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Abstract— 
Advanced machine learning (ML) prognostics are leading to 

increasing Return-on-Investment (ROI) for dense-sensor 

Internet-of-Things (IoT) applications across multiple industries 

including Utilities, Oil-and-Gas, Manufacturing, Transportation, 

and for business-critical assets in enterprise and cloud data 

centers.  For all of these IoT prognostic applications, a nontrivial 

challenge for data scientists is acquiring enough time series data 

from executing assets with which to evaluate, tune, optimize, and 

validate important prognostic functional requirements that 

include false-alarm and missed-alarm probabilities (FAPs, 

MAPs), time-to-detect (TTD) metrics for early-warning of 

incipient issues in monitored components and systems, and 

overhead compute cost (CC) for real-time stream ML 

prognostics.  In this paper we present a new data synthesis 

methodology called the Telemetry Parameter Synthesis System 

(TPSS) that can take any limited chunk of real sensor telemetry 

from monitored assets, decompose the sensor signals into 

deterministic and stochastic components, and then generate 

millions of hours of high-fidelity synthesized telemetry signals that 

possess exactly the same serial correlation structure and statistical 

idiosyncrasies (resolution, variance, skewness, kurtosis, auto-

correlation content, and spikiness) as the real telemetry signals 

from the IoT monitored critical assets.  The synthesized signals 

bring significant value-add for ML data science researchers for 

evaluation and tuning of candidate ML algorithmics and for 

offline validation of important prognostic functional requirements 

including sensitivity, false alarm avoidance, and overhead 

compute cost. The TPSS has become an indispensable tool in 

Oracle’s ongoing development of innovative diagnostic/prognostic 

algorithms for dense-sensor predictive maintenance applications 

in multiple industries. 

Keywords—Fourier Decomposition, Signal Synthesis and 

Projection, Signal Spike Detection. 

I. INTRODUCTION  

Machine learning (ML) researchers and data scientists are 
proliferating throughout the world thanks to the expansion of 
Internet-of-Things (IoT) dense-sensor applications across many 
industrial segments, including manufacturing, transportation, 
oil&gas, and utilities. A common problem lamented by ML 
researchers is to acquire sufficient real data that can be used for 
evaluation, tuning, training, optimization, and validation of 
candidate ML innovations.  

    Time series databases make up a large and growing portion of 

the tech community’s data base business, thanks to the 

expansion of Internet-of-Things dense-sensor applications 

across many industrial segments. For example, a modern oil 

refinery these days has 1M sensors recording time-series signals 

24x7x365.  A typical large commercial airplane has 75,000 

sensors these days, and a medium-size enterprise or cloud data 

center can have 1 million sensors. One significant challenge for 

industrial use cases such as these, when the number of sensors 

and the sampling rates for those sensors both are climbing every 

year, the challenge becomes acquiring and retaining sufficient 

volumes of data to be able to validate ML prognostic 

specifications.  For example, to validate that false-alarm 

probabilities (FAPs) are being met, when the specifications on 

FAPs are very small (example:  1 in 10^5 over 10K Hrs of 

operation), it would require over 5 years of signals to establish 

with a 99% confidence factor that the desired FAP is being 

met.  We will show in this paper how validation objectives can 

be met with much shorter telemetry archives (and storage media) 

using a novel approach to high-fidelity signal synthesis.  

 
One significant challenge for large-scale signal synthesis 

methodology has been that conventional approaches cannot 
accommodate time series signals containing spikes in the 
signals. The best technique in the classical industry literature for 
handling signals that contain spikes is a well-known spike 
detection algorithm developed by Goring & Nikora [1], a 
technique that suffers from several limitations that prevent using 
it as a basis for high-fidelity reconstruction of synthesized 
signals because it uses a guiding metric for detection of changes 
in signal quality, changes that are deemed “abnormal” with 
respect to the variance of the “base” signature (i.e. the base 
signal just before and just after spikes). Especially it is not 
uncommon in many areas of big data analytics for two or more 
moderate or wide spikes to superimpose and “fool” conventional 
spike detection algorithms into counting superimposed spikes as 
one very wide spike.  Another area of applications for which 
conventional spike detection algorithms can severely 
underperform is for use cases where the “base signals” are noisy 
and the height-to-width ratios for the spikes becomes smaller 
(i.e. within 2 Standard Deviations of the noise for the base 
signal).   For these types of challenging use cases, classical “state 
of the art” spike detection algorithms may have poor 
performance.   

