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Abstract
JavaScript is the most popular programming language
for client-side Web applications, and Node.js has pop-
ularized the language for server-side computing, too.
In this domain, the minimal support for parallel pro-
gramming remains however a major limitation. In this
paper we introduce a novel parallel programming
abstraction called Generic Messages (GEMS). GEMS
allow one to combine message passing and shared-
memory parallelism, extending the classes of paral-
lel applications that can be built with Node.js. GEMS
have customizable semantics and enable several forms
of thread safety, isolation, and concurrency control.
GEMS are designed as convenient JavaScript abstrac-
tions that expose high-level and safe parallelism mod-
els to the developer. Experiments show that GEMS
outperform equivalent Node.js applications thanks to
their usage of shared memory.

Categories and Subject Descriptors D.1.3 [Software]:
Programming Techniques—Concurrent Programming

Keywords JavaScript, Node.js, Generic Messages.

1. Introduction
In contrast to other languages, JavaScript was not de-
signed to express parallelism. This is a clear limitation
for cloud computing and data-intensive applications;

[Copyright notice will appear here once ’preprint’ option is removed.]

domains in which the language has been popularized
by Node.js [45].

Bringing parallel execution to a non-parallel lan-
guage is challenging. Beyond few notable research
efforts (e. g., the RiverTrail [27] data-parallel model),
WebWorkers [4] is the only parallelism model for
client-side and server-side JavaScript. The WebWork-
ers model is inspired by Actors [10], and is based
on share-nothing fully-isolated parallel entities (i.e.,
workers) exchanging data via asynchronous messages.
Although such form of share-nothing parallelism is
a good fit for, e. g., stateless Web services, it pre-
vents developers from taking full advantage of the
shared memory available in modern server-class mul-
ticore machines. Moreover, share-nothing parallelism
forces developers to explicitly partition and distribute
data [35], and requires the usage of external services
such as Memcached [1] when shared state is needed.

For data-intensive applications and so-called mi-
croservices [47], shared memory can be employed effi-
ciently in several ways. For example, it can be used
to implement in-memory caching for scale-up ser-
vices [13], to optimize in-memory parallel processing
for data-intensive applications [49], as well as to op-
timize the communication mechanisms used by mi-
croservices frameworks such as Amazon Lambda [5]
via in-memory data transfer and zero-copy messaging.

Shared-memory parallel programming, however, is
hard, as it requires developers to deal with data races
and synchronization [35]. For Node.js, explicit shared-
memory programming models such as the one of Java
might be even more problematic, as programmers are
used to—and existing libraries are built for—the event-
based race-free model enforced by WebWorkers.

In this paper, we introduce a new parallel pro-
gramming abstraction called Generic Messages (GEMS),
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specifically designed to enable selected forms of shared-
memory parallelism in the context of the WebWorkers
model. Informally, GEMS are a new form of messages
that can be exchanged between workers to provide
controlled access to shared-memory programming ab-
stractions. Rather than enabling a specific parallel pro-
gramming model, generic messages are customizable
and can be used to expose shared memory to workers
in several ways. In particular, GEMS enable safe par-
allel programming models for WebWorkers, without
exposing developers to low-level issues such as data
races.

This paper makes the following contributions:
(1) We describe the Generic Messages model, a new

parallel programming abstraction to enable shared-
memory parallelism for share-nothing, fully-isolated
models such as WebWorkers.

(2) We describe six types of GEMS corresponding to
distinct parallel programming models enabling shared-
memory programming in a message-passing sys-
tem. The GEMS allow developers to extend existing
message-based applications using data structures
that provide thread-safe access to shared memory.

(3) We describe the implementation of the GEMS model
in the context of Node.js, and we evaluate sev-
eral Node.js applications using GEMS, highlighting
the performance benefits, along with other benefits
such as thread safety, over plain Node.js applica-
tions based on WebWorkers.
This paper is structured as follows. In Section 2 and

Section 3 we motivate the GEMS programming model,
which we present in detail in Section 4 and Section 5. In
Section 6 and Section 7 we evaluate the performance of
GEMS. Section 8 discusses related work, and Section 9
concludes.

2. Isolated Communicating Workers
The only model for parallel execution supported by
Node.js is based on isolated parallel entities, called
workers, which communicate using asynchronous mes-
sage passing. One of the reasons for this is JavaScript’s
single-threaded language design. Since JavaScript is
single-threaded, the Node.js runtime (and the underly-
ing Google V8 virtual machine [3]) are single-threaded
as well. Consequently, workers do not support shared
memory, neither in the programming model (since
each worker has a fully isolated memory space), nor
at the level of the runtime system (because internal
data structures are not thread-safe and the garbage
collector requires the heaps of workers to be disjunct).
In Node.js, workers can be used via a module called
Cluster [8], which provides the basic support for mes-
saging, as well as a Node.js-specific mechanism to let
multiple workers listen on the same HTTP/TCP port.

The Cluster module is designed to scale-up Node.js ser-
vices within a single multicore machine, and performs
automatic load balancing between workers listening
on the same TCP port.

Share-nothing parallelism is an ideal model for sev-
eral applications, e. g., scatter/gather parallelism [16].
For cloud and data-intensive workloads, however, the
absence of shared memory can be a limitation. For
some problems, shared memory is a more natural solu-
tion [44], and forcing developers to model every inter-
action with asynchronous message passing increases
complexity when atomicity and consistency are re-
quired. For instance, since Node.js workers cannot
share any resource at runtime, they need to use exter-
nal systems such as Memcached [1] whenever shared
state is needed. Although such caching systems offer
properties such as distribution (over a cluster) and fail-
ure tolerance, they also result in additional data lookup
overheads. As a consequence, Node.js applications of-
ten make use of a per-process, replicated, temporary
cache to store data in the Node.js memory space (e.g.,
TTL ) in order to reduce the overall Web service la-
tency. Especially for data-intensive applications, the
overhead of moving data between Node.js processes
and an external caching system can be prohibitive. In-
stead, a simple and efficient shared-memory solution
is desirable to enable scalability within a single multi-
core machine, as it would remove the need to replicate
objects in the memory space of the external caching
service. Moreover, it would not require Node.js de-
velopers to program against a foreign API. From the
perspective of the runtime system, shared memory
can have benefits, too. For example, web services and
big data applications can take advantage of shared
in-memory data structures to reduce latency and im-
prove data locality, avoiding the overhead and the
complexity of replication systems that need to guar-
antee data consistency for non-shared-memory sys-
tems. Specifically for Node.js, in-memory communi-
cation can also be used to optimize message passing
between workers, to avoid the current send-by-copy
approach, which requires JSON data marshalling for
every message.

GEMS enable the use of shared memory both im-
plicitly and explicitly. They can be used to optimize
message-based communications by implicitly using
shared-memory mechanisms [24, 40] (without modi-
fying the user-level worker API), and can also be used
to expose safe, high-level, parallel programming mod-
els that combine message passing and shared memory.

3. GEMS to the Rescue
Informally, a GEM is a runtime mechanism to mediate
access to a shared object graph between parallel work-
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———————————————— Master ————————————————

1 var registry = new BigObject();
2 var keywords = ["some","Important","words"];
3 // send data to workers
4 workers.multicast(keywords)
5 .scatter(registry)
6 // callback when all workers replied
7 .gather(function(results) {
8 var total = accumulate(results);
9 console.log('result is' + total);

10 });
———————————————— Workers ————————————————

1 // callbacks for multicast/scatter msgs
2 worker.on('multicast', function(msg) {
3 keys = msg;
4 })
5 .on('scatter', function(msg) {
6 var registry = msg;
7 var result = {};
8 // scan received part of document
9 for (var k in keys) {

10 var total = 0;
11 for (var token in registry)
12 i f (registry[token] == keys[k])
13 total++;
14 result[keys[k]] = total;
15 }
16 worker.reply(result);
17 });

Figure 1: Node.js-compatible implementation of a
Wordcount benchmark

ers. GEMS can be considered a form of software capa-
bility [39] which defines how data are shared, and how
they can be accessed. The way such access is controlled
is defined by a GEM itself, and cannot be altered by the
workers. Thus, a GEM can give workers controlled and
thread-safe access to a shared object graph. GEMS are
exposed to workers in the form of standard JavaScript
objects, for which they can read and write properties,
execute function calls, and perform other common op-
erations.

