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Abstract: Determination of the diagnosis thresholds is crucial for the fault diagnosis of industry 

assets. Rotor machines under different working conditions are especially challenging because of the 

dynamic torque and speed. In this paper, an advanced machine learning based signal-processing 

innovation termed the multivariate state estimation technique is proposed to improve the accuracy 

of the diagnosis thresholds. A novel preprocessing technique called vibration resonance spectrom-

etry is also applied to achieve a low computation cost capability for real-time condition monitoring. 

The monitoring system that utilizes the above methods is then applied for prognostics of a fan model 

as an example. Different levels of radial unbalance were added on the fan and tested, and then com-

pared with the health state. The results show that the proposed methodology can detect the unbal-

ance with a good accuracy and low computation cost. The proposed methodology can be applied 

for complex engineering assets for better predictive monitoring that could be processed with on-

premise edge devices, or eventually a cloud platform due to its capacity for loss-less dimension 

reduction. 
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1. Introduction 

Historically, accelerometers (vibration sensors) have been used for decades to detect 

problems in assets in many types of industrial problems that result in higher vibration 

levels, which can be precursors to failure [1–6]. Perhaps the greatest challenge for conven-

tional vibrational surveillance of assets is the inherent “seesaw” effect between the sensi-

tivity for catching incipient degradation mechanisms and their false alarms. This is a con-

sequence of placing thresholds limits on the power spectral density (PSD) peak amplitude 

[7–10]. Monitoring system designers usually lower the thresholds to obtain a higher sen-

sitivity for earlier warnings of the developing degradation mode. However, with variable 

performance assets, and especially with variability in ambient vibration levels, lowering 

these thresholds results in spurious alarms that have no significance at all. In most indus-

tries, false alarms from spurious trips of these thresholds are extremely costly, as the false 

alarms result in taking assets out of service unnecessarily. As a result, designers raise the 

alarm thresholds on peak responses. Consequently, if there is a new degradation mode, 

the degradation is usually severely underway, or the machine is dead before any alarm 

can be issued [11,12]. 

Current research on the rotor unbalance for the contact and non-contact measure-

ment methods are as follows, Ewert et al. studied the difference between classical spec-

trum analysis and the higher-order bispectrum method for the permanent magnet syn-

chronous motor [13]. Gangsar et al. used the support vector machine method to detect 

rotor unbalance [14]. Rahman et al. proposed an unbalance detection method based on 
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online condition monitoring using the discrete wavelet transform [15]. Puerto et al. pro-

posed a novel methodology for non-intrusive mechanical unbalance monitoring [16]. Fur-

thermore, there  have also been the development of several vibration signal analysis 

methods using non-contact measurements [17–19]. However, all the aforementioned 

methods lack the investigation of the thresholds for the detection of rotor unbalance. 

Thresholds on vibration amplitudes are most appropriate for machines that have a 

constant load and run at a fixed speed for the life of the system, and for constant-load 

machines that happen to be in an environment with a stationary ambient vibration level 

(i.e., containing no other vibrating components that could provide a variable ambient vi-

bration level). However, fixed workload components that run at fixed RPMs for life and 

are not mechanically coupled to any other components that add to the ambient vibration 

background are exceedingly rare. For rotating machinery with dynamic workloads, vari-

able-speed performances, and mounting into structures containing other dynamically var-

ying vibration sources, thresholds on gross vibrational amplitudes are very inefficient for 

detecting the early onset of degradation. These inefficiencies are a consequence of the 

threshold boundaries. Threshold alarm boundaries need to be set higher than the highest 

peak for the component at its highest load and the highest RPM setting when the ambient 

vibration levels are at their highest. This significantly lowers the “early warning” potential 

for prognostics, as thresholds on vibration amplitudes can be very inefficient when the 

components are not operating at peak load/performance conditions. 

One solution to the threshold inefficiencies is to introduce a machine learning (ML) 

model for monitoring the vibration signals. A simple univariate model could be used, but 

multivariate models are significantly more accurate. However, vibration signals are gen-

erally univariate. A secondary hindrance is that vibration measurements are inherently of 

a high frequency, with sample rates for the vibrations being in the kHz range. The glut of 

data generated by these sensors quickly becomes unmanageable for storage, which makes 

vibration-based monitoring untenable [12,20–22]. Thus, vibration resonance spectrometry 

(VRS) has been proposed to process the data for the loss-less dimension reduction of the 

signals and produce a multivariate dataset from one vibration sensor that can be con-

sumed by a ML model. 

The VRS transforms a single univariate vibration or acoustic signal into 20 correlated 

time series signals that are predictive of an asset’s unique operational frequency signature. 