In this paper we propose a novel algorithmic infrastructure 

for processing a database of time series signals to solve the 

above challenges:  the Telemetry Parameter Synthesis System 



(TPSS).  It advances a prior innovation of spectral 

decomposition and reconstruction of telemetry signals [2] to the 

next level.  Specifically, TPSS allows any database of time 

series signals to be processed and decomposed into their 

deterministic and stochastic components, and then generates 

synthesized signals that possess exactly the same deterministic 

structure (including serial correlation for individual signals, 

cross correlation for multivariate signals, and periodicities for 

any number of seasonality components) and stochastic 

distributions for any amount of noise on the signals, including 

variance, skewness, and kurtosis.  It features projecting 

synthesized signals into future time window of interest (optimal 

time series forecasting) without discontinuities at the end of the 

learning window. Moreover, our systematic and parametric 

spike detection, despiking/respiking algorithm demonstrates 

outstanding feasibility, practicability, and fidelity to handle 

spike distributions that arise in real signals. 

 
 The proposed technique is capable of producing an 

extremely high-fidelity synthetic database of signals possessing 
the following characteristics: 

(1) The synthetic signals are statistically indistinguishable 

from the original time series database.  The synthesized 

database of time series have exactly the same serial 

correlation structure, cross correlation structure, and 

stochastic content (matching means, variance, skewness, 

and kurtosis, and kolmolgorov-smirnov statistic). 

 
(2) To be able to filter out the principal serially-correlated, 
deterministic components from telemetry variables so that 
the remaining stochastic signal (i.e., residual function) can 
be analyzed with signal validation tools that are designed 
for signals drawn from independent random distributions.  

 

(3) High sensitivity for detection of large as well as small 

spikes contained in signals through a comprehensive 

systematic parametric iterative procedure. The integrated 

methodology creates high-fidelity spike detection, 

characterization, “despiking” analysis, and then synthesizes 

all conceivable spike distributions in the synthetic signals, 

including positive and negative amplitudes, shapes, widths, 

and temporal distributions.   
 

From a ML Research perspective, all of the goals and objectives 

of data scientists conducting ML  R&D for prognostics use 

cases, will find the new TPSS capabilities essential for: 

 Assessing false alarm probabilities for new ML 

algorithms (FAPs) 

 Assessing missed alarm probabilities for new ML 

algorithms (MAPs) 

 Assessing sensitivity and “time-to-detection” metrics 

for discovery of subtle 

anomalies creeping into time-series processes 

 Assessing overall compute cost for various new (and 

old) ML algorithms 

 

II. METHODOLOGY 

A. TPSS- Spectral Decomposition and Reconstruction 

TPSS performs Fourier decomposition and reconstruction of 
telemetry signals based on the number of modes (sinusoidal 
periodicities) detected in the spectral domain of the telemetry 
signals. The reconstructed signals possess exactly the same 
statistical noise idiosyncrasies as the original telemetry 
characteristics.   

To proceed, the time series signal is first analyzed through 
Fast Fourier Transform (FFT) analyses, and the highest peak in 
the resulting power spectral density (PSD) is captured. With the 
frequency and amplitude corresponding to the PSD peak, a 
Fourier composite signal in the time domain is reproduced. 
Then the synthesized Fourier composite is optimally 
synchronized with and subtracted from the original signal. The 
resulting residual is sent to a next round of spectral 
decomposition and reconstruction. This process is iterated until 
no more prominent modes are left in the residual, confirmed by 
both the kolmolgorov-smirnov test and the common white noise 
test [3]. Finally, the stochastic content of the residual is 
analyzed, synthesized, and superimposed onto the Fourier 
composites constructed during the previous iterations.  