A Motivating Example As a concrete example for
GEMS, let us consider a data scraping application that
processes text to compute the frequency of keywords
in a file. A parallel Node.js implementation for this ex-
ample is depicted in Figure 1. In this application, a first
worker called “master” initially owns the data for the
document to be scanned (previously read from a file)
and the keys to be searched for. In order to enable par-
allel processing, the master partitions the input data,
and sends each partition to parallel workers. The doc-
ument is partitioned by the master using a scatter
function, while the keys are copied to each worker us-
ing multicast. Finally, the gather function is called

———————————————— Master ————————————————

1 var registry = new BigObject();
2 var keywords = ["some","Important","words"];
3 var finalResult = {};
4 // multicast three Gems to the workers
5 workers.multicast(
6 registry, keywords, finalResult)
7 .gather(function() {
8 // no need for post-processing
9 console.log(finalResult);

10 });
———————————————— Workers ————————————————

1 // callback executed when the
2 // three Gems are received
3 worker.on('multicast', function(
4 registry, keywords, finalResult) {
5 for (var k in keywords.subset())
6 for (var token in registry)
7 i f (registry[token] == keywords[k])
8 finalResult.atomic(function() {
9 finalResult[k] =

10 finalResult[k]+1 || 1;
11 });
12 worker.reply('done!');
13 });

Figure 2: An implementation of a Wordcount bench-
mark that benefit from using multiple GEMS.

once all the results from each worker have been col-
lected.

The example highlights some of the drawbacks of
the worker model in Node.js: each time the master has
to exchange data with the workers, it has to deep copy
the data from its memory space to the memory space of
the receiver. Here, this means that the keys array and
the registry object are replicated for each worker.
Copying and transferring the data reduces the per-
formance of the application and increases its memory
footprint. Intuitively, a shared-memory-based imple-
mentation would minimize communication by sharing
only a reference to registry and to the keys array
between workers. Sharing a direct pointer to such data,
however, would expose workers to potential race con-
ditions, as workers will be granted the right to perform
concurrent writes.

Such race conditions can be avoided using GEMS
for each of the two objects to be shared (i. e., registry
and keys). Specifically, the two objects can be shared
between workers using a GEM granting (and enforc-
ing) read-only access. In this way, workers can receive
direct access to the two shared objects, minimizing the
data-transfer overhead. The code in Figure 1 can al-
ready use such kinds of GEMS without any changes,
since no write operations are performed on the re-
ceived messages. To this end, the scatter function
would need to create a GEM for the registry and
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keys objects, and use it for the communication rather
than copying and partitioning the two objects.

Advanced Semantics for GEMS GEMS can have
more advanced semantics than read-only protection.
They can expose arbitrary APIs for controlling access
to the shared object graph, and can provide selective
access rights to shared objects in multiple forms, for
instance by granting read and write access only to a
subset of the elements or properties in a shared object
graph. Another version of the example using other,
more advanced, types of GEMS is depicted in Fig-
ure 2. In this second implementation, the keywords
array is sent to all workers using a GEM that enforces
partitioned access control. This GEM enriches the object
graph that is being shared with the subset function
as an additional API, which can be used by the worker
to claim read and write access limited to a partition of
the shared keys array. By invoking subset, the GEM
automatically assigns (in a thread-safe way) a subset
of the elements of keywords for exclusive access to
a single worker, ensuring that other workers trying to
read from (or write to) one of the elements of the array
will not be allowed to do so. The GEM in the example
not only provides partitioned access to keywords, it
also enforces it: any attempt to access any non-granted
element of the array, i. e., not obtained via subset, re-
sults in an exception. The example also makes use of a
second kind of GEM, the results object. This GEM
enriches the object capabilities with the atomic API,
which can be used to perform a sequence of opera-
tions on the shared object graph in a thread-safe way.
The object is initially empty, and is used in this exam-
ple to accumulate the final result of the scraping, thus
avoiding the final accumulation operation on the mas-
ter, as it was done in the Node.js implementation in
Figure 1. The GEMS described in this example ensure
thread safety for the GEM user, i. e., the worker. The
way thread safety is achieved and concretely imple-
mented is GEM-specific, as every GEM can provide
different safety guarantees.

4. GEMS Design and Implementation in
Node.js

A GEM is a new type of JavaScript object that can
be exchanged between workers via message-based in-
teractions to enable shared-memory parallel program-
ming. The GEM model does not specify how shared
memory should be exposed to workers. For exam-
ple, it can be introduced implicitly, as in the exam-
ple of Figure 1, where concurrency control mecha-
nisms are transparently encapsulated in the GEM at
the granularity of property reads and writes. Shared-
memory programming can also be exposed explicitly,
by providing custom APIs such as the atomic func-

tion described in Figure 2. Such a model-agnostic de-
sign makes it possible to trade off convenience, perfor-
mance, and safety at a high granularity.

At the high level, a GEM is a combination of the
following two elements:
(1) A shared object graph, that is, an object graph to be

shared with multiple workers. The objects compos-
ing the graph can be of any valid JavaScript type.
However, they can be associated only with one
GEM, i.e., it is not possible for two GEMS to ref-
erence the same object graph, neither directly nor
indirectly.

(2) Dynamic sharing semantics, which controls how the
shared object graph can be accessed in parallel by
multiple workers.

With Node.js being a share-nothing framework, GEMS
can initially be exchanged only by an explicit mes-
sage that is sent from a Node.js worker (called the
GEM owner) to all the workers that need access to it
in the parallel application. Using message passing as
the core mechanism for sharing GEMS across workers
allows developers to add shared-memory parallel pro-
gramming selectively, without breaking existing appli-
cations. GEMS are not available by default, but they
can be imported in the form of Node.js modules. In the
following sections we describe the API used to define
such modules together with the concrete internal struc-
ture of GEMS.

4.1 GEM Definition and Creation

Generic messages are designed to be reusable. To this
end, the model provides a specific API that is only
available for the implementation of a GEM, but is not
accessible by GEM users. Generally, for the implemen-
tation of a new type of GEM, a deep understanding of
concurrency is required. Thus, we clearly distinguish
the expert role of implementing GEMS, from the role of
a GEM user who builds high-level applications based
on readily available libraries of GEMS but does not
need to be a parallel-programming expert. Therefore,
we clearly distinguish between defining a new type of
GEM, and the creation of a GEM instance (of a given
type). To enforce the desired separation of roles, these
built-ins are only available for Node.js module devel-
opers, which is detailed in Section 4.3.

New types of GEMS can be defined using the
Gem.define built-in function. Gem.define is used
as in the following example:

// Define a new type of Generic Message
var readOnly = Gem.define(gemConfiguration);
// Export it to Node.js
module.exports.gem = readOnly;

New types of GEMS can be created only from within
Node.js modules definitions. This implies that new
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GEM types cannot be created explicitly by Node.js ap-
plications, but must be created and packaged in the
form of a module. This also implies that the semantics
of any GEMS cannot be altered by its users, and en-
sures that the thread-safety guarantees provided by a
GEM cannot be altered during its usage. The define
function expects an object to be provided as argument.
This object is called the GEM configuration, and is a
special JavaScript object that is used to specify the run-
time semantics of the GEM under parallel and concur-
rent access.

To import a GEM of a given type in a Node.js appli-
cation, an instance of the GEM has to be created. This
can be done by importing a GEM using the standard
Node.js package management system. After the GEM
module has been loaded, a new instance of the GEM
can be obtained by calling Gem.create, as described
in the following example:

// import the Gem from a module
var readOnly = require('read-only-gem');
// object to be used as 'shared object'
var content = {some:0,values:1};
// create an instance of Gem
var gem = readOnly.create(content);
// send the Gem message to workers
for (var w in workers)

workers[w].send(gem);
// object and gem are distinct
content.some++;
gem.some == content.some; // false
// this gem enforces strict
// read-only access on its state
gem.some++; // throws exception!

