
Analysis of RPO

Quantitative Analysis of Simplified RPO

In this section we analyze a simplified version of the ran-
domized positive override. Instead of the Bayes factor audit
test that is based on the ratios of selection rates, we consider
a model where a violation occurs if the absolute number
of selected candidates from the majority class exceeds the
number of selected candidates from the minority class by
some threshold. Second, the probability of deviating from
UNFAIR (which we call the override probability) is a fixed
constant called pover. Finally, rather than always flipping the
coin to consider overriding each candidate from the group
with lower acceptance rate (which we call the protected can-
didates), we only do so if the current difference in selection
numbers exceeds some threshold, ⌧0.

Algorithm 2 Randomized Positive Override (Simplified)
Input: Prediction Ct, utility Ut, violation Vt, class Pt

Output: New prediction Dt

if Vt(keep) � ⌧ then

Dt = 0Ct

else if Pt = 1 ^ Ct = 0 ^ Vt � ⌧0 then

Dt ⇠ Bern (pover)
else

Dt = Ct

end if

We can model this scenario as a random walk on the in-
tegers, where Wn, the position of the walker at time n, is
the number of selected non-protected candidates minus the
number of selected protected candidates. Moving to the right
represents selecting a non-protected candidate, moving to the
left represents selecting a protected candidate, and staying
stationary represents rejecting a candidate (from either class).

The effect of the failsafe is represented as a reflecting

barrier at the violation threshold b. The effect of the RPO
is modeled by skewing the transition probabilities of the
walker whenever a  Wn < b, where a is the threshold at
which overrides begin. Without loss of generality, we can
take a = 0, since we can always imagine shifting Wn, a, and
b by some constant offset.

Concretely, in addition to b, transitions in the model are
specified by the following parameters:
• pf , qf – transition probabilities at the failsafe:

P (Wn+1 = Wn |Wn = b) = pf
P (Wn+1 = Wn � 1 |Wn = b) = qf = 1� pf

• p, q – transition probabilities in RPO region:
P (Wn+1 = Wn + 1 | 0  Wn < b) = p

P (Wn+1 = Wn � 1 | 0  Wn < b) = q

P (Wn+1 = Wn | 0  Wn < b) = 1� p� q

• pc, qc – base transition probabilities :
P (Wn+1 = Wn + 1 |Wn < 0) = pc
P (Wn+1 = Wn � 1 |Wn < 0) = qc
P (Wn+1 = Wn |Wn < 0) = 1� pc � qc

Note that these transition probabilities are determined by
a number of underlying parameters of the full model. For
example, the q transition probability is determined by the
rate at which candidates of the two classes occur, the under-
lying classifier’s probability of selecting a random protected
candidate, and the override probability pover.

We assume that pc > qc, meaning that without enforce-
ment, the underlying classifier will tend toward violation.
Additionally, we assume that pf 6= qf and p 6= q, and that
qf > 0 and q > 0. An important quantity is the ratio r = p

q .
In addition, we have parameters for expected utility earned

for each transition made in the various regions.
• µ – expected utility earned from a transition made in the

RPO region
• µf – expected utility from a transition at the failsafe

Without loss of generality, we assume that the utility is 0
when transitioning outside of the RPO or failsafe regions.
(Effectively, we measure the difference between utility with
and without enforcement). Again, these average utilities are
dictated by other parameters of the full model.

Let Q(t) measure the utility earned at time t.
Theorem 2. Under the RPO policy,
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The fraction T
T+F+C measures the long run ratio of time

spent in the RPO region, while F
T+F+C is the ratio of time at

the failsafe.
The rest of this section proves this theorem. We need a

number of auxiliary lemmas first.
Lemma 3. Let Wt = i for some time t, where 0  i < b. Let

E be the first time after t such that WE = �1 or WE = b.
Then P (WE = b) = �i, where
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Proof. Set Sn = Wt+n�Wt and An =
⇣

q
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. Then An is
a martingale and E is a stopping time. We have that A0 = 1,
so by the martingale stopping theorem, we have:

E [AE�n] = 1



If at E, we have WE = �1, then SE�n = �i� 1, while if
WE = b, we have SE�n = b� i, hence
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Solving for �i, we have:
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Recalling that r = p
q , and rewriting in these terms, we have:
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Note that �0 = �0 and �b�1 = �1.
Lemma 4. For 0  i, j  b, let sij be the expected number

of times that the random walk, starting from state i will be in

state j before reaching �1. Then

sbb =
1

qf (1� �b�1)

s0b =
�0

qf (1� �b�1)
= F

Proof. By the law of total expectation, conditioning on the
first transition the walk makes from b, we have:

sbb = 1 + pfsbb + qfs(b�1)b

For s(b�1)b, we can condition on whether the walk ever hits
b again before hitting �1 or not:

s(b�1)b = �b�1sbb + (1� �b�1) · 0

By substituting this into the equation for sbb and solving we
obtain the stated result for sbb. Finding s0b is similar.

Lemma 5.
Pb�1

i=0 s0i = T , where T is defined as in the

statement of 2 In other words, if the walker is at state 0, then

the expected number of transitions made in RPO states before

next hitting �1 is T .

Proof. WLOG assume the walker is at state 0 at time 0. Let
Sn be the position of the walker at time n, let Tn be the
number of transitions from states 0, . . . , b� 1 up to time n,
and let Fn be the number of transitions made from state b up
to time n. Set Xn = Sn�Tn(p�q)�Fn(�qf ). Then X0 =
0, and X0, X1, . . . is a martingale with respect to S1, S2, . . . .
Let N be the first time that the walker reaches state �1. Then
N is a stopping time with respect to S1, S2, . . . , so that by
the stopping time theorem, E [XN ] = 0. But we also know
that

E [XN ] = E [SN ]� E [TN ] (p� q)� E [FN ] (�qf )

= �1�
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!
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Setting the above expression equal to 0, and plugging in
the value of s0b in the previous lemma, we can solve for
Pb�1

i=0 s0i and find that it is �1
p�q

⇣
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⌘
= T .

Lemma 6. Let c to be the expected utility incurred for all

transitions starting from when the walker is at 0 until it first

hits �1 again. Then c = µT + µfF .

Proof. From the previous lemmas, we have seen that T will
be the expected number of transitions made in RPO stages,
and F will be the expected number of transitions made at
the failsafe barrier. Since in expectation each transition from
the former has utility µ, and each transition at the latter has
utility µf , the total expected utility follows from Wald’s
equation.

Lemma 7. If the walker is at position �1, the expected

number of transitions until it reaches 0 again is
1

pc�qc
= C.

Proof. Similar to 4, by conditioning on the first transition.

With all of these lemmas in place, we are now ready to
prove 2.

Proof. (2)
Let B0 be the first time at which the walker hits 0. Let N0

be the time it next hits �1. Then define Bi+1 to be the first
time after Ni at which the walker hits 0, and define Ni+1 to
be the first time after Bi+1 at which the walker hits �1.

Then the Vi+1 = Ni+1 �Ni is an IID sequence, and

E [Vi+1] = E [Ni+1 �Ni]

= E [Ni+1 �Bi+1]� E [Bi+1 �Ni]

= T + F + C

Let Ri+1 be the utility earned from Ni to Ni+1. Then (Vi, Ri)
form a renewal sequence with rewards, so that if Q(t) is the
total utility at time t,

lim
t!1

E [Q(t)]

t
=

E [R1]

E [V1]
=

µT + µF

T + F + C

When GBF is Optimal

In our experiments on utility maximization, we observed that
GBF was frequently competitive with OPT. We conduct an-
other set of experiments, with the goal to understand the con-
ditions under which GBF maximizes utility. To answer this
question, we synthesize and experiment with 700 datasets.

