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Abstract

Over the years, static taint analysis emerged as the analysis of choice to detect some of the
most common web application vulnerabilities, such as SQL injection (SQLi) and cross-site
scripting (XSS) [OWA]. Furthermore, from an implementation perspective, the IFDS dataflow
framework [RHS95] stood out as one of the most successful vehicles to implement static taint
analysis for real-world Java applications [TPF*09, TPC™13, ARF*14].

While existing approaches scale reasonably to medium-size applications (e.g. up to one hour
analysis time for less than 100K lines of code), our experience suggests that no existing
solution can scale to very large industrial code bases (e.g. more than 1M lines of code). In
this paper, we present our novel IFDS-based solution to perform fast and precise static taint
analysis of very large industrial Java web applications.

Similar to state-of-the-art approaches to taint analysis, our IFDS-based taint analysis uses
access paths to abstract objects and fields in a program. However, contrary to existing ap-
proaches, our analysis is demand-driven, which restricts the amount of code to be analyzed,
and does not rely on a computationally expensive alias analysis, thereby significantly improv-
ing scalability.

1 Background

The IFDS analysis framework is a dataflow analysis framework for solving inter-procedural,
finite, distributive, subset (IFDS) problems. Flow functions f are defined over a finite domain
of dataflow facts D, and have to be distributive over the meet operator, union (i.e. f(a)U
f(b) = f(aUb)). These flow functions are defined by the specific analysis (in our case, taint
analysis), to specify the effect on dataflow facts that corresponds with the execution of the
statement at the given program point. The IFDS analysis framework solves dataflow problems
efficiently by reducing them to graph reachability problems. The reachability of a particular
node in the graph represents whether a particular dataflow fact holds at a particular program
point.
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call: tmp = cat(var, str);

cat(pre, suf) {
res = pre + suf;
return res;

}

ret: tmp = cat(var, str);

call: sink(tmp);

ret: sink(tmp);

Figure 1: Simple IFDS Taint Analysis Example

There are two main variants of the IFDS analysis algorithm. The forward version of the anal-
ysis propagates facts forward through the program and exhaustively computes the dataflow
facts that hold at each program point. In contrast, the backward version of the analysis is
demand-driven, i.e., whether a particular fact holds at a particular program point is deter-
mined on-demand, in response to client queries. Our work is based on the backward version
of the IFDS analysis algorithm.

The IFDS analysis framework achieves efficient inter-procedural analysis via function sum-
marisation. Function summaries are generated on demand during the analysis, and represent
the backward reachability from an end fact to a set of start facts. There can be multiple
summaries generated for a single function, one for each relevant end fact.

IFDS operates on the exploded supergraph of a program, which is an inter-procedural control-
flow graph (ICFG) where each node in the ICFG is exploded into as many nodes as there are
dataflow facts. Figure 1 shows an example of an IFDS analysis (in this case, a simple taint
analysis) applied to the following program:

void start() {
String var = getTainted();
String str = "/";
String tmp = cat(var, str);
sink (tmp) ;
}
String cat(String pre, String suf) {
String res = pre + suf;
return res;

}

A particular dataflow fact holds at a particular statement if and only if the associated node
in the exploded supergraph is reachable. Edges in the exploded supergraph encode the flow



functions. In Figure 1, the fact that the sink node (sink(tmp), tmp) is reachable from the
entry node (var = getTainted(), 0) indicates the existence of an execution path, highlighted
in red, where tainted data reaches a security-sensitive sink.

In our approach, the exploded supergraph is extracted from programs in SSA form, and we
use IFDS to encode a taint analysis over k-bounded access paths.

SSA Form We use Static Single Assignment (SSA) form [CFR89] as an intermediate rep-
resentation for our analysis. SSA requires that each use of a variable has a single defi-
nition. If there are multiple definitions for a use in the original program, a ¢-function
(or ¢-node) is inserted in the control flow graph (CFG).

Access Paths Our analysis propagates access paths of the form x.f.g, where x is a local
variable, and f and g are fields. Specifically, x.f.g represents the value that is retrieved
by first dereferencing x in the current scope and then dereferencing fields f and g from
the heap. Because access paths are unbounded, we use k-limiting to bound their length
to a pre-defined length k. When an access path reaches a length of &, further appends
are simply ignored (i.e. access paths longer than & are assumed to be untainted). Our
approach uses a default value of k = 5.