First, during the measurement phase, a deterministic periodic loading pattern, which co-

vers the entire range of the asset operation, is introduced to excite the appropriate system 

dynamics in the frequency domain. The second stage is a preprocessing algorithm which 

is composed of several substages whereby vibration/acoustic measurements are manipu-

lated with a frequency-domain to time-domain to frequency-domain double transfor-

mation. The double transformation ostensibly reduces the dimension of the data without 

causing a loss in prognostic information. In the final stage, the output from VRS is in-

putted into a ML algorithm, thereby generating a model for the subsequent monitoring of 

new measurements. ML monitoring informs condition-based decisions regarding the 

state of the mechanical, electromechanical, or thermal-hydraulic system. The ML algo-

rithm is integrated into the multivariate state estimation technique (MSET), which is de-

fined as a nonlinear regression-based technique. It is best suited for anomaly detection in 

time series data. It has been widely adopted in many business-critical industries for over 

20 years. It has been redeveloped in recent years to make it scalable to large collections of 

telemetry sensors for big prognostic use cases. There are several reasons for such a wide-

spread adoption. First, the MSET has significant advantages regarding their great accu-

racy and low false alarm and missed alarm rates. They are crucial especially in the field of 

anomaly detection, with false alarms leading to unnecessary asset shutdowns and missed 

alarms leading to catastrophic failures, both of which are very costly. Furthermore, the 

overhead compute cost of the MSET is much lower compared to the other prognostic al-

gorithms such as neural networks and support vector machines due to its deterministic 
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mathematical model, and this is important for streaming prognostics which involves tens 

of thousands of sensors [10,20,23–26]. 

In this paper, a multivariate state estimation technique and vibration resonance spec-

trometry have been proposed to improve the accuracy of diagnosis thresholds. Firstly, the 

specifics of the VRS methodology along with several design choices and algorithmic struc-

tures are presented. Then, the process with the ML monitoring of telemetry with MSET 

are discussed. Next, the experimental setup and the parameter settings of the unbalanced 

fans are introduced, and different levels of radial unbalance were added on the fan and 

assessed. Finally, the results show that the proposed methodology can detect the unbal-

ance with a good accuracy and low computation cost. 

2. Detection Methodology 

2.1. Principals of the Method 

When VRS is combined with other auxiliary-supporting computational agents, it is 

capable of robust prognostics for all types of mechanical, electromechanical, and thermal-

hydraulic flow systems. The algorithm autonomously discriminates the multi-bin opera-

tion frequency signatures for the predictive-based health monitoring of an asset. Predi-

cated on solving two major hindrances to vibration predictive monitoring, being the high-

frequency sample rates, and low sensitivity to subtle degradation, the algorithm solves 

these inadequacies in a multi-stage analytical framework. 

First, during the measurement phase, a deterministic oscillatory loading pattern that 

covers the entire range of the asset operation is introduced to excite the appropriate sys-

tem dynamics in the frequency domain. The second stage is a preprocessing algorithm 

and is the cornerstone of VRS. The second stage is composed of several substages whereby 

the accelerometer measurements are manipulated with a frequency-domain to time-do-

main to frequency-domain double transformation. The double transformation ostensibly 

reduces the dimension of the data without causing a loss in prognostic information. In the 

final stage, the time series from VRS are inputted into a ML algorithm, leading to the gen-

eration of a model for the subsequent monitoring of new measurements. ML monitoring 

informs predictive-based decisions regarding the state of the mechanical, electromechan-

ical, or thermal-hydraulic systems. 

2.2. Vibration Measurement Training Regimen 

Utilizing ML to monitor an asset requires the training data to encompass the entire 

range of the system operation. For example, if the training data for monitoring a car only 

contains city driving measurements, the model will generate alarms if the car were to 

begin highway driving. Additionally, it is common for mechanical assets to operate in a 

small subset of the spectrum of operation for long periods. To continue with the car as an 

example, if it operates mostly in the city, its driving will be on the streets, oscillating be-

tween idle and approximately 40 miles per hour, with either short spurts of regular free-

way driving or long-range driving on the freeway, but infrequently. In the first scenario, 

it will take a long time to log enough freeway training data to generate reliable predictions. 

In the second scenario, one long trip may provide enough freeway measurements for a 

valid training set, but with much less opportunities to do so. Furthermore, most drivers 

never reach a peak or maximum performance in a car regardless how long and how often 

the car has been driven. Therefore, it is necessary to incite the entire operational range 

during the initial stage of measurements to guarantee sufficient training data to generate 

a reliable model. 

Another concern that is specific to vibration measurements is the magnitude of the 

stochastic noise measurement. Tracking vibration modes requires a high resolution and 

dense sampling to capture the true dynamics of the system, which are otherwise opaque, 

allowing for more opportunities for obtaining noisy measurements. Noise can also stem 

from how the vibration of a system is being measured, as vibrations are usually tracked 
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globally and not through individual components in the system. Tracking global measure-

ments as opposed to individual components of the system are generally more pragmatic, 

since storing and processing data from the individual components in a system are prohib-

itively expensive, or access to all the components may not be feasible. Moreover, global 

measurements track multiple components in parallel, and the emergent behavior of the 

system is more indicative of reality. Unfortunately, tracking system behavior generates 

noisy measurements as it is composed of multiple components that vibrate and resonate 

with their own unique frequencies. 