(c) 
Figure 1a-2c illustrate the performance of TPSS through a use 
case where a telemetry signal comprising an envelope of three 
modes is presented. In this illustrative example, each mode 
discovered by TPSS is iteratively recreated, synced and 
subtracted from the original signal while at the same time the 
Fourier composite is constructed and superimposed (Figure 2a). 
After the final residual becomes normal and white noise, or the 
number of detected modes has reached a pre-specified value, the 
stochastic content of the residual is synthesized and 
superimposed onto the prior Fourier composite (Fig. 2b). Note 
that the histograms in the two figures are showing two different 
entities.  It can be concluded that the top histogram (Figure 2a) 
of original signal is improved by using TPSS because the 
resulting residual exhibits a more Gaussian structure, per the 
bottom histogram in Figure 2b. This nature of signal pre-
whitening suggests guaranteed optimal performance of the 
sequential probability ratio test, SPRT [4-5], for advanced 
prognostics and proactive anomaly detection. Finally, the 
synthesized signals can be projected into the future (or even 
“backcasting” into the past) given the length of a time window 
of interest (Fig. 2c). Observe there are no discontinuities 
between the synthetic signal and projected signal, because the 
Fourier composite (i.e. envelope of superimposed sinusoids) are 
repetitive and continuous. 



 
(a) 

 
(b) 

 
(c) 

Figure 1: Use case of synthesis of telemetry signals by using TPSS. 

The new TPSS reported herein is being used for empirical 

testing and validation of any ML-based prognostic and 

diagnostic surveillance techniques, and for evaluation of 

control system efficiency, when only limited archives of normal 

or faulted signals are available. One of the most valuable 

features of TPSS is the ability to analyze a relatively short 

segment of actual asset signals, then generate millions of hours 

of synthesized signals to be used in verification and validation 

(V&V) for advanced ML techniques for assurance that target 

false-alarm probability functional specifications are being 

achieved. 

B. TPSS-Spike Detection Algorithm 

To ensure a high-fidelity signal synthesis, we need to remove 

spikes in the signal upstream. The improved spike detection 

algorithm (red box in Fig. 1) is further introduced in this 

section.  The prototype of the most popular classical spike 

detection technique (Wavelet Thresholding method) originates 

from an article which proposed a “universal threshold” for 

detecting and removing spike noise from a signal [6].  Later, 

Goring and Nikora [1] further implemented a universal 

threshold based Phase-Space Thresholding method to improve 

the spike detection for their acoustic signals. The universal 

threshold is a function of the number of observations (i.e. 

sampling rate) and the standard deviation (STD) for the signal. 

However, when spikes become wide, the STD becomes larger 

and exhibits a different nature so the thresholds derived for 

prior “needle spikes” no longer hold true, and conventional 

spike detection methods break down as the widths of the spikes 

increases, and can severely miss-characterize signals when 

occurrences of two or more spikes can overlap. Thus the 

classical state of the art spike detection methodology does not 

work well for “longer period fluctuations”, which commonly 

manifest as wide spikes in the telemetry signals. 

 

To address the above challenges, an enhanced spike detection 

approach is required to characterize and mimic the patterns of 

stochastic and dynamic spikes in the original signals. We 

advance the traditional spike-detection algorithm to next level 

with a novel and enhanced technique that 1) possesses 

increased sensitivity for detection of large as well as small 

spikes, and 2) is able to quantitatively evaluate itself and reports 

the spike detection efficiency using a new parametric Monte 

Carlo simulation based approach. We demonstrate the 

improved performance with use cases for which we compare 

“ground truth” spikes with “detected” spikes.  

We propose an adjustable (and hence optimizable) parameter 

called the damping factor (DF) to suppress the universal 

threshold in [1, 6] and enhance the sensitivity for spike 

detection so that small, large, and overlapped spikes can be 

detected. While DF is just a scale factor ranging from 0 to 1, 

our real innovative work is to develop  a comprehensive 

automated optimization framework which allows future users 

to automatically identify near-optimal thresholds instead of 

manually trying a scale factor for their specific signals. We 

present our innovative improvement to state-of-art spike-

detection algorithms in two aspects: 

1) SimSpike: a systematic parametric recursive iteration 

technique for evaluating the overall detection efficiency in 

terms of True Detections (Ts) and False Detections (Fs) vs. DF. 

2)  Performing near-optimal despiking for any given use case 

for any given end customer with any batch of spiky signals 

without knowing the true spikes. 

 

First, to understand the relation between quantification of DF 

and the resulting spike detection performance, we introduce a 

systematic parametric characterization analysis (denoted as 



“SimSpike”) of True spike detections (Ts) and false spike 

detections (Fs), wherein the detection efficiency becomes a 

multidimensional function of multiple variables. A monte-carlo 

nested loop structure is devised to perform a comprehensive 

parametric investigation on the correlation between a DF value 

and resulting Ts/Fs ratio performance with any given set of 

spike characteristics (i.e. height, width, base-signal noise level, 

and Inter-arrival times (IATs) of the spikes, refer to next section 

for details). 
 