Taint Analysis The goal of taint analysis is to find and report dataflow from sources to
security-sensitive sinks that does not undergo a sanitisation operation. In general,
taint labels are used to track complementary taint information (e.g. SQLi vs. XSS).
For the sake of simplicity, in this paper, we assume that values are either tainted or
untainted, and that there are no sanitisation functions. Extending our approach to
support sanitisation and taint labels is straightforward, and our implementation does
support both of these features.

2 Approach

Our analysis performs a demand-driven, backward taint analysis. Similar to recent work
on IFDS-based static taint analysis [TPCT13, ARF'14], our analysis tracks taint through
objects and fields by propagating access paths.

In our implementation, we adapted the extended forward IFDS algorithm presented by Naeem
et al. in [NLR10] to the on-demand backward analysis presented by Reps et al. in [RSH94].
Our extended algorithm adds the following three optimisations described in [NLR10] to the
original backward IFDS algorithm:

1. Lazy computation on the exploded supergraph (e.g. the graph with one node per
instruction and dataflow fact, as shown in Figure 1). Lazy computation of the exploded
supergraph reduces the memory footprint of the analysis by ensuring that only the
relevant portions of the exploded supergraph are built.



2. Support for ¢-nodes in SSA form. Because ¢-nodes at merge points in the CFG cause a
loss of precision during dataflow analysis, this extension ensures that the IFDS algorithm
delays merging of dataflows until after ¢-nodes have been processed.

3. Providing the procedure-call flow function (in [NLR10] this was applied to procedure-
return in the forward version of the analysis) with information about the caller-side
state from the time of the procedure-return, allowing the callee-side state to be mapped
to the caller-side context more precisely.

We now present the intra-procedural flow functions that define our backward IFDS taint
analysis. Algorithm 1 defines (in the FLOW procedure) the flow functions for allocation, as-
signment, field-load and field-store statements in a Java program. For each type of statement
([stmt.]) the flow function defines which facts must hold (any) before the statement, for a
given fact to hold after the execution of the statement. And because our analysis operates
on access paths, a flow function maps an access path of the form b.f; ... f,, where b is the
base variable, and fi...f, is a sequence of fields, to a set of access paths. Note that we
omit the inter-procedural call and return flow functions, because they simply convert argu-
ments and return values between callers and callees without modifying access paths. The
FLow procedure is invoked during the execution of our backward IFDS algorithm implemen-
tation as statements are processed, to perform on-the-fly exploded supergraph construction
for intra-procedural dataflow edges.

Case 1 defines the flow function for allocation statements. The incoming access path is
mapped to the empty set () if its base variable b matches the newly assigned local variable x
to capture the fact that access paths rooted at x cannot exist before x is allocated. Otherwise,
the identity function is applied. Case 2 defines the flow function for assignments of the form
x = y. The base variable b of the incoming access path is replaced with y if b matches =x.
Case 3 defines the flow function for assignment of tainted values. If b matches x, the incoming
access path is mapped to the null fact (0), to capture the fact that  became tainted at that
specific point in the program.

Cases 4 and 5 define the flow functions for loads of the form z = y.g and stores of the form
x.g = y, respectively. Because our algorithm works with programs in the SSA intermediate
representation (IR), care must be taken to reify statements involving multiple stores and
loads. Indeed, translation to an IR usually deconstructs field accesses into multiple sub-
statements using temporary variables that require reification before analysis. To address
this issue, our analysis performs an on-demand, intra-procedural reification step (the REIFY
procedure) before processing any store or load instruction, which determines the full access
path referenced by the load or store statement.