To mitigate noise and guarantee adequate training data, the monitored asset runs 

through a short deterministic periodic loading pattern for a nominal amount of time. The 

workload must cycle through all known and valid operational states of the system. The 

pattern can be sophisticated if the asset has a programmable workload capability or can 

be extremely simple as toggling on/off, or idle/max several times in a “training” window. 

The technique is also indifferent to the shape of the periodic workload wave. The pattern 

can be sinusoidal in nature, saw tooth, or a square wave if the pattern is repeated. This 

training measurement regime ensures full operational classification and aids in processing 

downstream. The periodic pattern makes the asset operational signature more easily iden-

tifiable in the frequency domain, thereby bypassing noise that may have been overshad-

owing the representative frequencies of the system. The additional benefits to the deter-

minism in the workload will be discussed in later sections. 

2.3. VRS Preprocessing 

The approach for the vibration analysis introduced in this study is composed of a 

frequency-domain to time-domain to frequency-domain double transformation, resulting 

in an optimal set of a finite number of narrow-band frequency bins. This creates a set of 

time series signals. The bins are sampled at a rate which matches the other sensor telem-

etry for the assets under surveillance, e.g., once every 2 or 5 s. Ideally, the fastest sampling 

rate for the other telemetry metrics (e.g., temperatures, voltages, currents, RPMs, etc.) is 

selected to sample the narrow-band frequency bin time series, thereby instituting real-

time vibration monitoring. The bins are then averaged and ranked, resulting in a set of 

time series which are subsequently consumed by a machine learning algorithm, along 

with additional telemetry, to monitor the condition of rotating machinery and other me-

chanical systems. 

2.3.1. Frequency Transformation 

Once the raw measurements are recorded, there is an initial transformation into the 

frequency domain using a fast Fourier transform (FFT) and the PSD is calculated. The 

window or sample size for the FFT is determined by the fastest sample rate of the remain-

ing telemetry monitoring in any given mechanical system, and this is the first stage in 

dimension reduction. The results are a set of time series that records the change in fre-

quency across the entire frequency spectrum, up to the Nyquist frequency. While there 

are some distinctly excited frequencies that are representative of the operating frequency 

of the system, they lie in narrow bands of the entire sample spectrum. To isolate the oper-

ational signature narrow bands of frequencies are either grouped, or “binned,” and un-

dergo a process for reducing noise within each group and ranking. 

2.3.2. Frequency Binning 

When a wide frequency spectrum is sampled, there will be unexcited frequencies that 

are essentially noise. To identify the more representative frequencies we split the fre-

quency spectrum into several frequency bins. Subsequently, a technique to generate a time 

series signal that is a highly correlated average of the frequencies in the bin is applied. 

This not only reduces the problem size, but also gets rid of the noisy behavior in general. 

The process narrows the broad frequency spectrum and isolates the germane frequencies 
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by “binning” the frequencies across the linearly spaced ranges, and then finds the most 

representative time series in the narrow band frequency bins by averaging the most highly 

correlated signals in the bin. 

The first step is to decide the number of frequency bins to use for subdividing the 

spectrum. The total number of bins should be small enough to reduce the size of the spec-

trum data. In addition, the number of frequencies in each bin needs to be large enough to 

have a statistically significant sample guaranteeing the average time series comprises 

more than one frequency. The number of total bins in this study has been empirically 

determined to be 100 through previous work [27]. The value can either be reduced or in-

creased depending on the context, but 100 has been found to be at the optimal intersection 

between the dimension reduction and the robust frequency characterization of an asset. 

The number of frequencies in each bin will also influence these results. If each bin is 

of equal length, it is likely that a portion of the spectrum that is either minimally active or 

superfluous will be weighted too highly downstream. To account for the inequity in the 

measured spectrum, a weighting system is applied based on the root mean square (RMS) 

to determine the overall energy in each portion of the spectrum: 

𝑅𝑀𝑆 = √
𝐴0

2

2
+ ∑ 𝐴𝑖

2
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where 𝐴 is the discrete fast Fourier transform (DFFT) of the vibration signal. The seg-

ments of the spectrum with more energy have smaller bin sizes which proportionally in-

creases the number of bins in that range. After grouping many of the bins are just random 

noise, while the most correlated prominently respond to the deterministic load sources. 

For some bins, a simple average over the frequencies in the bin will filter out the random 

noise yielding a signal with a greater signal-to-noise ratio as the random noise signals 

negate each other. To illustrate the motivations behind the correlation ranking average, 

an example of 100 frequency bins is displayed in Figure 1. Unfortunately, most bins are a 

mixture of noisy measurements, which are unresponsive to the load activity, and the sim-

ple average can result in a signal with less range (black). Instead, a subset of signals inside 

the frequency bin with the best inter-correlations are averaged, further filtering out the 

noise, yielding a high noise ratio signal (green), and revealing the dynamic pattern of the 

workload. 

 

Figure 1. The example frequency bin consists of the fine grain frequency measurements between 

two frequency ranges in the spectrum. 