After the GEM has been created, it can be shared
with workers via message passing. The GEM construc-
tor accepts an optional input parameter (the content
object in the example). This object graph can be used
as the initial state of the GEM, and corresponds to
the state that will be shared with all the workers that
receive the GEM. The content object is optional, and
other GEMS can have a GEM-specific way to allo-
cate and modify the state to be shared. When such
an initial shared object is provided, its entire object
graph is copied, and the copied graph is made private
to the GEM. The copying mechanism is called JSON
copy, as it relies on the semantics of JSON object seri-
alization [7]. Specifically, a JSON copy of a JavaScript
object graph corresponds to a new object graph that
has been built by (1) encoding the original graph in
JSON format, and by (2) de-serializing the encoded
graph to a new JavaScript object. As a consequence
of JSON copy, the GEM-private shared object graph
owns only the raw data as well as the structure of the
original object graph, and does not include functions,
nor language-specific features such as the object proto-

type chain of the original object graph. Moreover, cy-
cles in the shared object graph are removed (as they
are not supported by JSON).

Using JSON data as the format for the initial state to
be shared between workers has two main motivations.
First, it ensures that the same shared object graph can-
not be used to create two different GEMS, because the
JSON copy removes cycles and performs a deep copy
of the initial shared object graph. Second, GEMS can
be used as a “drop in” replacement in message-based
applications, as exchanging a GEM or a JSON mes-
sage between two workers has the exact same seman-
tics. Note that we chose JSON copy semantics also to
avoid introducing another semantics, which JavaScript
developers would need to understand when using
GEMS.

Creating a GEM with an initial object graph to be
shared is optional, as performing a JSON copy of an
object graph before transferring it as a message can
be sometimes expensive. GEMS can also support a
different pattern that does not require JSON-copying
the object. Consider the following example of a GEM:

// import Gem from a module
var transferableGem =

require('transferable-gem');
// create Gem and populate with values
var gem = transferableGem.create();
// writes are allowed before Gem is send
for (var i in someValues)

gem[i] = someFunctionOf(someValues);
// share the Gem with some workers
for (var w in workers)

workers[w].send(gem);
// once shared, gem becomes read-only
gem.some++; // throws an exception!

In this example, the GEM is created with an empty
initial state, which is populated by the GEM owner
as fields are added. The GEM owner has the right to
alter the GEM state as long as the GEM is not shared
with any workers. In this way, the runtime overhead
of JSON-copying a GEM from an existing object into
a GEM-private memory space can be avoided in an
efficient way, as the GEM-private object graph is built
incrementally. In Section 5 the implementation of this
as well as other GEMS will be provided, describing
how the transfer mechanism is encoded in the GEM
configuration object.

4.2 GEM Configuration Object

A GEM can be considered a safe container mediating
accesses from any worker to the shared object graph
it protects. The semantics of the GEM under concur-
rent access is specified in the configuration object used
to create it. Different configuration objects can encap-
sulate different semantics, and therefore enable differ-
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Figure 3: Overview of GEMS’ internal structure.

ent parallel programming models. Examples of config-
urations are read-only access, multiple-readers/single-
writer access, or memory partitioning. As the example
in Section 3 suggests, GEMS can be used to implement
even more advanced forms of data sharing, which we
discuss in Section 5.

The high-level architecture of a GEM configuration
is depicted in Figure 3, while a detailed overview of
its components is provided in Figure 4. At its core, a
GEM configuration is an object containing the follow-
ing components:
(1) GEM public API: a GEM-specific API that is acces-

sible to all the Node.js workers receiving the GEM.
(2) GEM meta API: a customizable metaobject protocol

API [32] used by all the workers using the GEM.
(3) GEM state: global state accessible to all GEMS in

all workers, and local state private to the worker
that receives a GEM. State is private, and can be
accessed only by the GEM public and meta API.

By combining these three components, a GEM can en-
able multiple forms of data sharing. Since GEMS are
exposed to workers via message passing, a crucial as-
pect concerning their semantics regards the data in-
volved in transferring a GEM from its owner to a re-
ceiving worker. After its creation, transferring a GEM
operates as follows:
• The GEM owner creates a new instance of the

GEM, and sends a reference to it to the receiving
worker.

• The new GEM instance holds a private reference to
the shared object graph. The reference is not acces-
sible to the worker user code, and can be accessed
only by the GEM (meta and public) API.

• The new GEM instance also holds a local state. The
value of the local state is specified in the GEM con-
figuration.

Given this model, sending a GEM only has the cost of
an object allocation and of a reference transfer. In Fig-
ure 5 and 6, the configuration objects of two example
GEMS are described. The GEMS provide support for
different forms of concurrent access to workers, and
make use of all the features described above. In partic-
ular, the GEM in Figure 5 presents the implementation
of a read-only GEM, while Figure 6 corresponds to the
implementation of a partitioned GEM, i. e., a GEM that
grants exclusive read and write access to a subset of

GEM Custom API
Any arbitrary function that can be called by workers that
received the GEM. An example is the atomic function used
by Atomic GEMS.

GEM Meta API Meta-object-protocol handling the following events:

onGet Trap called for every property get operation.

onSet Trap called for every property set operation.

onCreate Trap called every time a new instance of the GEM is
created.

onFirstImport Trap called the very first time a GEM of a given type is
imported as a module.

onSend Trap called before a GEM is sent from one worker to
another.

enum, define, etc. Other JavaScript-specific traps (similar to ECMA6 prox-
ies).

GEM State Every GEM has access to some internal state that can be used
to specify how concurrency is handled.

Local State that is private to a single GEM instance.

Shared State that is specific to a GEM instance and is shared
between all the workers that have access to the GEM
(including the GEM shared object graph).

Static State that is allocated at the moment the GEM is im-
ported. It can be both worker-local and shared, and can
be accessed by all the GEMS in the system.

Figure 4: Overview of the GEM API and state.

a shared array to multiple workers in parallel. As the
synchronization logic of both GEMS is not directly ex-
posed, they can be safely used by workers without any
risk of data races. In the following sections we detail
the internals of GEMS using Figure 5 and 6 as driving
examples.

4.2.1 GEM Private State

The shared object graph used to create a GEM is al-
ways accessible from the GEM public API and from
the meta API by accessing the this.shared object.
As an example, this is done in Figure 6 at Lines 23
and 32, where its content is accessed by the work-
ers. GEMS also provide an additional mechanism to
access a shared utility state that is different from the
shared object graph itself. This can be done by using
the internal built-in property. An example usage of
this property is to store some metadata that needs to
be shared between workers. In Figure 6 this is used
to share between workers a counter keeping track of
the ranges already assigned to workers. Finally, GEMS
also provide an additional type of internal state, called
static, which is allocated only once, when the GEM
is imported into the application for the first time. The
motivation for this type of GEM state (not shown in
the figure) is to enable worker-local state that survives
the allocation of a single GEM instance. Static state
can be used in several ways, for example to keep track
of all the GEMS used by a worker. The shared object
graph as well as the object stored in the internal
built-in property are not exposed to the worker, which
cannot obtain access to them not even using reflection.
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——————————————- ReadOnly GEM configuration ——————————————

1 var readOnlyGem = {
2 meta: {
3 onGet : function(property) {
4 i f (typeof t h i s.shared[property]
5 == 'object')
6 return Gem.create(
7 t h i s.shared[property],
8 readOnlyGem);
9 return t h i s.shared[property];

10 },
11 onSet : function(property, value) {
12 throw "Read-Only access violation";
13 }
14 }}

———————————————— Worker usage ————————————————

1 // Gems received: 'input' is read-only,
2 // 'result' is partitioned
3 worker.on('message',function(input,result){
4 // Access read-only and partitioned gems
5 result.getRange(function(from,to) {
6 for (var r=from; r < to; r++)
7 result[r] = someFunctionOf(
8 input[r], result[r]);
9 });

10 // The onSet meta API prevents accesses
11 // outside of "getRange"
12 result[42] = 42; // onSet throws except.
13 });

Figure 5: A GEM implementing read-only access for
multiple workers to a shared object, and a worker re-
ceiving a ReadOnly GEM and a Partitioned GEM for
parallel processing.

