
Profile-Guided Field Externalization in an1

Ahead-of-Time Compiler2

Anonymous author3

Anonymous affiliation4

Anonymous author5

Anonymous affiliation6

Anonymous author7

Anonymous affiliation8

Anonymous author9

Anonymous affiliation10

Anonymous author11

Anonymous affiliation12

Abstract13

Field externalization is a technique to reduce the footprint of objects by removing fields that most14

frequently contain zero or null. While researchers have developed ways to bring this optimization15

into the Java world, these have been limited to research compilers or virtual machines for embedded16

systems. In this work, we present a novel field externalization technique that uses information17

from static analysis and profiling to determine externalizable fields. During compilation, we remove18

those fields and define companion classes. These are used in case of non-default-value writes to19

the externalized fields. Our approach also correctly handles synchronization to prevent issues in20

multithreaded environments. We integrated our approach into the modern Java ahead-of-time21

compiler GraalVM Native Image. We conducted an evaluation on a diverse set of benchmarks that22

includes standard and microservice-based benchmarks. For standard benchmarks, our approach23

reduces the total allocated bytes by 2.76% and the maximum resident set size by 2.55%. For24

microservice benchmarks, the allocated bytes could be reduced by 6.88% and the maximum resident25

set size by 2.45%.26

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its27

engineering → Object oriented languages; Software and its engineering → Classes and objects28

Keywords and phrases compilation, instrumentation, profiling, fields, externalization, memory29

footprint reduction, memory footprint optimization30

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2331

Funding Anonymous funding32

Acknowledgements Anonymous acknowledgements33

1 Introduction34

Optimizing a program for speed, efficiency, and safety is a crucial goal of most compilers.35

In modern languages, such optimizations frequently concern objects and similar structured36

types. Java is a language that enables object-oriented programming at a high abstraction37

level without sacrificing performance. As manyfold as the usage scenarios of objects are in38

Java, as varied are the optimizations that compilers can apply. Optimizations on objects39

tend to fall into two categories: Reducing the memory footprint of objects and improving the40

efficiency of accesses to the objects’ properties and methods. Object allocations are made41

more efficient by directly allocating into thread-local allocation buffers [23] or are eliminated42

altogether via escape analysis [11, 52]. Escape analysis typically also removes field accesses43

© Anonymous author(s);
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

externalizable

class Order {
 long orderId;
 Item[] items;
 double shippingCosts;
 String discountCode;
}

(a) Order class with an ID, an ar-
ray of (unspecified) items, shipping
costs, and a discount code. The ex-
ample assumes that shippingCosts
and discountCode are rarely needed
and thus externalizable.

class Order {
 long orderId;
 Item[] items;
 Order$Companion _ref;
}

class Order$Companion {
 double shippingCosts;
 String discountCode;
}

(b) Externalized version of Order including its generated compan-
ion class that holds the externalized fields. The original class is
augmented with a new _ref field that references the companion
object if allocated. In later parts of the paper we detail improve-
ments that allow us to eliminate this field.

Figure 1 Original and externalized representation of an Order class that is used as a continuous
example to explain various aspects of our field externalization implementation.

via scalar replacement, thus improving performance. Dynamic dispatch on methods is also a44

frequent target for optimizations. Compilers try to devirtualize calls [22], inline them [1, 26],45

or use inline caches [10, 12, 18, 19, 26, 64] to optimize for the most common cases. Other46

optimizations aim to shrink the object header [24, 58], a prefix in every object that references,47

among other things, type information and the virtual method table. While compilers also try48

to minimize the memory consumption of objects, the range of techniques [8, 56] applicable49

in this area has been more limited so far.50

When analyzing heap dumps of Java applications, we noticed that certain fields of51

objects often just hold their default values. Other researchers have pointed out similar52

findings [3, 9, 16, 47]. This shows potential for optimizations, as such objects occupy more53

memory than necessary. Especially in cloud and serverless computing, reducing the memory54

footprint of applications is important. Thus, we propose a novel form of field externalization—55

a technique for removing such fields, thereby reducing the memory footprint of objects and56

thus the overall memory consumption of an application.57

The Order class shown in Figure 1a is used as a running example throughout this paper.58