The algorithm structure is presented in Figure 2 to facilitate the explication of the 

process. All the signals in the bin go through a correlation matrix assessment, and the 

correlation coefficients are summed over the signals and sorted from the lowest to the 
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highest. Then, the signals corresponding to the top one percentile are selected and aver-

aged, yielding a single time series signal for that frequency bin. The percentile is utilized 

as the threshold instead of the correlation coefficient; therefore, this approach is adaptive 

and can be applied to any size frequency bin with any SNR distributions. 

 

Figure 2. Flowchart of the frequency-binning characterization approach. 

The 99th percentile was chosen as the “threshold” to sort out the best frequencies as 

it captures the signal dynamic range, but also retains more than one frequency signal per 

bin. Figure 3 shows a sensitivity test with different percentile thresholds and their result-

ing averages. It was found that between the 90th and 99th percentiles, there was a signifi-

cant improvement in terms of a greater dynamic range and clearer shape of the periodic 

workload, but this was found to not increase the likelihood of the too few available fre-

quencies guaranteed by the lower thresholds. 

 

Figure 3. The comparison of an optimal frequency response of a given frequency bin with different 

percentile thresholds. 
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2.3.3. Frequency Identification 

After the binning step, a sorting process is conducted to further reduce the problem 

size by discarding the frequency bins that are least representative of the operational fre-

quencies of the system. The signals with the strongest frequency components in the spec-

trogram are chosen while the remainder are ignored. This step is greatly enhanced by the 

deterministic loading pattern. To determine the strongest frequency components, the re-

sultant 100 time series from the binning step are transformed into the frequency domain 

again. The bins are sorted by the magnitude of the PSD. After the sorting, the number of 

bins that are discarded is dependent on the sensitivity requirements of the system. In this 

study, the top 20% of the discrete frequency bins were recommended for selection based 

on the height of the peak in the frequency domain. This was empirically determined to be 

the most representative of the frequency behavior of most assets. The algorithm by which 

the bins are sorted is presented in Figure 4 below. 

 

Figure 4. Flowchart detailing the frequency identifier algorithm. 

Without the deterministic workload, the ranking process becomes much more am-

biguous due to several factors that can influence the ranking. For example, a trend can be 

introduced into the time domain caused by an exogenous or stochastic process that does 

not directly influence the system. If this occurs, the affected bin, when converted into the 

frequency domain with a limited sample, will have a large PSD peak near 0 Hz. The reason 

for the large peaks is that the low frequency will generate a large Fourier coefficient. The 

magnitude of the low frequency can overshadow the remaining PSD peaks resulting in a 

high-ranking bin that is not representative of the operational signature of the system. An-

other source of ambiguity is the variation in excited frequencies which can be dependent 

on the operational state during the instance of measurements. This variation can also re-

sult in formation of outlier frequencies with a large PSD peak, resulting in an inconsistent 

sorting. 

When the deterministic periodic workload is introduced into the training measure-

ments, the precision of the sorting increases by utilizing the known frequency for ranking. 

For example, if the workload is programed with a cycle period of 1 min, the frequencies 
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that are most relevant to the operational signature of the system will be excited by the 

workload, thereby generating a dominant peak at 1 min in the frequency domain and all 

other peaks can be ignored during sorting. The loading pattern also introduces con-

sistency into the measurements and the operation of the system, which thereby reduces 

noise as a result. Finally, as aforementioned, the periodic workload should cover the entire 

range of normal operation. All these properties lead to the consistent frequency identifi-

cation for a system unless the condition of the system has degraded. 

3. MSET ML-Based Monitoring 

The MSET has two primary phases: training and inferencing. The model is trained 

with the operating-frequency-data from a system. Here the system does not have to be a 

brand new asset, but an asset that is certified to have no degradation, and the MSET esti-

mates are subsequently produced with this model. After that, the pairwise residuals be-

tween the MSET estimates and the actual values are computed and sent to an anomaly 

detection module called the sequential probability ratio test (SPRT) [24–26]. The SPRT 

performs two statistical hypothesis tests, whereby the mean and variance shift between 

the reference distribution and the degraded distribution are quantified to identify the 

anomalies. The SPRT allows the users to specify both the false alarm rate and missed 

alarm rate, which thereby avoids the conventional trade-offs between the low false alarm 

rate and low missed alarm rate. 

3.1. Training 

The training for the MSET is composed of measurements taken from a healthy sys-

tem. These measurements consist of highly correlated features from a mechanical system, 

such as RPMs, voltages, and currents. In this study, the training consists of 20 frequencies 

that were identified during a period of healthy operation. In the field, these 20 frequencies 

would be included with the remaining telemetry in the model for more accurate and pre-

cise condition monitoring. However, for laboratory experiments, ML would be trained 

solely on the healthy operational signature. 

3.2. Monitoring 

During the monitoring phase, the measurements will be continued after the system 

has been altered. The alteration in this case would be several radial imbalances that grad-

ually increase in severity. The frequency bins that are monitored for the imbalanced meas-

urements are identical to the 20 bins determined during the binning and sorting phase 

while the system is healthy. The motivation for doing so is that a shift in the operational 

frequency often occurs when there is a damage in the system. For example, if a gear tooth 

in a gearbox chips, the motor power and the RPM will likely increase to compensate for 

the damage, resulting in higher frequency vibrations [28]. The frequency behavior of the 

healthy state will be the most indicative of normality. 