GEM-local state can be specified using a property
named local. The property can be used by the GEM
worker to model worker-local state. An example usage
is depicted in Figure 6, where local state is used to keep
track of the ranges in which a worker is granted access.
When a partition is acquired, the range is checked to
prevent unauthorized accesses to the shared object.

4.2.2 GEM Public API

Any GEM can have an optional public API to expose
high-level programming models to workers. Such API
implementations have the following characteristics:
• Every function defined in the API has direct access

to the GEM shared object graph as well as to the
GEM state. Access is granted by the GEM runtime
via specific built-in objects (e. g., this.shared).

• Every function has access to a private built-in mod-
ule called Sync, which provides concurrency con-
trol primitives, e. g., atomic compare and swap (CAS)
operations.
The public API can use the Sync object to build a

concurrency control mechanism for the GEM. For ex-
ample, Figure 6 defines the getRange API. Similarly
to the GEM state, the public API is declared by ini-

—————————————— Partitioned GEM configuration —————————————–

1 var partitionedDynGem = {
2 internal: {
3 // an atomic counter
4 idxCounter : Sync.newAtomicLong(0),
5 },
6 // index range for which the worker
7 // has exclusive access
8 local: { range : {from:-1, to:-1} },
9 public: {

10 getRange: function(lambda) {
11 var idx = t h i s.internal
12 .idxCounter
13 .atomicIncrement(range);
14 t h i s.local.from = idx;
15 t h i s.local.to = idx+range;
16 lambda(from, to);
17 t h i s.local.to = -1;
18 t h i s.local.from = -1;
19 }
20 },
21 meta: {
22 onCreate : function(shared) {
23 i f (!isTypedArray(shared))
24 throw "this gem supports "
25 + "only index-based arrays"
26 }
27 onGet : function(property) {
28 i f (parseInt(property) >=
29 t h i s.local.from
30 && parseInt(property) <
31 t h i s.local.to) {
32 return t h i s.shared[property];
33 } e lse
34 throw "Out-of-bound access";
35 },
36 onSet : function(property, value) {
37 i f (parseInt(property) >=
38 t h i s.local.from
39 && parseInt(property) <
40 t h i s.local.to) {
41 t h i s.shared[property] = value;
42 } e lse
43 throw "Out-of-bound access!";
44 }
45 }}};

Figure 6: A GEM implementing exclusive access for
multiple workers to array partitions.

tializing the public property with an object that pro-
vides the API functions. In the example, the getRange
function is exposed to every worker that has access
to the GEM. getRange takes a lambda function as
argument, which is executed atomically. When exe-
cuted, the lambda function has full read and write ac-
cess to the given range of indexes on the shared object
graph. Internally, the Sync object is used to implement
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a thread-safe atomic counter that is acquired before ex-
ecuting the function.1

The GEM public API model enforces encapsulation
and protection: workers can neither access the shared
object graph nor the Sync object unless they are explic-
itly exposed by the public API of an “unsafe” GEM.

Having access to the Sync and the shared objects
enables the implementation of custom synchronization
policies. By using only the public API, a GEM can im-
plement any form of shared-memory concurrent data
structure. It is responsibility of the GEM developer to
decide the level of safety and consistency to be exposed
to the users. In our implementation, the Sync object
provides the concurrency semantics of the Java Mem-
ory Model [37]. This means, reasoning about mem-
ory effects is based on happens before relationships. The
Sync object implements the following low-level facili-
ties:
• Atomic operations: fetchAndAdd, compareAndSet.

Common atomic operations implemented in hard-
ware, as well as access to thread-local storage.

• Concurrent access: load, store, and has. Primitive
operations enforcing a happens-before relation be-
tween accesses on the shared object. They corre-
spond to volatile operations, according to the Java
Memory Model (JMM)
The choice of the Java Memory Model is arbitrary,

and based on our choice to implement GEMS in an en-
gine on top of the Java Virtual Machine (JVM). In prin-
ciple, it would be possible to extend the GEMS model
to support other memory models and operations. This
would affect the number and the type of GEMS that
could be developed, but not the GEMS model itself.
Using the JMM for GEMS is further discussed in Sec-
tion 6, where we highlight the main consequences of
such design choice.

4.2.3 GEM Meta API

GEMS can define a metaobject protocol [32] through
a custom meta API, to implement fine-grained access
and concurrency control at the level of a single object
property, preventing unauthorized accesses. Figure 5
depicts the onGet and onSet functions as an exam-
ple of the meta API usage. In the worker usage part
of the figure, the meta API is used to specify implicit
custom operations to be executed by the GEM upon
property read and write accesses. This ensures that all
the properties of the object are accessed only in combi-
nation with the getRange API. Other attempts to ac-
cess the GEM correspond to a misuse of the getRange
API, and result in an exception (Line 12). Besides the
two functions onGet and onSet, other meta functions
(also called traps [46]) to intercept any form of prop-

1 The example is simplified for brevity.

GEM name Description
ReadOnly Every worker has read-only access to all elements

of the shared object. Write attempts cause an ex-
ception.

Owned A worker has exclusive access to all elements of
the shared object. Concurrent accesses by other
workers cause an exception.

Partitioned Workers have read/write access to disjoint sub-
sets of elements of the shared object. Attempts to
read or write outside of the partition cause an ex-
ception. The partition is assigned statically.

Partitioned-dyn Same as Partitioned, but the partition assigned to
each worker is defined dynamically by the GEM,
e. g., to enable load balancing.

Atomic-LK Workers have read/write access to every ele-
ment of the shared object. The GEM provides an
API for thread-safe access implemented with a
lock. Attempts to access the shared object with-
out owning the corresponding lock cause an ex-
ception.

Atomic-STM Same as Atomic-LK, but the GEM enables con-
current access using an STM.

Figure 7: Overview of the GEMS discussed in Sec-
tion 5.

erty access to the shared object graph can be specified,
e. g., to intercept a property delete operation. Further-
more, the model supports traps related to the lifetime
of a GEM such as onCreate, which is called when
the GEM is first allocated, and onSend, which is exe-
cuted before a GEM is transferred from one worker to
another one. A summary of all the possible meta func-
tions supported by the model is depicted in Figure 4.
Functions defined in the meta API have the same prop-
erties of functions defined in the public API. In particu-
lar, they can access the shared object via this.shared
and they have access to the low-level Sync built-in.

4.3 Thread Safety and GEMS Programming

The runtime semantics of GEMS is specified using a
low-level API that can be used to expose arbitrary par-
allel programming models to workers. Such API (e. g.,
the Sync and shared objects) is private, and workers
receiving a GEM cannot directly access unsafe primi-
tives such as, e.g., CAS operations or locks. Despite be-
ing thread-safety the main motivation for GEMS, the
GEM model does not explicitly prevent the creation
of arbitrary unsafe GEMS. The reason for this design
choice is that some power users might still need to use
unsafe GEMS for certain tasks (e.g., to perform low-
overhead logging of events without strict consistency
requirements). We rely on the Node.js community to
create and design new GEMS which could introduce
novel programming models that could benefit specific
Node.js applications.

