds open-source dependencies from source

• Utilizes Oracle's secure build infrastructure

Provenance generation

• Creates detailed provenances for all artifacts

• Stores provenances in an internal registry for traceability

Macaron Integration

• Integrated into GDK build pipelines

• Verifies provenances using Macaron's policy engine

• Generates Verification Summary Attestation (VSA) upon successful verification

• VSAs published alongside artifacts on Oracle Maven Repository

Macaron Integration in Production:
The Graal Development Kit Example

22 Copyright © 2025, Oracle and/or its affiliates

Java, Graal Development Kit are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Tutorial available for developers to verify VSAs
• https://oracle.github.io/macaron/pages/tutorials/use_verification_summary_attestation.html

Macaron Integration in Production:
The Graal Development Kit Example (cont.)

23

Future enhancements

• Dedicated Maven & Gradle build plugins for automated VSA verification

• Enables seamless integration of VSA verification into existing build workflows

• Enhances overall security posture by making attestation checks a standard part of the build process

Copyright © 2025, Oracle and/or its affiliates

Java, Graal Development Kit are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Enhance malware detection

• Improve accuracy of existing checks

• Integrate with malware monitoring platforms

Expand build support

• Add support for native code compilation

• Extend coverage to more programming languages

New security checks
Develop checks for dangerous patterns in build scripts or CI/CD configurations

Community-driven improvements
• Share effective policy templates

• Propose new checks based on real-world scenarios

We Welcome Your Contributions

24

https://github.com/oracle/macaron

https://blogs.oracle.com/authors/behnaz-
hassanshahi

Copyright © 2025, Oracle and/or its affiliates

https://github.com/oracle/macaron
https://blogs.oracle.com/authors/behnaz-hassanshahi
https://blogs.oracle.com/authors/behnaz-hassanshahi

	Slide 1: Securing the Software Supply Chain with Macaron: A Comprehensive Tool for Analysis and Protection
	Slide 2: Developers can choose from thousands of libraries
	Slide 3: The Alarming Ease of Software Supply Chain Attacks
	Slide 4: We Cannot Trust Artifact Repositories
	Slide 5: In just the last month, we’ve detected 12 malicious packages on PyPI!
	Slide 6: Attack Vectors Vary Across Languages and Ecosystems, But None Are Immune
	Slide 7: Why install-time attacks are easy in Python?
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Example: mstplotlib-3.10.2
	Slide 14: Macaron: Our Open-Source Software Supply Chain Security Tool
	Slide 15: Macaron's Malware Detection Check
	Slide 16
	Slide 17: Macaron can do a lot more!
	Slide 18: Macaron can do a lot more!
	Slide 19: Study: Transparency in Build and Publication Processes of Popular Open-Source Java Projects
	Slide 20: Macaron can do a lot more!
	Slide 21: Attestation Discovery
	Slide 22: Macaron Integration in Production: The Graal Development Kit Example
	Slide 23: Macaron Integration in Production: The Graal Development Kit Example (cont.)
	Slide 24: We Welcome Your Contributions