4. Experimental Setup 

The experimental testing was performed on a 3D-printed fan that is a proxy for a 

mechanical impellor blade in a motor or rotary machinery. There were two unique impel-

lor states: healthy and damaged. The healthy state of the impellor was a fan that was uni-

formly balanced. A few holes were designed to be in the circumferential direction. A small 

mass can be inserted into the hole thereby introducing an imbalance to the fan. To obtain 

the measurements, a tri-axial accelerometer (PCB TLD333B30) and a microphone (PCB 

378B02) were utilized, which have a good sensitivity deviation in complex measurement 

environments. The calibration sensitivity of the accelerometers was 103.3 mV/g. We also 

used the sound level calibrator (B&K 4231) to calibrate the microphone sensor. The accel-

erometer was placed onto the impellor mount. and the microphone was placed in front of 

the impellor. The entire experimental setup was placed in a whisper room to avoid 
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environmental noise that could influence the microphone measurements. The vibration 

and acoustic time series signals were recorded, and the experiment was repeated 4 sepa-

rate times for each state. 

The entire unbalanced fan assembly is depicted in Figure 5. During the measurement, 

the fan speed was a periodical workload, which ramped up and down from 20% to 50% 

of the nominal speed (3000 rpm), respectively. The tri-accelerometer was placed on top of 

the fan bracket and the microphone was placed in the upper front of the fan at an angle to 

avoid air turbulence. The Simcenter SCADAS mobile and recorder were used to measure 

the vibration data using the ICP mode. Four rings of different weights were used to create 

fan unbalance at different levels. The measurement process was repeated 4 times at a sam-

pling frequency of 16.384 kHz, each lasting 600 s. The measured data included the acous-

tics and vibration signals in three directions. We used the data in the radial direction of 

the fan model by analyzing the performance of the 4 sets of data. 

 

Figure 5. Experimental setup. 

5. Results and Discussions 

As mentioned before, the current techniques in vibration monitoring relies on track-

ing the amplitude of the peaks in the frequency domain. However, there are many pitfalls 

to these methods. First, it is often difficult to determine which peaks are important and in 

which ranges as the data can be noisy. Additionally, monitoring one or a few peaks limits 

the focus on one or two dominant peaks and thus narrows the focus of inspection. These 

issues can lead to expensive false alarms, and in some cases results in deleterious missed 

alarms. Second, these methods generate massive amounts of vibration measurements, 

which require averaging or dimension reduction techniques, and thereby renders real-

time monitoring impossible. Lastly, the monitoring systems are generally complicated 

and require an expensive subject matter expert (SME) to initiate, maintain, and monitor 

the systems as part of the custom on-premise solutions. The VRS and MSET techniques 

allow the user to automate vibration analysis with a better sensitivity to degradation and 

without the need for a SME. In this section, the data generated from the fan and analysis 

using current VRS and MSET techniques will be discussed. 

  



Machines 2023, 11, x FOR PEER REVIEW 10 of 19 
 

 

5.1. Measurements 

To identify the frequency bins that are unique to the system more easily, a periodic 

workload was introduced into the measurements. Due to experimental constraints, the 

fan speed could not be programmatically controlled, and a square-wave oscillation was 

implemented for simplicity. The pattern is illustrated in Figure 6, where one period of the 

square wave is equal to one minute. The wave measurements were initiated when the fan 

motor was at 20% power capacity for the first 30 s, then increased to 50% for the next 30 s, 

and subsequently dropped back down to 20%. This pattern was repeated for 10 min for 

both the healthy state and the unbalanced state. The 50% power threshold was determined 

to be the maximum operational capacity as it was found the chassis would crack when the 

power is greater than 50%. 

 

Figure 6. The oscillatory workload implemented during the experimental measurements. 

5.2. Condition Monitoring Techniques 

As a comparison, an analysis of the fan data utilizing current frequency domain mon-

itoring practices was conducted [8,10–12]. Many of these methods are similar in nature 

whereby vibration measurements are converted into the frequency domain and the peaks 

with the largest magnitude are monitored over time. In Figure 7, the PSD of the measure-

ments taken over 10 min was calculated, and the operational frequency was found to 

change over the course of the measurements. As such, the dominant frequencies changed 

over time. 