Datasets Each dataset belongs to one of three families:
Beta, Pareto (power-law), or Exponential. Within a family, the
scores for candidates coming from C1 and C2 are drawn from
two, independently parameterized versions of the same distri-
bution (e.g., within the Beta family, the scores of candidates
from C1 and the scores of candidates from C2 come from
two, independent Beta distributions, respectively). Letting
µ1 and µ2 be the mean parameters of the Beta distributions
for C1 and C2, and letting M = {0.1, 0.3, 0.5, 0.7, 0.9}, we
consider each pair (µ1, µ2) 2 M ⇥ M , i.e., each pair in
the Cartesian product of the set M with itself. For each pair
of mean parameters, we experiment with 3 different values



(a) Beta (b) Pareto (c) Exponential

Figure 4: Competitive Ratios. Each point in each plot represents the utility achieved by GBF divided by the utility achieved by
OPT averaged over 10 shuffles of a dataset. The x-axis represents the absolute value of the difference between mean parameters
of the score distributions for G1 and G2. Color represents the fraction of the candidates from G1 and mark type represents the
value of the variance parameter (either ⌧ or ↵), when applicable.

(a) Beta (b) Pareto (c) Exponential

Figure 5: Standard Deviations. Each point in each plot represents the standard deviation of the competivite ratio between GBF
and OPT, over 10 shuffles of a dataset. As in Figure 4, the x-axis represents the absolute value of the difference between mean
parameters of the score distributions for G1 and G2. Color represents the fraction of the candidates from G1 and mark type
represents the value of the variance parameter (either ⌧ or ↵), when applicable.

of ⌧ 2: 5, 25, and 50 (⌧ is always the same for C1 and C2).
Similarly, for the Pareto family, letting m1 and m2 be the
mode parameters of the Pareto distributions for C1 and C2,
respectively, we consider each pair (m1,m2) 2 M ⇥M ; we
experiment with 3 different values of ↵3: 2, 5, and 10 (↵ is
always the same for C1 and C2). Finally, for the Exponential
family of datasets, let �1 and �2 be the rate parameters of
C1 and C2, respectively, and let ⇤ = {0.5, 1.0, 2.0, 3.0, 4.0}.
Again, we consider each pair (�1,�2) 2 ⇤ ⇥ ⇤. For each
combination of parameters (e.g., (µ1, µ2, ⌧)), we generate
4 datasets, which differ in the fraction of candidates drawn
from C1, either: 0.5, 0.6, 0.7, or 0.8. Overall, this yields 700
synthetic datasets4. We choose the Beta distributions because
it can be used to model classifier confidences; the Pareto

2The Beta distribution can be parameterized by a mean, µ and
an inverse-variance, ⌧ .

3The Pareto distribution can be parameterized by a mode, µ, and
a shape ↵.

4For Beta (and Pareto): 25 combinations of mean (mode) pa-
rameters ⇥ 3 values of ⌧ (↵) ⇥ 4 different fractions of candidate
from C1; for Exponential: 25 combinations of rate parameters ⇥ 4

distribution because it arises naturally and has been stud-
ied in the context of fair selections (Raghavan et al. 2019);
the exponential distribution to add additional variety to our
experiments.

We run GBF and OPT on 10 random permutations of
each dataset. For the Beta family, we set the score thresh-
old, � = 0.5, and for the Pareto and Exponential families,
� is equal to the expected mean score of all candidates (re-
specting the proportion of C1). We use our first definition
of utility (i.e., Ut(keep) = |st � �|). For each of the 7000
permutations, we calculate a competitive ratio by dividing the
cumulative utility achieved by GBF by the cumulative utility
achieved by OPT. Figure 4 visualizes the average competi-
tive ratios (over the 10 randomizations) as a function of the
difference in mean (mode, or rate) parameter of the score dis-
tributions for C1 and C2. Interestingly, the plot reveals that
when the means are close—no matter the value of the mean,
mode or rate parameter, the distribution family, the variance
of the distribution, or the fraction of the candidates from

different fractions of C1 candidates.



group C1—the average competitive ratio for GBF is high.
This suggests that when the average scores of the candidates
from C1 and C2 are similar, GBF is likely to be sufficient in
terms of maximizing utility. On the other hand, when there is
significant disparity in the average scores of candidates from
C1 and C2, there is more uncertainty in the competitiveness
of GBF. That said, even when significant disparity exists,
under some score distributions, GBF remains highly competi-
tive with OPT. However, no global trends are observed when
uncertainty (i.e., ⌧ and ↵) or the fraction of candidates from
C1 are increased/decreased. We note that when the difference
between mean parameter is low, the standard deviation of the
competitive ratio is also low; as the difference increases, so
does the spread of standard deviations across experimental
conditions (Figure 5).