In this example, an order consists of an ID, an array of order items (the implementation of59

which is irrelevant for this example), the shipping costs, and a discount code. We assume that60

the first two fields are non-zero and non-null in most objects. However, both shippingCosts61

and discountCode are not; they are mostly zero or null (the default values for these fields)62

and only hold relevant values in a small number of objects.63

Via field externalization, we can optimize the layout of the Order class by removing64

fields that hold default values in most cases. This results in the layout presented on the65

left-hand side of Figure 1b. However, as optimizations have to ensure that also corner66

cases are handled correctly, we must be able to handle shippingCosts and discountCode67

if they are ever set to a non-default value. Therefore, we create a new class, the so-called68

companion type Order$Companion, that stores the externalized fields, i.e., the fields that69

were removed from the original Order class. Additionally, we introduce a pointer in the70

original class—we call this the companion reference field. Initially, this pointer is null. If a71

non-default value is assigned to an externalized field, an instance of the companion type—the72

companion object—is allocated to store the field value. This companion object is assigned to73

the companion reference field. Hence, writing a non-default value to an externalized field74

introduces some overhead. However, as allocating the companion object should only be75

necessary in a few cases, these costs are outweighed by the reduced overall footprint of the76

other objects.77

Anonymous author(s) 23:3

Various researchers have developed approaches to integrate field externalization into78

compilers [3, 9, 16, 47]. Notably, most are based on just-in-time (JIT) compilers [3, 9, 16],79

compilers for embedded systems [9, 16, 47], or research compilers [3, 47]. These approaches80

have shown promising results in combating memory consumption in Java programs. However,81

we could not find any contemporary approach that reliably enables field externalization in82

a production-grade compiler without compromising language or run-time features such as83

multithreading.84

Therefore, we propose a novel approach for field externalization in the state-of-the-85

art ahead-of-time (AOT) compiler framework GraalVM Native Image [61, 62]. It works86

by first gathering profiling information for a target program in an offline profiling run.87

Then, we combine the profiling information with information from Native Image’s points-to88

analysis [17, 46, 51] to identify and subsequently externalize fields that most often hold89

their default value. Furthermore, we developed a synchronization mechanism for accesses to90

externalized fields that adheres to the Java Memory Model [30].91

With this work, we make the following contributions:92

1. A profiling approach that utilizes both static analysis as well as field-level profiling to93

identify fields for optimization.94

2. A novel profile-guided field externalization approach in a modern AOT compiler that95

preserves program semantics even in multithreaded environments.96

3. An evaluation of our approach on standard and microservice benchmarks measuring97

memory footprint, run-time performance, and image size.98

The paper is structured as follows: Section 2 describes GraalVM and GraalVM Native99

Image, focusing especially on components that are important for our approach. In Section 3,100

we summarize our profiling methodology and its implementation. We explain the detailed101

approach of field externalization in Section 4, where we also cover notable improvements and102

details about the integration into Native Image. Section 5 presents the results of applying our103

approach to a large set of benchmarks. We explain our evaluation methodology and discuss104

the results in detail. In Section 6, we list the limitations of our approach. In Section 7, we105

compare our techniques to related work.106

2 Background107

We integrated our approach into GraalVM Native Image [34, 61, 62] based on GraalVM 23.1108

with Java version 21: We use its profile-guided optimization feature [4, 6, 39, 49, 61] to first109

collect information about field values in a profiling run on an instrumented executable and110

subsequently externalize rarely written fields based on this profiling information during the111

compilation of the final executable.112

2.1 GraalVM113

GraalVM is a high-performance, polyglot virtual machine [34, 64] designed to run programs114

written in a wide range of languages. It can handle traditional Java-bytecode languages, such115

as Java, Kotlin, and Scala, as well as languages like JavaScript [35], Ruby [38], Python [33],116

and even C/C++[43]. The GraalVM compiler is a state-of-the-art JIT compiler within117