Hence, Case 4 defines the flow function for loads of the post-reification form = = z.g1 ... gm.
The base variable b is replaced with z, and the loaded fields g ... g, are prepended to the
access path if b matches x (unless the length of the new access path exceeds the pre-defined
limit k, in which case the empty set is returned). Case 5 defines the flow function for stores
of the post-reification form z.g; ... g, = y. The base variable b is replaced with y, and fields
fi... fm are removed from the incoming access path if b matches z and the stored fields
g1 --.9m match f1... fn, (i.e. the stored fields form a prefix of the incoming access path). If



Algorithm 1 Intra-procedural flow functions

constant k

procedure FLow(statement, (b.f1 ... fn))
match statement
case [z = new]
if x = b then return ()
else return {(b.f1 ... fn)}

case [z = 9]
if z = b then return {(y.f1... )}
else return {(b.f1... fn)}

case [z = TaintSource()]
if x = b then return {0}
else return {(b.f1... fn)}

case [z = y.g]
if x = b then
2.91-..9m < REIFY((y.9))
if m 4+ n > k then return ()
else return {(z.g1...gm-f1... fn)}
else return {(b.f1... fn)}

case [z.g = y]
2.91...9m < REIFY((z.g))
if z=band m<nandgj...gm = f1...fn then

if Vi € [1,m], g; is not an array then return {(y.fm+1 ..

else return {(y.fm+1... fn),(b.f1... fn)}
else return {(b.f1... fn)}

procedure REIFY((b.f1... fn))
match DEFINITION(b)
case [b =y.g]
return REIFY((y.g.f1... fn))

case default
return (b.f1... fn)

- fn)}




any of the stored fields is an array, the incoming access is also preserved because our analysis
is array-insensitive (e.g. it cannot reason about the exact array cell that is loaded), and hence
cannot invalidate the incoming access path.

We now explain the reification step (the REIFY procedure) in more de-

tail by way of an example. Assume that a is tainted, and that we are

computing the flow function of the incoming access path y.f.g.h and the tpp1 = y.¢;
statement tmp2.h = a. Without reification, Case 5 would wrongly con- tmp2
clude that tmp2.h = a has no impact on y.f.g.h (as the base variables, tmp2.h = a;
tmp2 and y, do not match). To determine that store to tmp2.h does, in
fact, affect y.f.g.h, the reification step starts by tracking the definition of
the base variable of the store/load. Then, if the definition is a load statement, the reification
step replaces the base variable of the original store/load with the loaded access path, and
starts tracking the definition of the base variable of the loaded access path. This is done
recursively until it reaches a definition that is not a load statement. Once the reification step
completes, the appropriate flow function can be applied to the reified store/load statement.

tmpl.g

In our example, when processing the statement tmp2.h = a, the reification step would start
by tracking the definition of the base variable tmp2. Then, it would replace tmp2.h with
tmpl.g.h, and start tracking the definition of ¢tmpl. Finally, it would replace tmpl.g.h with
y.f.g.h. Thus, when the flow function defined in Case 5 is applied to the reified statement
y.f.g.h = a, it correctly propagates taintedness from a to y.f.g.h.

2.1 Working Example

Figure 2 demonstrates our approach applied to an example program. In this example, the
foo method obtains tainted data from the getTainted method (the taint source), stores it
into the field of a Box object (boxl), then makes a copy of that object (box2), retrieves the
data stored in the field of the copy and passes it to the sink method (the taint sink).

To determine whether the data passed in at the sink, i.e. the box Data variable, is tainted, the
analysis works backward from the sink (line 32), tracking the dataflow fact boxData. In the
prior statement (line 31), boxData is assigned the return value of Box.get, so the summary
for Box.get for the return value must be computed. The summarisation of Box.get starts
at the return statement (line 10), tracking the dataflow fact str (the returned variable). In
the prior statement (line 9), Case 4 applies, which maps back to the fact this.f, after which
the method entry has been reached, so the summary generated for Box.get establishes flow
to the return value from this.f. Returning to the call to Box.get (line 31), the summary is
applied (substituting the actual this object passed in), resulting in a transfer to the dataflow
fact box.f. In the prior statement (line 29), box2 is assigned the return value of copy, so the
summary for that method for the field f of the return value must be generated.