As discussed earlier, the internal GEM program-
ming model requires a deep understanding of concur-
rency. Thus, we expect the roles of GEM developers
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and GEM users to be different. GEM users will typ-
ically import existing GEMS into their applications as
they need to share state between workers in a safe way,
but they will rarely develop GEMS themselves. To em-
phasize this distinction, the GEMS implementation is
designed so that new GEMS can only be exposed to
Node.js applications in the form of external Node.js
modules. A Node.js user cannot directly create new
types of GEMS. This is analogous to how the Node.js
ecosystem supports native extensions using languages
other than JavaScript (e. g., C++): such extensions can-
not be explicitly accessed by Node.js applications, and
needs to be exposed to JavaScript using a pre-packed
module. In the case of GEMS, this means that the con-
figuration object and API of a GEM can be specified
only from within Node.js modules, and not by Node.js
applications using the GEM. To enforce such model,
we rely on the existing Node.js package management
system for the distribution of GEMS, and we ensure
that a GEM’s semantics cannot be altered after the
GEM is imported into an application. In this way, any
Node.js user can import existing GEMS in their appli-
cation without having to create themselves a new type
of GEMS when they want to share some application-
specific data between workers. Ideally, Node.js devel-
opers should just import existing GEMS into their ap-
plications in the way Java developers use libraries such
as java.util.concurrent.

5. Parallel Programming with GEMS

This section discusses examples of GEMS enabling
safe programming models. Some of these GEMS are
designed to specifically address server-side work-
loads. An overview is provided in Figure 7.

5.1 ReadOnly and Owned GEMS

Since fully-isolated message passing is the default par-
allel programming model in Node.js, the first GEM ex-
tending it provides parallel read-only access to shared
data for multiple workers. The GEM enforces at run-
time that workers accessing it can only perform read
operations on the protected object. When a worker at-
tempts to write to the shared data, the GEM throws an
exception instead. We call this a ReadOnly GEM. An
example of its usage and of its internal structure has
been discussed in Section 3 and in Figure 1. The GEM
relies only on the meta API for intercepting read and
write operations, and does not expose any additional
public API. From the worker’s perspective, the GEM
behaves like a normal JavaScript object that has been
received via message passing. However the worker
has no direct access to the underlying object, as it only
received a GEM. Thanks to the JSON copy mechanism
used to build the object graph of the GEM, this en-

ables to optimize existing message-based applications
just by employing read-only GEMS rather than normal
messages. This is possible as long as the object received
(resp. sent) by a worker is only read. This scenario is
common for message-passing applications, as in many
parallel applications the sender of a message does not
modify it afterwards, and the receiver of a message
usually reacts to the received message by performing
some computations and subsequently generates a new
message.

For the case that write access is necessary, we can
introduce another type of GEM—similar to the Read-
Only one—called Owned GEM. Such type of GEM
can be used to enable read and write access to a shared
object for a single worker at a time. In other words, the
GEM can be used to implement a mechanism of own-
ership delegation to ensure that while a worker is oper-
ating on it, no other workers can access it. This type of
GEM is implemented using only the meta API, by per-
forming a single CAS operation to acquire the owner-
ship on an object on the first access, and by registering
in the GEM-local state a pointer to the current thread
owning the GEM. The following is an example of the
meta API for property writes:

function onSet(property, value) {
i f ( t h i s.local.owner !=

Sync.currentThread())
throw "Cannot access this gem "

+ "from another thread.";
t h i s.shared[property] = value;

}

5.2 Partitioned GEMS

The ReadOnly and Owned GEMS supplement mes-
sage passing by enabling more data parallel applica-
tions on Node.js. However, they do not enable arbi-
trary “read-after-write” parallel access, and therefore
limit the class of parallel applications that they could
support. To cover more applications, the Partitioned
GEM introduced in Section 3 can be used. This GEM
can be implemented using policies and API different
from the ones discussed in Section 3. For example, the
partitioning can be either static (i. e., done at GEM cre-
ation time) or dynamic (i. e., implemented by the GEM
itself). This kind of GEM can also be used to build pro-
gramming models in the form of global partitioned ad-
dress space [18], or more generically can be used to im-
plement scatter/gather computations [16].

5.3 Atomic GEMS

While Partitioned GEMS enable safe shared-memory
parallelism, it is not always possible to define a disjoint
partitioning, so that some computations remain better
expressed by other abstractions. For these computa-
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tions, we can introduce the Atomic GEM which en-
ables concurrent read and write access to all elements
of the shared object graph. To ensure thread-safety, the
GEM provides a public API that workers must use for
concurrent accesses. Misuse of the API results in an
exception. The following is an example usage of the
GEM:

// Receive Gem from somewhere
var gem = ...; var index = 42;
// get read/write access on it
var value = gem.atomic(function() {
// --- Transaction begin
i f (gem[index] // log Gem read

== undefined) {
// Gem write: add to 'redo' log
gem[index] = new Value();

}
return gem[index]; // log Gem read
// --- Transaction end.
// --- Retry if aborted.

});
// access from outside of the
// 'atomic' block is forbidden
// and throws exception
var wrongAccess = gem[index];

The GEM provides the atomic function as its ex-
plicit API, which can be called to obtain safe access
to the shared object graph. Once called, operations
on elements of the GEM can be performed safely.
Furthermore, read or write accesses are only possible
through the atomic function. The meta API is used
by the GEM to throw an exception when a worker at-
tempts to perform a read or write operation outside of
the atomic function call. The comments in the code
correspond to the (implicit) invocations to a Software
Transactional Memory runtime (STM) that is imple-
mented to ensure atomicity for this GEM. Since the
GEM throws an exception when accessed from out-
side of the transaction, the STM implementation can
enforce strong atomicity [26], because non-transactional
code cannot access the shared object graph. STM is
only one of the possible internal implementations for
this GEM. For our evaluation we have implemented it
using the TLRW STM algorithm [21], as well as a lock-
based implementation (called Atomic-LK). The STM
implementation is based on a lightweight usage of
reader/writer locks, while the lock-based implemen-
tation is based on in-order acquisition of locks. A com-
parison of the scalability and performance of these two
approaches is out of the scope of this paper.

6. Implementation in Graal.js
The GEMS model requires a Node.js engine with mul-
tithreading support to enable multiple isolated work-
ers to allocate shared objects in a common memory

space. Since the Node.js runtime does not provide a
common memory space, as discussed in Section 2, we
based our implementation on a modified version of the
Graal.js engine [48], a fully-compliant ECMA6 imple-
mentation of Node.js running on the JVM. Being based
on the JVM, Graal.js can spawn independent workers
as Java threads, leveraging the existing Java heap as
common memory space. JavaScript workers still guar-
antee isolation however, although each JavaScript ob-
ject is allocated in the JVM heap. Implementing the
GEMS model using the V8 engine (used in Node.js)
would also be possible, but would require modifica-
tions to the garbage collector of the engine, which does
not support concurrent allocation of objects from mul-
tiple “Isolates” (using V8’s terminology).

Graal.js is a state-of-the-art JavaScript execution en-
gine based on a self-optimizing AST interpreter that is
compiled to highly optimized machine code via par-
tial evaluation of the AST nodes performed by the
Graal [48] just-in-time compiler.

We modified the Graal.js AST interpreter engine to
support GEMS’ meta API. The JSON copy of the (op-
tional) initial object graph of a GEM is implemented
using an algorithm with the semantics of JSON en-
coding and decoding.2 After the object graph has been
copied, each of the objects in the new graph that does
not correspond to a primitive value (i. e., objects and
arrays literals) is wrapped with Proxy objects [46] that
enforce the GEM meta API. This makes it possible to
ensure that all objects in a newly-created graph will be
accessed using the GEM API. As the full object graph
of the shared object is JSON-copied when a GEM is
created (and the resulting copy is private to the GEM),
it is not possible to have two object instances refer-
enced by two distinct GEMS at the moment the GEM
is created.

Compared to ECMA2016 Proxy objects, the Proxy
objects used to implement the GEM meta API have
simpler semantics. They provide only get, set, and has
traps, whereas ECMA2016 proxies feature a richer set
of traps that can be used to model other JavaScript-
specific aspects such as property enumeration and list-
ing. The reason for this design is that ECMA2016 proxy
objects can be used to model the interaction with any
JavaScript objects, whereas GEM traps model only
the interaction (i.e., reading and writing of properties)
with the GEM shared object, which has the JSON se-
mantics described above.