GraalVM [13, 28, 52]. It uses a graph-based intermediate representation (the Graal IR) [13,118

14] and performs optimizations such as inlining, constant folding, loop unrolling, and escape119

analysis [27, 64]. When used as a JIT compiler in a regular Java Virtual Machine (JVM),120

GraalVM collects run-time information to guide its optimizations. For instance, it identifies121

CVIT 2016

23:4 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

hot methods, frequently taken branches, and targets of virtual calls. By exploiting this122

data, the compiler can further optimize the application according to the observed workload.123

However, relying on run-time profiling data means that optimizations only take full effect124

once the application has been running long enough to gather representative insights. This125

can lead to slower startup times.126

2.2 GraalVM Native Image127

To provide fast startup times and reduced resource usage, GraalVM offers Native Image [61,128

62], an AOT compiler that compiles a Java application ahead of time into a self-contained129

native binary (the so-called image). This binary bundles the application code, all necessary130

libraries, and a lightweight runtime called SubstrateVM, which provides essential services131

such as threading and garbage collection, into a single executable [36]. Once compiled,132

no standard JVM is needed at run time, and the startup performance can be improved133

by up to two orders of magnitude compared to the Java HotSpot VM [62], which can be134

critical for short-lived processes, serverless functions, or microservices. A key concept in135

GraalVM Native Image is the closed-world assumption [62]. Under this assumption, all136

classes, methods, and fields that may possibly be accessed at run time must be known at137

compile time. This contrasts with the traditional JVM, where classes can be dynamically138

loaded at run time. The closed-world assumption allows GraalVM Native Image to perform139

powerful whole-program static analyses.140

2.2.1 Points-to Analysis141

One important step performed by GraalVM Native Image during static analysis is the142

points-to analysis [17, 46, 51]. This analysis determines which objects, fields, and methods143

can be reached from the program’s entry point. By understanding which objects point to144

which other objects (and thus which fields and methods are relevant), Native Image can145

identify what parts of the code are actually needed. Points-to analysis builds a global, static146

view of the application’s data flow. The analysis can reveal, for example, that a certain147

type’s fields are never written to or that certain methods are never invoked. Since Native148

Image has all code available at compile time, it uses this analysis to optimize the final binary.149

2.2.2 Image Heap150

In the context of GraalVM Native Image, the image heap refers to a specialized, pre-initialized151

memory region that is embedded into the native executable [62]. During the Native Image152

compilation process, GraalVM analyzes the application to determine which objects that are153

needed at run time can already be created at compile time and stored in the image heap. For154

example, java.lang.Class objects that represent the type descriptors of objects in Java155

are stored there. Furthermore, class initializers can often be already executed at compile156

time. Since many objects are already present in the image heap, the native executable157

doesn’t need to perform extensive object allocation and initialization at startup. This leads158

to significantly reduced startup times compared to traditional JVM applications that rely on159

JIT compilation and need to allocate all objects at run time [62].160

2.2.3 Profile-Guided Optimization161

Unlike a JIT compiler, which relies on program behavior observed at run time, an AOT162

compiler has no direct knowledge of how code executes under real workloads. Without163

Anonymous author(s) 23:5

further input, it must rely solely on static heuristics to guide optimizations, which can limit164

the potential improvements. Profile-guided optimization (PGO) addresses this limitation [4,165