Beginning with the first set, in Figure 7a, the PSD of the vibration measurements from 

the fan in the healthy state was calculated where no imbalance was present. From this, it 

was clear that the dominant peak was not uniform over time. One common technique is 

to sample the data over many periods and average the results [29]. This method is often 

used to determine the most prominent frequencies across the entire measurement set. Ad-

ditionally, this process diminishes the noise thereby making the pertinent frequencies 

more identifiable. Figure 7b shows the resulting average PSD for the entire span of the 

healthy state measurements by which the thresholds were set. A standard statistical 

threshold is defined as three standard deviations (3σ) from the maximum peaks of the 

healthy measurements. Figure 7c shows the thresholds determined from Figure 7b, which 

were applied for monitoring a secondary set of healthy sate measurements. The red curve 

is the maximum peak occurrence in the healthy state measurements whereas the blue 
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curve is another instance where the fan is operating at its maximum capacity. Both in-

stances were deemed to trigger an alarm if the threshold of 3σ was employed. Therefore, 

in this instance, a threshold of 5σ was utilized to minimize the false alarms. Figure 7d 

shows the measurements for when the lightest weight imbalance was introduced. While 

the 5σ threshold does indicate that the fan has an imbalance, the alarm was only triggered 

when the fan is operating at its maximum capacity. This can be problematic, as if the op-

erational capacity never reaches its maximum, the fault will be completely overlooked as 

a result. 

 

Figure 7. The PSD spectrums with frequency thresholds: (a) comparison of healthy state measure-

ments for different timestamps; (b) the entire spectrum; (c) comparison of thresholds and different 

timestamps for healthy state measurements; and (d) the thresholds comparison with the PSDs of 

different damaged states. 

The above analysis illustrates that these methods based on simple thresholding lack 

sensitivity to many defects. What is even more problematic is that these frequency signa-

tures are unique to each asset and often to the type of fault. These issues can lead to ex-

pensive false alarms and in some cases deleterious missed alarms. There are other meth-

ods such as comparing the displacements or the velocity RMS, but again these metrics are 

also unique to the context [30]. In summary, these methods are only helpful for the non-

destructive condition monitoring and binary assessment of whether the asset requires re-

pair or not. There is no indication of the degradation severity, remaining useful life, how 

long the system has been faulty, and whether the outcome is state dependent. 

5.3. The VRS Process and Predictive Monitoring 

5.3.1. Frequency Analysis 

The first step in the VRS process is to convert the vibration measurements into the 

frequency domain. To initiate the analysis, the raw vibration signal was windowed to the 

intended sample rate as shown in Figure 8. For simplicity, the sample window chosen for 

this experiment was one second, as indicated by the vertical red line. The measurements 

lasted for 600 s but only 8 s were shown to make the window size more visually legible. 
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Figure 8. Vibrations measurements for windowing. 

Each window was then transformed into the frequency domain through a FFT. Sub-

sequently, the PSD was calculated resulting in a granular set of a time series which tracked 

the frequency change across the entire sample spectrum for each state of the fan. A moving 

Hann window was then applied to minimize edge artifacts in the frequency domain. An 

example for the balanced fan is presented in Figure 9. The dynamics of the oscillatory 

workload were visually apparent, and activity was skewed towards the first 3 kHz. The 

binning was weighted accordingly so that the more active part of the spectrums were pri-

oritized. A more formal discussion of the weighting was continued in the next section. 

 

Figure 9. The changing frequency over the period of measurements for the healthy state of the fan. 

5.3.2. Binning and Ranking 
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To determine the size of each frequency bin and therefore the weighting of each seg-

ment of the spectrum, the RMS metric in Equation (1) was applied to ascertain the energy 

content in each part of the spectrum. The first step was to ascertain the representative 

frequency spectrum for the entire set of healthy measurements by transforming the entire 

set of the healthy state vibration measurements with a PSD, as shown in Figure 10a. Then, 

the cumulative RMS across the entire frequency spectrum was calculated, as shown in 

Figure 10b, to assess the change in slope, which corresponds to an increase in the energy 

content of the spectrum. The frequency bin weighting was then determined by the per-

centage of the RMS that each portion of the spectrum contains, as shown in Figure 10c. In 

this case, the percentage of the RMS within the first 1000 Hz was approximately 18% 

which translates to 18 bins out of the 100 total bins being dedicated to the initial 1kHz. 

 

Figure 10. The sequence for determining the frequency bin weights. (a) PSD of entire healthy state 

measurements. (b) Cumulative RMS. (c) Percentage of RMS for frequency bin range. 

As aforementioned, one of the main motivations behind the oscillatory workload is 

to assist in the ranking of the frequency bins. In this experiment, the periodicity of the 

workload was 1 min, or 60 s. As such, the largest magnitude of the PSD for the germane 

frequency bins will be at 60 s. As shown in Figure 11, the top five ranked frequency bins 

corresponding to the balanced measurements were presented. These signals were deemed 

to be the optimum narrow-band signals to include in the subsequent time-series machine 

learning monitoring. 
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Figure 11. The top 5 frequency bins after sorting. 

5.3.3. MSET Training and Surveillance 

The final step was to apply the MSET to the signals to generate a model for the pre-

dictive maintenance on the incoming measurements. Generally, the 20 frequencies deter-

mined from the healthy state measurements from an asset would be the training data for 

the MSET. This model is used to monitor the new data for the same asset as it changes 

over time. In this study, an assessment of the VRS process in combination with MSET was 

conducted to illustrate the value for the predictive monitoring of the fan data. 