This summarisation of the copy method starts at the return (line 20) with the dataflow fact
cpy.f. In the prior statement (line 19), the Box.put method is invoked on cpy, so the effect
of method Box.put on this.f must be summarised. Case 5 is applied for the store statement
in Box.put and this summary produced is that this.f flows from the argument str.
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public class Box {

}

public static Box copy(Box box) {

}

private String f;

public void put(String str) {
this.f = str;

}

public String get() {
String str = this.f;
return str;

}

Box cpy = new Box();
String data = box.get();

cpy.put(data);
return cpy;

public static void foo() {

String tainted = getTainted();
Box boxl = new Box();

boxl.put(tainted) ;
Box box2 = copy(box1l);

String boxData = box2.get();
sink(boxData) ;

/7 14.
// 13.
// 12.

// 6.
// 5.
7/ 4.
// 3.

// 19.
// 18.
// 17.
// 16.
// 15.
// 11.
// 10.

/7 9.

/) 24
// 23.
// 22.
// 21.
// 20.

// 8.
/7T
// 2.
// 1.

summary (this.f) = {argO}
str
this. f

summary (<ret>) = {this.f}
this. f

str

<ret>

summary (<ret>.f) = {arg0.f}
box. f

bozx. f

reuse summary(Boxz.get, <ret>)
data

compute summary (Boxz.put, this.f)

cpy-f
<ret>.f

0 (null fact)

tainted

tainted

reuse summary(Box.put, this.f)
bozxl. f

compute summary(copy, <ret>.f)
box2. f

compute summary(Boz.get, <ret>)
bozData

Figure 2: A simple program annotated with dataflow facts, as propagated by our algorithm.
Numbers in the comment show the order in which statements are processed.



Returning to copy (line 19), the summary is applied, transferring to the fact data that is as-
signed the return of Boz.get in the prior statement (line 17). The already-computed summary
for Box.get is applied, transferring to box. f, which is unaffected by the prior new statement,
so the summary generated for copy is that the field f of the return value flows from the field
f of the argument.

Returning to foo (line 29), the summary for copy is applied, transferring from box2.f to
boxl.f. At the prior statement (line 27), Box.put is invoked on bozxl. The already computed
summary for Box.put is applied, transferring to tainted, which is unchanged until it is assigned
the return value of getTainted (line 24). For this example, getTainted is designated as a taint
source, so the dataflow fact tainted maps to the null fact.

The null fact always holds, and the analysis has demonstrated that the boxData fact at the
sink is reachable from the null fact. Therefore, the boxData variable passed to the sink is
tainted, and so a bug would be reported for this example.

3 Initial Results

Legacy Taint Analysis IFDS-AP Taint Analysis
TP TN FP FN Runtime TP TN FP FN Runtime

Securibench 99 0 10 39 0.1568 101 0 12 37 0.0184
WebGoat 35 0 1 33 0.5912 35 0 3 33 0.504
OWASP 501 533 451 324 3.7784 732 353 772 100 2.732

Benchmark

Table 1: Results for analysis benchmarks

Taint Analysis TP FP Unknown Runtime

Legacy 96 9 9  6mlb5s
IFDS-AP 121 14 41 3m3s

Table 2: Results for Oracle product A

Our technique has been implemented in the context of Parfait [CKL*12], and applied to the
task of detecting security vulnerabilities in Java EE web applications, such as SQL injections,
cross-site-scripting, etc.

Table 1 shows the results of our analysis applied to three analysis benchmarks, Securibench,
WebGoat and OWASP, compared with the results of our previously used taint analysis.
Table 2 shows the comparison with the analysis applied to an Oracle product. The results
demonstrate that our IFDS analysis detects more real bugs, and does so with significantly
reduced runtime.



4 Related Work

Static taint analysis for the detection of vulnerabilities has a long history in the research
community. In this section, we describe and contrast the state-of-the-art approaches that are
most closely related to ours.

In [LLO5], authors propose to use a flow-insensitive points-to analysis to support a client taint
analysis for Java Enterprise Edition (JEE) web applications. While more modern approaches
gained in scalability and precision, this paper was seminal and triggered a lot of follow-up
research, as presented below.

TAJ [TPFT09] used an approach called thin slicing to perform taint analysis of JEE web
applications. In thin slicing, IFDS is used for flow-sensitive reasoning about tainted flows
through local variables while flows through the heap are handled by using flow-insensitive
pre-computed points-to information. TAJ propagates taint information in a forward manner,
from sources to sinks. Furthermore, TAJ bounds its analysis using various heuristics to keep
its runtime and memory usage to acceptable levels.