6, 39, 49, 61]. PGO is a technique in which the AOT compiler is supplied with run-time166

execution data collected from a representative workload. This approach mirrors how a JIT167

compiler uses run-time profiling, but shifts the process to compile time via a two-stage168

compilation workflow:169

1. Instrumentation and Profiling Phase:170

First, an instrumented version of the application is generated by Native Image. This171

instrumented binary contains additional logic to record information about the program172

as it runs. When executed with a suitable workload that reflects real usage scenarios, the173

instrumented binary collects detailed run-time data, including call frequencies, branch174

probabilities, and type occurrences. At the end of this run, the collected profiling175

information is stored in a file.176

2. Optimized Compilation Phase:177

In the second stage, the profiling data is fed back into Native Image to produce a new,178

optimized binary. Equipped with the recorded execution patterns, the AOT compiler179

can apply more informed optimizations, such as refining method inlining decisions and180

optimizing frequently executed hot paths.181

This two-phase compilation adds complexity and overhead to the build process. However,182

once the optimized binary is produced, it can be deployed and run without incurring any183

additional overhead.184

PGO enables AOT compilers to tailor optimizations to specific workloads. When the185

workload employed during the instrumentation phase closely resembles the production186

environment, the resulting binary is finely tuned for that particular scenario. In essence,187

PGO provides workload-specific optimizations comparable to those offered by JIT compilers,188

but in a context where all code is precompiled to native form. This technique is also utilized189

in related work [7, 15, 25, 29, 57, 63, 65].190

It is important to distinguish PGO from machine-learning-based optimization tech-191

niques [45], which typically utilize a larger and more diverse set of inputs to optimize a192

broader range of applications. The objective of machine learning is to train models that193

can reliably predict optimization opportunities in new programs based on extensive training194

datasets. In contrast to that, PGO aims to optimize a program for a specific workload.195

Developing a generalized version of the program that performs efficiently across different196

workloads is an explicit non-goal of PGO. Thus, our evaluation is conducted accordingly. We197

employ the same workload for both profiling and measurement phases, although the profiling198

workload is smaller in size compared to that used for measurements.199

3 Field Profiling200

To enable field externalization, we collect two kinds of information: information that is201

gathered statically during the compilation of the instrumented program (e.g., information on202

objects in the image heap) as well as information that is gathered dynamically during the203

execution of the instrumented program.204

The information that is computed at compile time is only available very late in the205

compilation process, e.g., after the compilation of all methods or when computing the206

layout of all types. Field externalization, however, has to be initiated early to adapt the207

corresponding types and field accesses. Therefore, we want to communicate such information208

from the first compilation (for the instrumented binary) to the subsequent, optimizing209

CVIT 2016

23:6 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

Table 1 Overview of all metrics we collect. The level describes the granularity at which the
tracking is performed.

Metric Level Description

allocations Type The number of allocations of a type.
size Type The exact and unaligned size of the instances of a type. Used to calculate

how many bytes need to be externalized to achieve a reduction of the
instance size for that type.

non-default
value count

Field The number of objects of a type that hold a non-default value for a
specific field at any point during the execution of the program.

access kind Field Indicates whether the field is eligible, unused, or accessed via reflection,
in an unsafe context, or in a VM-internal context.

compilation. We do this by storing compile-time profiling information in the compiled210

binary itself. When executing the instrumented binary, we collect the run-time profiling211

information and merge it with the static profiling information stored in the binary. This212

combined profiling information is then stored in the profiling file and subsequently used for213

optimizations in the final compilation of the program.214

3.1 Information needed for field externalization215

As it is expensive to write a non-default value to an externalized field, we need to make216

sure to only externalize fields where such writes happen rarely compared to the number of217

allocated objects of that type. Therefore, we need to know how many objects of a certain type218

are allocated. For each field, we also need to know in how many objects the respective field219

ever holds a non-default value. Furthermore, we need information about the size of a type,220

so that we can calculate how many bytes we need to remove from a type to achieve an actual221

size reduction (taking alignment into account). The points-to analysis (cf. Section 2.2.1)222

of GraalVM Native Image is able to detect fields that are unused; they will be removed223

automatically. We don’t want to hinder that optimization and thus have to detect and224

prevent externalization of such fields. Finally, as we cannot safely externalize fields that are225

accessed in an unsafe context (via sun.misc.Unsafe) or in a VM-internal context, we also226

have to store information about incompatible accesses per field.227

3.2 Metrics228

We present our collected metrics in Table 1. The level indicates whether the metric is229

collected per type or per field. Details of the individual metrics are discussed below.230