Initially, the prominence of false alarms for the healthy system was determined by 

evaluating the false alarm probability (FAP) and the variability between measurements. 

To calculate the FAP, the MSET was first trained on one set of healthy state measurements 

and was then used to monitor another set. The frequencies chosen for the monitored meas-

urements were the same frequency indexes chosen for the training set. To illustrate the 

operation of the MSET, an example was given whereby the first set of measurements on 

the healthy fan model was used to monitor the second set of healthy state measurements, 

as presented in Figure 12. In the top plot, the generated MSET estimates (orange) were 

compared with the actual measurements (blue). Subsequently, the residual was calculated 

as presented in the second subplot to determine the difference between the estimates and 

the measurements. The SPRT test was then applied to determine the time point at which 

a deviation in the distribution of the residuals has occurred. Lastly, the results from the 

SPRT test were presented in the bottom subplot as a binary indicator for the SPRT alerts 

where 0 indicates “healthy” and 1 indicates “damaged”, respectively. As expected, there 

was found to be no indication of any degradation, and therefore the FAP for this signal 

was 0. The FAP is defined as the total sum of SPRT alerts divided by the total SPRT deci-

sions made over the monitoring period. 
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Figure 12. Visualization of the MSET monitoring of a balanced fan at the frequency of 0.04 kHz. 

To assess the reproducibility of the VRS method, a methodical, iterative evaluation 

whereby all possible permutations of the training and monitoring of the healthy state 

measurements were conducted. For example, the MSET was trained on the first set of 

healthy measurements, generating a model that monitored all the remaining sets of meas-

urements. This process was repeated until all four sets of healthy measurements were 

trained with the MSET and monitored the remaining measurement sets. To assess the 

quality of the model and the VRS process, the FAP was calculated for each of the 20 fre-

quencies and then averaged. The target FAP in this case was 0.01, which is the expected 

maximum for any given dataset without degradation. In practice, if the data used to train 

a MSET model properly encapsulates the dynamics of the system being monitored, the 

FAP is therefore empirically much lower than the target FAP defined in the SPRT. There-

fore, a FAP lower than 0.01 indicates that the model sufficiently emulates the dynamics of 

the test data and will trigger alarms unnecessarily. 

In Table 1, the averaged FAP values for each training and test case are presented. In 

all instances, the averaged FAP across all 20 frequencies was lower than the target value 

of 0.01 except for one instance, which could be attributed to the low sample rate possibly 

diminishing the capacity for system operational frequency discrimination. Another possi-

bility is that more training data is required. Considering the FAP was found to be lower 

than the target FAP for the remaining scenarios, the most reasonable explanation for the 

outlier is the fact that the fan was controlled manually rather than with a program. 

Table 1. Average FAP value for the balanced fan models. 

Training/Testing Set 1 Set 2 Set 3 Set 4 

Set 1 / 0.0081 0.0040 0.0095 

Set 2 0.0076 / 0.0026 0.0135 

Set 3 0.0099 0.0026 / 0.0015 
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Set 4 0.0077 0.0058 0.0034 / 

The final step in the process was to utilize the MSET for predictive monitoring. First, 

the 20 frequencies from the healthy state measurements were determined from the VRS 

process. Then, the same 20 frequency bin indexes determined from the healthy state were 

used for the damaged state and concatenated the healthy measurements with the dam-

aged ones. The concatenated signals were intended to simulate a system that suddenly 

begins to be degraded. The resulting dataset was 20 min of measurements across 20 fre-

quency bins. The MSET was trained on the first 540 s and then monitors for the remaining 

660 s. One minute of the healthy measurements remained in the testing phase to illustrate 

the differentiation capacity of the model. The monitoring stage is presented in Figure 13 

with one example signal from the unbalanced set of measurements with the lightest 

weight. As with the healthy state example, the results include the signal measurements 

and estimates, the residuals between the two, and the results from the SPRT. The unbal-

anced measurements were introduced to the testing phase at the 600 s. The MSET can 

detect this sudden change in operation, as indicated by the SPRT alarms (blue) in the bot-

tom subplot. Then, the weight of the imbalance gradually increased, and each weight im-

balance was measured five times. The fan unbalance was calculated by the unbalanced 

mass multiplied by its distance to the center of the fan divided by the fan mass: 

𝑒 =
𝑚𝑢 × 𝑟

𝑚𝑓
 (2) 

where 𝑚𝑢 is the unbalanced mass, 𝑟 is the distance between the center of the fan and the 

unbalanced mass, and 𝑚𝑓 is the mass of the fan. 