Figs 4-7 together illustrate how damp factors and Ts/Fs 

performance correlate to varying spike widths, amplitudes, 

and signal noise level. In each of the following four figures, 

there are two surface plots: the top one (as suggested in the z-

axis) represents the Ts value while the bottom one represents 

the Fs value. The x-axis indicates the STD of the noise added 

onto the base signal. Duration offset (y-axis) suggests the 

number of observation points by which the base spikes are 

expanded. For example, duration of 1 indicates all base spikes 

are widen by 1 extra observation point. The color represents 

the optimized damp factor that yields the best Ts/Fs 

performance. The spike height is specified in the figure title. It 

is defined as the number of observation points by which the 

peaks of the base heights are lifted.  

 

 

Figure 4: parametric nested loop analysis with spike height 

increment = 5 observation points.  

 
Figure  presents the first case where the height of base spikes is 

lifted by 5 observation points, suggesting prominent spikes in 

the signal. It can be concluded that if all spikes are substantially 

taller than base signal, it is easy to capture them all (100% Ts 

and 0% Fs). However, to ensure a perfect job, a nice DF value 

needs to be optimally analyzed from case to case. For example, 

on the near corner of the figure, when spikes have moderate 

widths, and signal noise level is low, the optimal DF is 1, 

indicating that suppressing the phase-space threshold is actually 

not necessary and the state-of-art spike detection algorithm [1] 

would work adequately for this “easy” use case. When the noise 

level becomes high, and/or all spikes become wider, a smaller 

DF needs to be applied to make the spike detection algorithm 

sensitive enough to capture them all. As a result, the color 

gradually turns from dark to light and consequently the 

optimized DF is lowered to 0.4 at the far corner of the surface 

when the signal is noisy and the spikes are wide. 

 

 

Figure 5: parametric nested loop analysis with spike height 

increment = 4 observation points. 

Fig. 5 presents a comparison where the spikes become less 

prominent. At the near corner, the Ts and Fs can still reach 

100% and 0% respectively with a less than 1 DF value, while 

the far corner area of the surface of Ts starts to drop even the 

damp factor is lowered to 0.1, and accordingly the far corner of 

the surface of Fs starts to hump. This phenomena illustrates that 

if spikes are not prominent and/or narrow enough, the signal 

noise and wide spikes can affect the performance of the 

conventional spike detection method, which is expected as 

discussed in the introduction section. 

 

 

Figure 6: parametric nested loop analysis with spike height 

increment = 3 observation points. 

 
Fig. 6 further reduces the spike height, causing more areas of 

the Ts  to collapse and more areas of the Fs to further hump. 

Finally, Figure 7 presents an extreme case where the spike 

height is short enough to hide behind the signal noise, causing 

suboptimal spike detection. 

 

 



Figure 7: parametric nested loop analysis with spike height 

increment = 2 observation points. 

In real world IoT applications, the customer's dataset will have 

no "ground truth" signals that define exactly how many spikes 

are in each signal.  Consequently it is impossible with classical 

prior-art techniques to fully validate a spike-detection 

algorithm in terms of Ts and Fs, and the detection efficiency 

ratio Ts/Fs.  Moreover, since for prior-art techniques we could 

not know the true Ts and Fs for an algorithm, it's not possible 

to select an appropriate DF ahead of time.  This is because if we 

simply “turn the knob” on DF, and witness a different number 

of spikes getting identified each time we change DF, we still 

would have no way (with conventional techniques) of counting 

Ts and Fs for the new number of detected spikes with each new 

setting of DF.  Thus to make our spike detection enhancement 

operational for real data, we have introduced an optimization 

framework of DF autonomous identification, which supplies us 

a near-optimal DF even though the original dataset of signals 

does not have any "ground truth" labeling of spikes. Figure 8 

presents the idea of damping factor (DF) multidimensional 

optimization in detail.  

 
Figure 8: Flowchart of the damping factor (DF) multidimensional 

optimization for any given use case without a-priori knowledge the 

true spikes. 

We start the first iteration by conducting a run for the original 

measured spiky signals, with a "nice" initial guess of DF value 

(based on our experience, a good starting value is 1.0), and the 

spikes with that DF value are extracted and removed (Fig. 9).  

 

 
Figure9:The ground truth spikes can be partially detected by using an 

initial guess of DF value in standard spike detection algorithm. 