Allocations To accurately track the number of allocations per type, we consider both231

compile-time information and run-time information. As explained in Section 2.2.2, Native232

Image already allocates objects at compile time and stores them in the image heap. Thus,233

we count those instances before they are written into the final binary. We track the objects234

allocated at run time during garbage collection, i.e., for each object allocation, we increment235

the counter for the respective type.236

Size The size of a type is computed late in the compilation process, whereas field external-237

ization requires this information early in the compilation process. Hence, when compiling238

the instrumented program, we store the types sizes in the profiling data.239

Anonymous author(s) 23:7

instrumentation

profiling fields

Order

long orderId

Item[] items

double shippingCosts

String discountCode

Order

long orderId

Item[] items

double shippingCosts

String discountCode

boolean _orderIdCounted

boolean _itemsCounted

boolean _shippingCostsCounted

boolean _discountCodeCounted

Figure 2 Instrumentation of the Order class from Figure 1 to track the non-default value counts.
A profiling field is added for each original field.

Non-default value count We track this metric at field level. For each field, the metric240

represents the number of objects that—at any point during the execution of the program—241

held a non-default value in this specific field. For example, if a non-default value is written242

ten times to the same field for a single object, the non-default value count is only increased243

by 1. This metric is important for the selection of externalized fields, as only fields that244

have a low non-default value count—compared to the number of objects allocated of that245

type—are good candidates for field externalization. We do not count the total number of246

writes to a field, as a single non-default value write is enough to cancel out the achieved247

memory reduction for a single object due to the required companion object. Similar to the248

allocations metric, we also consider the objects in the image heap for this metric.249

To identify first-time non-default value writes for each field/object combination, we250

instrument all types in the profiling run. For each field, we generate an additional boolean251

field that indicates whether a non-default value has already been written for that field/object252

combination, as can be seen in Figure 2. To correctly track the non-default value count,253

we have to instrument all field writes. The instrumentation of field accesses is depicted in254

Figure 3. First, we check whether the value written to the field is a non-default value, i.e., in255

the example, we check whether x is not null. In that case, we verify that the field has not256

yet been written for this object. If so, we set the profiling field to true and increment the257

counter associated with the non-default value count metric for that field.258

Order o = ...;
o.discountCode = x;

Order o = ...;
if (x != null && !o._discountCodeCounted) {

 o._discountCodeCounted = true;
 <increase non-default value count for discountCode>
}

o.discountCode = x;

instrumentation

Figure 3 Instrumentation of a write to the discountCode field from the example in Figure 1.

Access kind As Native Image performs extensive static analysis, including points-to analysis259

(cf. Section 2.2.1), we are able to identify where and how fields are accessed. However, again,260

this information is only fully available late in the compilation process, and thus, similar to the261

size metric, we store that information in the profiling data when compiling the instrumented262

program. The access kind denotes one of three cases: Unused, when the field is unused and263

thus deleted by Native Image, incompatible, when the field is accessed using reflection, in an264

CVIT 2016

23:8 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

unsafe context or in a VM-internal context, or eligible, for fields that do not fall into any of265

the other categories. Only eligible fields are considered relevant for field externalization.266