Andromeda [TPC™13] first introduced the idea of using access paths in an IFDS-based setup
to compute alias and taint analysis of JEE web applications simultaneously. In Andromeda,
tainted access paths are propagated in a forward manner, from entry points of the program to
security-sensitive sinks. Moreover, Andromeda also computes on-demand aliasing by launch-
ing a backward alias analysis whenever the forward analysis reaches an assignment to a field.
Then, the forward taint analysis propagates taint through the newly discovered aliases, and so
on until a fixed point is reached. Because the length of access paths is unbounded, Andromeda
limits their length to a user-specified value k, a process known as k-limiting.

FlowDroid [ARF*14] integrated the dataflow equations of Andromeda into the IFDS frame-
work and improved precision by sharing information between the taint and alias analyses.
Indeed, in FlowDroid, aliases become tainted only after the original access path becomes
tainted, a mechanism referred to as “activation statements” in the paper. Furthermore,
FlowDroid includes support for Android-specific framework constructs that are hard to anal-
yse statically. FlowDroid also uses a forward taint analysis combined with an on-demand
backward alias analysis that uses k-limiting.

Boomerang [SDABI16] generalised the IFDS-based alias analysis of FlowDroid and decou-
pled it from the taint analysis. In Boomerang, client analyses can issue alias queries that
will be solved on-demand. Boomerang also extends previous work by replacing access paths
with access graphs that can represent multiple access paths of indefinite length. Other-
wise, Boomerang reuses the forward and backward dataflow equations introduced in An-
dromeda [TPC'13] to compute alias information. When using Boomerang instead of its
original alias analysis, FlowDroid could analyze more applications in a given timeout.



5 Comparison with Existing Approaches

An important component of our analysis is the ability to report bug traces for the analysis
results. Indeed, several static program analyses do not keep track of provenance information
and hence cannot produce explanations in the form of a bug trace from a sink to a source.
Because IFDS is fully flow- and context-sensitive and because it stores provenance information
in the form of Path Edges, our approach naturally produces understandable bug traces out-
of-the-box.

Furthermore, contrary to existing approaches that are geared towards soundness, our taint
analysis implementation is geared towards high scalability. For example, in our implementa-
tion, we use the flyweight [GHIV95] design pattern to ensure that each access path is created
only once in memory and reused as many times as needed. Furthermore, we also optimise
away nodes in the exploded supergraph that have only one predecessor and for which the
transfer function is the identity function. Because most nodes fall in this category (e.g. most
statements have only one predecessor and don’t modify tainted access paths), this optimi-
sation speeds up the analysis significantly. (We observed a speedup of up to 45% on large
programs).

Moreover, contrary to [TPCT13, ARF*14] our taint analysis deliberately omits computing
complete aliasing information, which would require an interplay between our backward taint
analysis and a forward alias propagation analysis. This deliberate trade-off of soundness for
scalability drastically reduces the theoretical complexity of our algorithm. Precisely, according
to the definitions in [RHS95], our analysis is h-sparse, because, as shown in section 2, every
transfer flow function produces at most 2 facts, and 2 << |D|, where |D| is the cardinality
of the dataflow domain (e.g. all possible access paths in a program). According to [RHS95],
h-sparse problems have a complexity of O(Call D? + hED?), where Call is the number of
call sites, D is the dataflow domain, and F is the set of intra-procedural edges. On the other
hand, because the number of aliases of a given variable cannot be bounded to h << |D| for
non-trivial programs, an analysis that computes taint analysis together with an alias analysis
is said to be Distributive and has a complexity of O(ED?).

While our technique and [TPC*13] both limit access paths to a maximum size of k, the
approach used in [TPC*13] favours soundness by appending a Kleene star to access paths ex-
ceeding k, that are considered to match all other access paths sharing the same k-prefix. This
may result in spurious taint flows being explored. In contrast, our k-limiting approach favours
precision (and hence scalability, as fewer potential taint flows are explored), by ignoring any
taint flows involving access paths exceeding k.

Table 3 summarizes the novelty of our approach with respect to state-of-the-art approaches.
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