A second reason for choosing is that GEMS do not
need support for the rich semantics of ECMA2016

2 The object is created with a copying algorithm
that is semantically equivalent to the combined call
JSON.parse(JSON.stringify(object)) on the object to be
shared, and corresponds to the normal way objects are exchanged
between workers in Node.js.
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proxies that can be used to express complex meta-
object protocols. As an example, the ECMA2016 stan-
dard specifies that the value returned by a property get
trap should be checked against the property descrip-
tor of the object handler (if any) to ensure that the
value returned by the trap invocation is compatible
with the value specified in the object’s property de-
scriptor . Supporting such semantics for GEM objects
is not need, because GEM shared objects do not have
property descriptors, since they are raw object graphs.

The implementation of the GEMS meta API in
Graal.js is based on a common basic proxy imple-
mentation that is shared between ECMA2016 proxies
and GEMS. The implementation of ECMA2016 prox-
ies adds to it the additional needed runtime semantics,
which is not needed for GEMS. The proxy objects used
for GEMS have the following characteristics:
• Their traps never change. Once a GEM is created, it

is not possible to change its set/get traps anymore.
• The traps encode the full semantics of the meta-

object protocol that a specific GEM is implement-
ing, and no extra checks have to be performed on
other aspects of the shared object protected by the
GEM nor on the value returned after a GEM invo-
cation.
By sharing the basic proxy mechanisms, the runtime

support and optimizations by the Graal.js engine for
proxy objects can be leveraged by GEMS, too. In ad-
dition, the engine applies the following two optimiza-
tions utilizing the specific characteristics of GEMS:
• Since GEM traps for reading or setting a property

never change, they can be inlined very aggressively
for each property access operation.

• Since the traps encode the entire semantics of the
meta protocol of a GEM, no extra runtime checks
have to be performed on the values returned after
the trap execution. In other words, they can be con-
sidered like any other JavaScript function, with the
additional advantage that they are monomorphic,
as their body never changes. This enables all opti-
mizations performed by the Graal.js runtime to be
performed on GEMS as well, transparently.

Graal.js modifications. Overall, the modifications re-
quired to support GEMS in Graal.js were very local-
ized, as their design enables GEMS to benefit from
most of the optimizations that a modern JavaScript en-
gine already performs for property accesses (e. g., poly-
morphic inline caching [28]) and function calls. For
example, because the GEM traps are constant, inline
caches always cache the GEM trap function at each
property access. As a result, the Graal compiler as-
sumes most of the GEM traps to be constant for the
monomorphic case, and performs very aggressive in-
lining, thus enabling other optimizations (e.g., partial

escape analysis) for the entire compilation unit (e.g., a
function using the GEM). Such optimizations are not
specific to the GEMS model, but are required to guar-
antee the minimal run-time overhead of GEMS (cf. Sec-
tion 7). Without such optimizations, the GEMS model
would be impractical, as the overhead for accessing
object properties would be too high. Another conse-
quence of the GEMS design in combination with such
optimizations is that the impact on the compiled code
size depends almost entirely on the size of the GEM
traps: for the ideal case (i.e., when the trap function
does nothing but reading/writing a property), the ma-
chine code produced by Graal is close to the one of a
normal property lookup, since Graal can remove all the
function calls and temporary allocations. Of course, the
overhead may grow for GEMs with complex internal
logic.

Supporting the Java Memory Model. When a GEM
is accessed concurrently by two or more Node.js work-
ers, a definition of an happens-before relationship is
needed. Since our implementation is based on the
Graal.js engine—that is, a Java-based JavaScript engine—
we rely on the Java Memory Model to model the se-
mantics of concurrent accesses to the GEMS’ shared
object graph. JavaScript applications which do not use
GEMS are not affected by this design at all.

The main consequence of this design choice is that
accesses to properties of the GEM shared object with-
out synchronization have the same undefined observ-
able behavior of concurrent non-volatile accesses to
Java fields. Conversely, accessing the object graph us-
ing any synchronization primitive (e.g., incrementing
a volatile value atomically) has the same guarantees
that the same synchronization primitive would pro-
vide in a Java application. The way the JMM proper-
ties are exposed to the final JavaScript developer de-
pends on how the GEM exposes and permits accesses
to its shared graph. For GEMS providing safe access to
their shared graph, the presence of the JMM should be
completely transparent to the final user, as the GEM
should ideally prevent concurrent non-synchronized
access, and should encapsulate any synchronization
primitives without explicitly exposing them.

7. Evaluation
To evaluate the performance benefits of GEMS, we im-
plemented the GEMS discussed in Section 5 to run
on the Graal.js engine. For each GEM, we developed
benchmarks to assess their performance. For each
benchmark we also implemented an equivalent ver-
sion in pure Node.js. We report the results for each
benchmark without GEMS on Node.js and Graal.js.
Furthermore, we report the results for each benchmark
using GEMS with Graal.js. Since our GEMS imple-
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mentation is based on Graal.js, there are no numbers
for Node.js using GEMS (cf. Section 6). The benchmark
versions are executed with the same input workload,
e. g., workload generator, input data, or files.

The experiments have been run on a server-class
machine running Ubuntu 12.04 equipped with 128GB
of RAM and two 8-core Intel(R) Xeon(R) CPU E5-2680
@ 2.70GHz, which corresponds to 32 hyper-threads.
Each CPU has 2MB of L2 cache and 20MB of L3 cache.
We used Node.js version 0.12.7 and Graal.js version
0.10.38. The Web applications use the Wrk (v4.0) HTTP
workload generator. An overview of all the bench-
marks along with the GEMS they use is depicted in
Figure 8. Our main goal is to show that GEMS benefit
from the usage of shared memory. The numbers shown
correspond to average performance data obtained us-
ing the Kalibera performance evaluation methodol-
ogy [30]. Standard deviation is below 10%.

7.1 Meta API Overhead

A crucial aspect of the GEMS model is the meta API,
since an unacceptable overhead for accessing GEM
properties would nullify the benefits of shared mem-
ory. To assess the overhead of the meta API, we use
microbenchmarks to stress the onGet and onSetmeta
API. The benchmarks perform an increasing number of
read and/or write operations on a GEM. We compare
the GEM performance taking as a baseline the stan-
dard JavaScript property read and write operation, i. e.,
not using GEMS. Figure 9 summarizes the results of

Benchmark Description & GEM used for the implementation.

Ping One-to-one message latency (Owned GEM).

Ring One-to-many data distribution (Owned GEM).

Multicast One-to-many throughput (ReadOnly GEM)

Dispatch One-to-one message latency (ReadOnly GEM).

Access GEM access performance (ReadOnly GEM).

Scale-Up Stateless HTTP requests serving with internal communica-
tion between workers (ReadOnly GEM).

Immutable HTTP requests serving with shared (GEM) or replicated
(Node.js) immutable data (ReadOnly GEM).

Cache HTTP requests serving with high read contention on shared
consistent data (Atomic-STM GEM).

Wordcount Parallel calculation of the distribution of words in a data
structure (ReadOnly & Partitioned GEMS).

Grep Parallel scraping of a pattern in a sequence of tokens (Read-
Only & Atomic-LK GEMS).

SHA A parallel calculation of the SHA of a big document
(Partitioned-dyn GEM).

Crc32 A parallel calculation of a CRC code (ReadOnly & Parti-
tioned GEM).

Primes Parallel primes number calculator (Partitioned GEM).

Mandelbrot Parallel Mandelbrot set calculation. (ReadOnly & Parti-
tioned GEM).

Figure 8: Overview of the benchmarks used in Sec-
tion 7.
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Figure 9: Micro-benchmarks measuring the impact of
the meta API on the performance of property accesses

the experiments reporting the slowdown with respect
to the baseline (higher is better).