 

Next we take those extracted spikes and expand their 

characteristic metrics by ±10 % of the range of the measured 

spike Heights, Widths, and IATs. We generate “ground truth” 

spikes by sampling from the new expanded distributions, and 

seed (i.e., the respiking process, which will be elaborated in the 

next section) to the prior despiked signal (Figure 20).  
 

 

 
Figure 2: The distributions of the measured spike characteristics are 

expanded and the resulting synthesized spikes are seeded into the prior 

despiked signal. 

 

Since we are simulating these signals and spike characteristics, 

we now know in all these simulation replications the "ground 

truth", hence we can truly optimize DF as a function of spike 

height width, and IAT through the procedures presented in 

. Finally, after the best possible DF value is determined, we now 

perform spike detection process again to the original spiky 

signal and capture more real spikes than the initial run (Fig. 11).  

 



 
Figure 11: The final optimal DF value is reapplied to detect the spikes 

in the original measured signal, resulting in an improved spike 

detection performance.  

 

 

By the above procedures we reach the goal of optimal despiking 

and spike-characterization for high-fidelity synthesis of time 

series signals containing spikes. This capability will give ML 

researchers significantly enhanced capabilities for high-fidelity 

synthesis of IoT signals. 

 

C. TPSS-Signal Respiking Algorithm 

The last feature of the proposed TPSS enhancement includes a 

high-fidelity respiking algorithm which characterizes the 

temporal distribution of the spikes regarding IATs, widths of 

both positive and negative spikes (WoP, WoN), and 

positive/negative amplitudes (AoP, AoN) of spikes, then 

simulate a set of spikes in a manner that possesses a nearly 

identical distributions of IATs, widths and heights. Then the 

simulated spikes are seeded into the synthesized signals for 

higher-fidelity synthesis of time series signals with any types of 

spikes. 

 

To demonstrate the capability of the respiking algorithm, we 

present a side by side comparison on histogram of amplitude, 

width, and IAT of both original and simulated spikes. In Figure 

123, the spikes previously captured during the spike detection 

process are first characterized. To compute the widths of the 

spikes identified for removal, we use the “full width at half 

maximum” metric, FWHM, which is defined as the width of the 

spike at exactly one-half of its peak amplitude. To determine 

the amplitude of the spikes, we replace the detected spiky points 

by interpolating the nearest non-spike neighbors and then 

subtract spiky points from the interpolated baseline. Then, after 

the despiking process, we generate empirical distributions of 

spike characteristics for producing simulated spikes with high 

fidelity. Finally, the simulated spikes are seeded onto the 

synthesized signals in a manner that matches closely the spike 

distributions of amplitudes, widths, and temporal sequences 

(via IATs) of the raw measured signals (Figure 1343). 

 

 
Figure 123: Distribution of the spike characteristics (IAT, amplitude, 

width) that were characterized from the original signals by the 

systematic technique introduced in Section II.A and II.C. 

 

 
Figure 134: Distribution of the simulated spikes that will be seeded 

into the synthesized signal. 

 

III. CONCLUSION 

In this paper, we demonstrate our ongoing development and 
enhancement for the prior telemetry parameter simulation 
system (TPSS). It has the capability to process and synthesize 
any stochastic telemetry variable from all types of sensors for 
ML researchers to use in development, evaluation, tuning, and 
optimization of new ML related research for prognostics. TPSS 
employs Fourier-based decomposition and reconstruction 
methodology with the capability to efficiently decompose any 
signals into their deterministic and stochastic components, then 
reconstructs new, simulated signals that possess exactly the 
same statistical noise idiosyncrasies as the original telemetry 
variables. From a ML research perspective, all of the goals and 
objectives of ML innovators will obtain identical conclusions 
whether the candidate ML algorithms are applied to the 
synthesized telemetry database or to the original telemetry 
database. 

In addition, the enhanced despiking and respiking feature 

further make the technique even more robust to real signals 

across dense-sensor applications in IoT industries.  Lastly, the 

ability to generate long signal streams by only analyzing a short 

segment of actual asset signals is an extremely valuable 

capability for use for prognostics Proof-of-Concept Demos, 

which otherwise can be become prohibitively costly in 

empirical validation studies for big-data IoT applications in 

dense-sensor industries such as manufacturing, transportation, 

oil&gas, utilities, healthcare [7] and of course IT datacenters 

[8]. 
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