4 Field Externalization267

The goal of field externalization is to reduce the memory footprint of an application by268

reducing the size of objects. To do so, we use heuristics based on the profiling information269

described before to identify fields where the default value dominates within types and to270

determine whether removing them from a type is beneficial. If we remove fields, we have to271

adapt their accesses within the compiled code: In case we ever write a non-default value, a272

companion object has to be allocated that consequently stores this field value. Subsequent273

accesses to externalized fields of the object then have to access this companion object. To274

actually benefit from field externalization, we need to minimize the number of required275

companion objects by tuning the heuristics accordingly.276

4.1 Externalization Heuristic277

Early in the compilation of a program, we load the profiling information generated during278

the instrumented run. For every type, we query the profiling data for its fields and use the279

metrics described in Section 3.2 to determine whether externalization is beneficial. Notably,280

we disallow externalization of types for which we do not have profiling data or for which the281

profiling reports no allocations. First, we determine a set F of all externalizable fields of a282

type as follows:283

1. We only externalize fields where the access kind shows eligible accesses, i.e., we don’t284

support externalization of unused or incompatible fields.285

2. We determine the fraction of non-default values in all allocations, i.e., the percentage of286

instances where the field at some point held a non-default value. We compare this with287

a configurable threshold and mark the field for externalization if its non-default value288

fraction does not exceed this threshold:289

non-default value count
allocations ≤ externalization threshold290

Based on experiments, we use 5% as a default value for this threshold because it yielded291

the overall best results in our benchmark set.292

While this approach yields all externalizable fields of a type, we still need to determine293

whether externalization of those fields actually shrinks the objects of this type. Consider294

the Order class from the initial example in Figure 1. Figure 4a depicts the initial memory295

layout of an object of this class: The object header typically takes up 8 bytes. Compressed296

object pointers [32, 62] reduce the size of reference fields to 4 bytes. As the figure shows, this297

results in an overall size of 32 bytes. Native Image aligns objects at 8-byte boundaries [62];298

with a size of 32 bytes this requirement is already met. The requirement for externalization299

is to reduce the size to at least the next smaller alignment boundary (24 bytes). Otherwise,300

the reduction in the type size is canceled out by the alignment. In the example, this means301

that we have to reduce the overall size by 8 bytes. We have to take into account that our302

externalization approach injects a new reference field (4 bytes) into the type that points303

to a companion object if this is needed. Therefore, the required reduction in the example304

increases to 12 bytes.305

Figure 4b shows the result of externalizing the shippingCosts, an 8-byte double field.306

Unfortunately, if we consider the 4 bytes of the injected _ref field, the object size is only307

Anonymous author(s) 23:9

object structure size
(bytes)

object header 8
long orderId 8
Item[] items 4
double shippingCosts 8
String discountCode 4

before alignment 32
after alignment 32
req. externalization 12

(a) Layout of an Order object
from Figure 1 assuming an 8 byte
object header, compressed object
pointers [32, 62], and 8 byte align-
ment [62].

object structure size
(bytes)

object header 8
long orderId 8
Item[] items 4
double shippingCosts 0
String discountCode 4
Order$Companion _ref 4

before alignment 28
after alignment 32
size reduction 0

(b) Layout of Order where
discountCode has been external-
ized but overall object size remains
the same due to the required ad-
dition of a _ref field.

object structure size
(bytes)

object header 8
long orderId 8
Item[] items 4
double shippingCosts 0
String discountCode 0
Order$Companion _ref 4

before alignment 24
after alignment 24
size reduction 8

(c) Layout of Order
where discountCode and
shippingCosts have been exter-
nalized, resulting in a reduction
of the object size by 8 bytes

Figure 4 Memory layout of the Order class from Figure 1 before and after externalization.

reduced to 28 bytes and alignment brings this up again to 32 bytes. The situation is different308

when externalizing both shippingCosts and discountCode, as shown in Figure 4c: The309

overall reduction (including the injected field) is now 8 bytes, which reduces the object size310

to 24 bytes—again at an 8-byte-alignment boundary.311

Profiling information gives us the size t_size of each type before alignment (cf. Section 3.2).312