As the graphs show, reading or writing from a GEM
property using the meta API (i. e., GEM) has limited
slowdown compared to the pure JavaScript operation
(i. e., Direct property access). The overhead (less than
30% on average, see last column) makes it possible
to use GEMS as a drop-in replacement of send-by-copy
messages, as we will show in the rest of our eval-
uation. The optimizations performed by the Graal.js
engine are essential to make the approach practical.
To assess the impact of such optimizations, we have
disabled inlining and polymorphic inline caching for
the microbenchmarks. When all optimizations are dis-
abled (i. e., GEM no-opt) accessing a GEM is one order
of magnitude slower than accessing a normal object.
Such overhead would of course make the GEM model
less attractive as it would limit the type of applications
where GEMS can used.

7.2 Message Passing Using GEMS

GEMS can be used in common message-passing ap-
plications as a replacement for messages when shared
memory is available. For example, ReadOnly GEMS
can be used to implement multicast (i. e., one-to-many)
operations, while Owned GEMS can be used to send
data from one worker to another via ownership trans-
fer.

We developed a selection of benchmarks inspired
by common Actor benchmarks [29] used to measure
the communication overhead of workers-like systems.
Each benchmark consists of some workers sending
some objects for a fixed number of times to other work-
ers. All the benchmarks transfer objects between mul-
tiple workers. The first four benchmarks in Figure 10
receive the object and send it back to the sender or to
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other workers. Each benchmark differs in the commu-
nication topology and the type of GEM used:
• Ping is a benchmark where two workers exchange

an object for a fixed number of times (2 ∗ 103). The
performance is measured for objects with an in-
creasing size, and the performance of plain Node.js
is compared against an implementation using a
transferable GEM.

• Ring is a benchmark where a “master” worker ex-
changes an object with four parallel workers. The
master worker acts as a proxy, and sends the ob-
ject to each worker sequentially, that is, it waits for a
worker to have received the object before sending a
message to the worker in the ring. The operation is
repeated for a fixed number of iterations (1.6 ∗ 103),
whith an increasing object size. A transferable GEM
is used in the GEM-based implementation of the
benchmark.

• Multicast is a benchmark where a “master” worker
sends an object to four workers in parallel, i.e., with-
out waiting for each worker’s reply. The multicast
operation is repeated for a fixed number of itera-
tions (103), and a readonly GEM is used so to share
the same object with all the workers.

• Dispatch is a benchmark where five workers ex-
change messages based on the message content.
Each worker generates a message and sends it to
a random receiver. After received, the worker re-
sends the message to another random worker. The
operation is repeated for a fixed number of mes-
sages (2.5 ∗ 104), and a readonly GEM is used for
messages.

• Access is a benchmark where two workers exchange
an object of fixed size (). After the object is received,
the worker reads some of its properties before re-
plying. A readonly GEM is used, and the operation
is repeated for a fixed number of iterations (2 ∗ 102).
The size of the object exchanged between workers
is constant, while the number of properties read in-
creases between executions.
We compare GEM-based executions against their

equivalent implementations with Graal.js and pure
Node.js.

As Figure 10 shows, both Node.js’ and Graal.js’ per-
formance degrade as the size of the object transferred
between workers grows. This is expected, and is due
to the cost of transferring data between the memory
spaces of the workers. Using GEMS, the size of the ob-
jects transferred does not affect the performance of the
benchmarks. This result confirms that GEMS can be a
valid alternative to standard messages.

The last benchmark (Access) is similar to the first
one (Ping), but the object exchanged between workers
has a fixed size (104 bytes). Instead of the object size,

the benchmarks changes in the number of elements
that each worker reads from the incoming message. In
this case, the performance of the GEM-based imple-
mentation are still better than the ones of Graal.js, but
the number of operations performed on the GEM af-
fects the overall performance of the application. This is
expected, and shows that GEMS can reduce the com-
munication overhead even when the entire message is
used by the receiver. This also suggests that ReadOnly
and Owned GEMS are particularly useful when a re-
ceiver worker does not need the entire message, but
only a fraction of it.

7.3 Node.js Applications

One common usage of workers in Node.js applica-
tions is to scale-up Web services. In such applications,
workers accept incoming requests (from independent
clients) in parallel, perform some computation, and
reply. Recently, the so-called Microservices [47] archi-
tecture has popularized the usage of workers in this
way. When the service requires some notion of state,
the share-nothing model of workers requires devel-
opers to use external services such as Memcached [1]
or Redis [2] to share data between workers. Such ser-
vices offer distributed storage and failure tolerance,
but are often used merely to enable temporary shared
state within a single multicore machine. This usage has
become so common that services such as Redis pro-
vide synchronization (e. g., using locks) and atomicity
(using a form of software transactions) on the shared
memory they expose to workers. Such approach, how-
ever, comes at the cost of increased service latency, as
it requires each worker to access an object cached in
the memory space of the external service, to transfer
it into its memory space (usually using TCP connec-
tions) and to re-materialized it into its heap space be-
fore generating the reply for a client. When such cost is
not acceptable (e.g., for latency-bound services) work-
ers avoid using external caching systems, and rely on
per-process local caching systems (e.g., TTL ). Using
such a solution, each worker has its private cache, and
the web service trades performance (latency) for mem-
ory consumption.

GEMS can be used in such applications to avoid us-
ing external services when they can be replaced with
shared memory, avoiding at the same time the cost of
replicating the cached data into each worker’s mem-
ory space. In the third part of our evaluation we fo-
cus on three types of Web applications that rely on
some notion of application-level state, namely state-
less, immutable, and caching. We developed a Web ap-
plication using GEMS for each type, and we compared
them against an equivalent Node.js implementation.
Results are depicted in Figure 11:
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• In the first application (Scale up), workers do not
share any local state, and interact with each other
to generate the user response. This scenario is com-
mon in the Microservices architecture, where some
worker-private state is combined to generate some
application-level state to process a client request.
The application requires the interaction of two dis-
tinct workers for each client request: once a re-
quest arrives, it is received and then forwarded
to a background worker for processing. By decou-
pling workers that accept incoming requests from
the ones that perform the computation, multiple
requests can be accepted in parallel. Using GEMS
to implement the messaging between workers, the
application performs considerably better. This is ex-
pected, and is due to the reduced overhead of data
transfer.

• In the second application (immutable), workers
own an immutable data structure (e. g., a registry
of immutable user data) that they use to generate
the client response. The application involves one
worker per request and demonstrates the benefits of
sharing data instead of replicating it. Each worker
owns a private copy of a replicated in-memory data
structure which is used to generate the response.
In this case the Node.js and the GEM applications
scale identically. However, each Node.js worker has
a replicated copy of the data structure, resulting in
a larger memory footprint, while the version with
GEMS shares a single copy directly. For big im-
mutable data structures, the memory saving can be
highly beneficial.

• In the third application (cache), workers access
and modify an in-memory cache. The cache is mostly
read, and less frequently modified. The applica-
tion (cache) uses Node.js and Memcached to im-

plement an in-memory data structure, and is com-
pared against a GEM-based implementation us-
ing an Atomic-STM GEM to perform the concur-
rent update. Since most of the requests to the cache
are cache hits, the transactional memory performs
mostly read-only transactions. For this reason, the
performance of the service are comparable to the
ones of Memcached, as expected. The scalability
curve is however different, as the service achieves
its best throughput at 16 threads. This can be ex-
plained by observing that the machine used for the
experiments has 16 physical cores. When hyper-
threading is used (i. e., at 32 threads), the synchro-
nization required by the STM runtime degrades the
performance of the service. In absolute terms, how-
ever, GEMS can achieve comparable performance,
without the additional architectural complexity of
having to deploy two systems, and program against
the external Memcached API.