The confidence factor (or CF) is a ratio between the frequency of triggered alerts, 

which is indicated by when the SPRT is counter to the null hypothesis (𝐻1), and the num-

ber of SPRT decisions, which is defined as when either the null hypothesis (𝐻0) or the 

counter is confirmed. It is defined by the equations below: 

𝑆𝑃𝑅𝑇𝑎𝑙𝑒𝑟𝑡 = 𝐻1 = {𝑆𝑃𝑅𝑇𝑝𝑜𝑠, 𝑆𝑃𝑅𝑇𝑛𝑒𝑔, 𝑆𝑃𝑅𝑇𝑛𝑜𝑚, 𝑆𝑃𝑅𝑇𝑖𝑛𝑣}  (3) 

𝑆𝑃𝑅𝑇𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = {𝐻0, 𝐻1}  (4) 

𝐶𝐹 =
𝑌𝑖

𝐷𝑖

 =
∑ 𝑆𝑃𝑅𝑇𝑎𝑙𝑒𝑟𝑡𝑗

𝑖
𝑗=1

∑ 𝑆𝑃𝑅𝑇𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑗

𝑖
𝑗=1

 (5) 

whereby 𝑆𝑃𝑅𝑇𝑝𝑜𝑠, 𝑆𝑃𝑅𝑇𝑛𝑒𝑔, 𝑆𝑃𝑅𝑇𝑛𝑜𝑚, and 𝑆𝑃𝑅𝑇𝑖𝑛𝑣  are all indications of when the mean 

of the distribution of the residuals have shifted positively or negatively, or when the var-

iance in the residual distribution has increased or decreased, respectively. 𝑆𝑃𝑅𝑇𝑎𝑙𝑒𝑟𝑡 =

{0,1}  and 𝑆𝑃𝑅𝑇𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = {0,1}  are  SPRT output for the 𝑗𝑡ℎ  element of the time series, 

and the ratio of the cumulative sum of the 𝑆𝑃𝑅𝑇𝑎𝑙𝑒𝑟𝑡 and 𝑆𝑃𝑅𝑇𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛  is the confidence 

factor at each time stamp [20]. 

Several metrics were tracked, averaged, and presented in Table 2. The first metric was 

the time to detect (TTD) which is particularly important to predictive monitoring. This 

metric is a description of the capacity of a model to quickly indicate the onset of degrada-

tion so it can remediate before it becomes disastrous. The TTD is the first timestamp that 

indicates where there is a fault. On the average MSET, the predictive modeling system 

determined that there was degradation approximately 6 s before the degradation began 

in all cases across all the measurement sets. The reason that detection was possible before 

the 60th second was because the analysis was run as a static case and not in real time. The 

SPRT has a secondary function that utilizes a buffer whereby future timestamps and the 

current timestamp can be assessed at the same time. In a real-time scenario, the buffer size 

would be adjusted to the latency requirements of the use case. If in this instance the latency 

requirement was 1 s, the detection would occur instantaneously at 60 s, but not before. 
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Another metric that is useful is the confidence factor. This is a measure of certainty that a 

fault exists and a proxy for the severity of the fault. The confidence factor is calculated 

from the cumulative total of alarms by the current index of the time stamp, and is a meas-

ure of alarm frequency. The final value in the monitoring phase will result in the maxi-

mum confidence factor. The highest confidence factor on any given signal is used to cal-

culate the average. Overall, the MSET was relatively confident in that a fault existed. If the 

faulty time series signals were longer, the confidence factor would have increased. Lastly, 

an indication of the fault was recorded, and in all instances for each weight, an imbalance 

was detected. 

 

Figure 13. Visualization of the MSET monitoring of the unbalanced fan at the frequency of 1.55 

kHz. 

Table 2. Average of the key metrics utilized in the predictive modeling of the damaged assets. 

Training/Testing TTD (s) Confidence factor (%) Fault found 

𝑒 =0.113 53.3 80.78 Yes 

𝑒 =0.225  53.2 80.21 Yes 

𝑒 =0.338 53.5 88.30 Yes 

𝑒 =0.451  53.3 90.73 Yes 

6. Conclusions and Future Directions 

In this paper, the vibration resonance spectrometry (VRS) technique, along with an 

advanced ML signal-processing innovation termed the multivariate state estimation tech-

nique (MSET) was applied to detect the unbalance state of a fan model. The main conclu-

sions are given as follows: 

(1) The utilization of the novel VRS preprocessing algorithm allows for better predic-

tive monitoring that could be processed with on-premise edge devices or eventually a 

cloud platform due to its capacity for loss-less dimension reduction; 
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(2) The process transforms a noisy univariate vibration signal into 20 highly corre-

lated signals that can be used in a multivariate ML model to predict the frequency signa-

ture; 

(3) The multivariate ML model with the mechanical state of system based on working 

conditions improve the accuracy of diagnosis thresholds; 

(4) When the VRS is placed upstream of the MSET, the real-time condition monitor-

ing becomes more sensitive to the current condition and the onset of degradation or me-

chanical assists than is currently available in the industry. 

In the current test setup, only radial unbalance was considered, and the weights were 

relatively large. As the next step, the sensitive to the imbalance severity and different types 

of imbalance will be tested. In addition, the current methodology will be applied to mon-

itor much more complex systems to determine the capacity for root cause analysis, such 

as a powertrain system. Different types of faults, such as motor winding faults, broken 

rotor bar, crack gear tooth, and bearing faults will be introduced both individually and 

together to test the system capability of fault detection. 
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