Assuming the injected field size to be ref_size, and an alignment of 8 bytes, the minimal313

required amount of bytes that must be externalized is calculated as follows:314

min. externalization bytes = ref_size +
{

8, if t_size mod 8 = 0
t_size mod 8, otherwise

315

Then, we use the following formula to determine whether externalization is beneficial for316

the set of theoretically externalizable fields F that we derived in the prior step:317 ∑
f∈F

sizeof(f) ≥ min. externalization bytes318

If the result is to externalize the fields F , we subsequently delete them from the type.319

For each type with externalized fields, we create a corresponding companion type, a synthetic320

class that only contains the externalized fields of the class. Subsequently, we inject the _ref321

field—also called companion reference field—that may reference a companion object if needed322

into the type with externalized fields.323

4.2 Rewiring Accesses to Externalized Fields324

Externalizing fields into companion classes is only the first step in the externalization process.325

Next, we have to adapt all accesses to externalized fields, as shown in Figure 5. Values of326

externalized fields are now stored in the corresponding fields of the companion object. This327

object, however, should only be allocated if we write a non-default (non-zero/non-null) value328

to an externalized field. Therefore, regardless of the access kind, we have to make a case329

distinction on whether a companion object exists. For each object, we store this information330

in an additional header bit, which we call the companion allocated (CA) bit. If the bit is331

CVIT 2016

23:10 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

Order o = ...;
var x = o.discountCode;

(a) Read access to discountCode before
field externalization.

Order o = ...;
o.discountCode = y;

(b) Write access to discountCode before field exter-
nalization.

Order o = ...;
var x;
// check whether companion exists
if (<ca_bit_set>(o))
 x = o._ref.discountCode;
else
 x = null; // use default value

(c) Read access to discountCode after field
externalization. Since the field no longer
exists within the original type, we either
yield the default value or have to get the
field value from the companion object de-
pending on the result of the CA bit check.

Order o = ...;
if (<ca_bit_set>(o)) { // check whether companion exists
 o._ref.discountCode = y;
} else if (y != null) { // default value check
 var _cmp = new Order$Companion(); // allocate companion
 _cmp.discountCode = y; // write companion field
 o._ref = _cmp; // store companion in original object
 <set_ca_bit>(o); // mark existence of a companion
} // no write if we write the default value

(d) Write access to discountCode after field external-
ization. Depending on whether the CA bit is set, we
may have to allocate a companion object if the value
to write is not the default value.

Figure 5 Accesses to fields of the Order class before and after field externalization.

unset, no companion object exists and the fields never held anything other than the default332

value. This is the ideal case and our heuristics mentioned in Section 4.1 are tuned to ensure333

that this is the most frequent case. Hence, we have to adapt the field accesses in such a334

way that this case is still efficient. If the bit is set, it indicates that an object already has335

a companion object. This should be the outlier case which we want to avoid as much as336

possible, as the companion object consumes additional memory.337

Read Accesses Figure 5a shows a read access to the discountCode field of the Order class.338

Figure 5c depicts the adaption of the read access when the field is externalized. At every339

access to an externalized field, we have to introduce a header bit check (CA bit) that tells us340

whether the object already has a companion object. If the bit is unset, the read is trivial as341

this tells us that the field still holds its default value. This is the fast path and should be the342

default case. Thus, we can simply yield the default value as a result of the read access. If343

the bit is set, the companion object must exist and we have to load it from the _ref field to344

get the actual field value.345

Write Accesses For write accesses, as shown in Figure 5b, we need to do more work, as each346

write may require the allocation of a companion object. Figure 5d depicts the adaption of347

write accesses to an externalized field of the Order class. Again, the CA bit tells us whether348

the object already references a companion object. If a companion object exists, we write the349

new value to the corresponding companion object field. If the bit has not been set, we have350

to check the value that is written. If we again want to write the default value (null or zero)351

to this field and the companion object does not exist yet, we can simply skip the write as352

the field is guaranteed to still hold the default value. This is the optimal case and should be353

the most frequent path. However, if we write a non-default value, we have to allocate a new354

companion object and write the value to the field in the companion object. Additionally, we355

have to store the companion object in the original object and set the CA bit to communicate356

this change to future accesses. This is the slow path. After the companion object has been357

allocated, all the benefits that we achieved for this particular object by reducing its size are358

voided. Thus, our heuristics should minimize the frequency of this case.359

Anonymous author(s) 23:11

o.dC = "abc";
o.sC = 20.0;

thread t1 thread t2

o.dC == "abc" && o.sC == 20.0

(a) Write access to Order fields from mul-
tiple threads before field externalization.