7.4 Parallel Programming

GEMS can also be used to write parallel computing ap-
plications. To highlight the benefits of shared memory,
we developed a selection of common data-intensive
and CPU-intensive benchmarks using GEMS, and
we compared them against their pure message-based
equivalents in Node.js. Results are depicted in Fig-
ure 12. The first two benchmarks (Wordcount and
Grep) are data-intensive, while the latter are more
CPU-intensive:
• Wordcount and Grep are benchmarks that read from

a shared file system some data and process it to ei-
ther compute some word distribution or to seach for
some keywords. Both benchmarks require exchang-
ing a relevant amount of data (i.e., the files) between

2nd submission to OOPSLA’16 14 2016/7/18



0 10 20 30

0

5,000

10,000

15,000

Threads/Processes (#)

Th
ro

ug
hp

ut
(R

eq
/s

)

Scale-up

0

100

200

300

Latency
(m

s)

Max Throughput

6
.8

1
5
.4

(At peak)

1
0
4
x

R
eq/sec

0 10 20 30

0

5,000

10,000

Threads/Processes (#)

Th
ro

ug
hp

ut
(R

eq
/s

)

Cache

0

100

200

300

Latency
(m

s)

Max Throughput

7
.6 8
.1

(At peak)

1
0
4
x

R
eq/sec

0 10 20 30

0

5,000

10,000

15,000

Threads/Processes (#)

Th
ro

ug
hp

ut
(R

eq
/s

)

Node.js Throughput

GEM Throughput

Immutable

0

1,000

2,000

3,000

4,000

Latency
(m

s)

Node.js Latency

GEM Latency

Max Throughput

1
5
.8

1
5
.7

(At peak)

1
0
4
x

R
eq/sec

Node.js

GEM

Figure 11: Web services benchmarks. Latency and
throughput of pure Node.js applications compared
against their equivalent GEM-based implementation.
Node.js’s scalability and peak performance are compa-
rable with the ones of GEMS, which do not need data
replication or external services.

workers, with a considerable impact on the overall
application performance.

• The remaining benchmarks are benchmarks that
perform some computations based on an input data
structure. Primes scans a list of random numbers
counting the number of prime numbers in it; Man-
delbrot computes the mandelbrot set from a matrix,
Sha and Crc encode a long sequence of characters.
In a pure message-based implementation each ap-
plication can be implemented using some notion
of workload distribution (e.g., scatter/gather or
MapReduce [19]). For some applications the cost
of transfering data can have an impact on the over-
all computation. By using GEMS, most of the data-
transfer-related overheads can be reduced.
As the figure shows, using GEMS for data-intensive

computations improves the performance of the appli-
cation. Note that the impact of GEMS is more evi-
dent when a limited number of cores is used. This is

because with a small number of workers the size of
the messages to be exchanged increases, and so does
the overhead for sending data to workers. This re-
sult suggests that implementing such applications us-
ing Node.js is only reasonable as long as communi-
cation is not the bottleneck. Conversely, applications
using GEMS are not affected by this phenomena, as
the size of the message does not matter for the perfor-
mance of the application. Considering CPU-intensive
applications, Node.js and GEMS scale similarly, since
data transfer is not a bottleneck for most of the appli-
cations. Nevertheless, the two implementations have
a very different programming model, as using GEMS
enables direct access to data, therefore resulting in a
more compact definition of the algorithms.

8. Related Work
GEMS and Object Capabilities The concepts of ob-
ject capabilities originates from work of Dennis and
Van Horn [20] and since then has been used in vari-
ous ways in the context of programming models [39].
Some researchers have tried to define a set of useful
capabilities for concurrent programming [12, 22]. A
relevant example is the Pony [14] language, which fea-
tures a type system that automatically enforces read or
write access to shared objects between actors. Pony is
itself inspired by the design of E [43]’s programming
model, and shares some similarities with ownership-
based models [11]. In contrast to such approaches, our
technique works with an existing dynamically-typed
language, and does not require any type system to
enforce access rights to shared state. Moreover, the
GEM model is more customizable than the one of lan-
guages such as Pony, as it allows GEM developers to
implement complex sharing strategies that can rely on
runtime informations only, e. g.to introduce temporary
access rights (i. e.temporary ownership), as with the
transferable GEM we have described.

Parallelism for JavaScript In the JavaScript ecosys-
tem, related work includes WebWorkers [4], Cluster [8]
and RiverTrail [27], which have been detailed in pre-
vious sections. RiverTrail has the notion of Temporal
Immutability [38]. We chose a stricter notion, because
GEMS are not necessarily read-only and thus, River-
Trail’s immutability approach is too restrictive. A pro-
posal for so-called SharedArrayBuffer introduces
a new typed data structure that can be shared between
workers [9]. It introduces a raw binary buffer shared
between workers, and could be implemented using a
GEM, too. To our knowledge, other Node.js modules
for parallel programming rely on share nothing paral-
lelism or use external services to enable shared state
such as Memcached [1].
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Figure 12: Parallel applications. The Score is the inverse
of Execution time (1/t). The score of Node.js appli-
cations is affected by the size of the messages, while
GEM-based applications are not. In data-intensive
benchmarks such as Grep the speedup of GEM-based
applications over Graal.js is significant when few
workers are used.

Shared Memory Approaches for Non-shared Memory
Systems Going beyond JavaScript, other program-
ming models for sharing state between isolated entities

such as workers have been proposed [17, 41]. These ap-
proaches share with GEMS the goal of enabling shared
state, but focus on specific use cases. GEMS however
are a generic abstraction, which can potentially be used
to implement such approaches. GEMS’s meta API
builds on the notion of Proxy [46] and metaobject pro-
tocols [32]. Unlike existing approaches, the meta API
in GEMS is used to coordinate the access between mul-
tiple workers. Moreover, it works in combination with
the notion of JSON copy previously introduced, and
has access to the GEM-private Sync module for the
implementation of concurrency control mechanisms.
JavaScript itself supports proxies in the ECMA6 stan-
dard [6]. However, these proxies cannot be shared be-
tween workers and therefore cannot be used to imple-
ment a GEM.

Shared Memory Programming Models The GEMS
and their parallel programming models in this pa-
per are inspired by models from other languages and
frameworks. Delegation-based isolation, for example,
is supported in different forms in actor-based mod-
els [36]. Partitioning is also available in several mod-
els, e. g., all models based on partitioned global ad-
dress space [18]. We do not claim novelty for the pro-
gramming models enabled by GEMS, but we consider
GEMS an innovation that enables the implementation
of such programming models in shared-nothing envi-
ronments. Furthermore, we see them as a mechanism
that can be used to introduce sharing in a safe way and
with very fine-grained control.

Approaches to introduce disciplined shared mem-
ory have a long tradition. One example are hyper-
objects as introduced by Cilk++ [25]. They are pro-
gramming abstractions that provide shared-memory
between threads with a specific set of properties de-
pending on the concrete hyperobjects, which is an ap-
proach similar to GEMS. Other models have attempted
to combine shared memory and message-based mod-
els [17, 31]. In contrast to these approaches, GEMS do
not force the adoption of a single specific model, and
could be used to combine other models in higher-level
structured forms (e. g., in the form of Skeletons [15]).

The zero-copy transfer mechanism used for some
GEMs (i. e., Owned GEMs) closely resembles zero-
copy ownership-transfer, which is present in existing
MPI frameworks, as the Ownership Transfer Interface
library from Friedley et al. [24], or SOTER from Negara
et al. [40]. The idea of ownership passing derives from
previous systems, such as distributed shared memory
(DSM) systems [42] and early cache coherence proto-
cols [23]. An additional example of a system provid-
ing an extension for ownership passing is represented
by the Generic Message Passing Framework [33, 34],
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which comprehends a message passing interface for
C++, .

9. Conclusion
In this paper we introduce Generic Messages (GEMS),
a new abstraction to enable parallel programming in
the context of WebWorkers-like models. GEMS are a
generic form of messages that can be shared between
workers to enable several forms of parallel program-
ming models that rely or benefit from shared mem-
ory. Our evaluation shows that GEMS have a perfor-
mance advantage for Node.js applications. The advan-
tage comes from using shared memory to share state
between workers in a thread-safe way.

In future work, we will investigate novel GEMS,
with a special focus on high-level programming mod-
els for typical Node.js cloud deployments. Moreover,
the GEMS model is applicable beyond Node.js, and we
are investigating its application in other languages or
language implementations with shared-nothing paral-
lelism models. In doing so, the main open question
is how to extend the GEMS model in order to sup-
port languages with semantics different from the one
of Node.js.
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