var _c = new O$C();
_c.dC = "abc";

o._ref = _c;
<set_ca_bit>(o);

var _c = new O$C();
_c.sC = 20.0;
o._ref = _c;
<set_ca_bit>(o);

thread t1 thread t2

o._ref.dC == "abc" && o._ref.sC == null

(b) Write accesses to Order fields from multiple threads after
field externalization if the companion object was not created
before. As two threads may simultaneously allocate compan-
ion objects and store them in the original object, the result
is a lost update as the companion object from thread t2 is
overwritten by the one from thread t1.

Figure 6 Write access in multiple threads to fields of the Order class before and after field
externalization. For brevity, we abbreviate the fields discountCode and shippingCosts with dC and
sC, and the companion class Order$Companion with O$C.

4.2.1 Adhering to the Java Memory Model360

The adaptations necessary to handle accesses to externalized fields are trivial in principle.361

However, it gets more complicated when we consider their effects in the context of the Java362

Memory Model, which defines the language semantics in multithreaded environments [30].363

Particularly, the writing process is affected, as a write to an externalized field may now364

consist of multiple instructions, which may interfere with each other if executed on the same365

object in different threads. Figure 6a shows the behavior of two write accesses to fields of366

the same object in multiple threads without externalization. After the writes have been367

completed, both values are eventually 1 visible in the object. Figure 6b shows what could368

happen when writing to externalized fields: Here, we assume that the target object does369

not have a companion object yet—the CA bit is unset—and both threads want to write370

non-default values to two independent fields, forcing allocation of a companion object. Thread371

t1 first allocates a companion object and stores a value to the first field. Then, thread t2372

resumes, also allocates a companion object and stores a value to the second field. In the373

example, t2 immediately stores the companion object in the original object and sets the CA374

bit. When t1 resumes, it also stores its companion object in the original object and thus375

overwrites the _ref field. This results in a lost update as the value written in thread t2 is376

lost. In fact, the order of the writes does not even matter: the allocation of two different377

companion objects for the same original object is a problem in terms of the memory model.378

Therefore, we need to introduce a synchronization mechanism for externalized field writes.379

As read accesses can simply rely on the CA bit to determine whether a companion object380

exists, they require no modification. If another thread writes a non-default value to the same381

field at the same time and thus allocates a companion object, this would result in a race382

1 Omitting the fact that non-volatile writes within threads may not be visible to other threads immedi-
ately [30]—the overall problem still remains.

CVIT 2016

23:12 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

condition in the case of a non-synchronized access even without field externalization. Thus,383

we can treat this simply as a race condition.384

Figure 7 describes the synchronization process we introduce to correctly mimic field write385

semantics in our Order example. The dashed green path denotes the fast path and thus the386

most frequent one. The initial steps remain the same: We check whether a companion object387

exists (via the CA bit). If so, we write the value into the companion object. Otherwise, we388

check whether the write concerns the default value. If that is the case, the write can be389

omitted. The process differs when we write a non-default value and thus require a companion390

object. First, we allocate the companion object (A) and assign the field value (B). Note that391

this can be performed by multiple threads at the same time per object. Next, however, we392

use an additional header bit—the companion-in-creation (CC) bit—that indicates whether393

some other thread currently allocates the companion. We use a compare-and-set (CAS)394

instruction [20] (C) that atomically tries to set the CC bit if and only if it has not been395

set. A CAS is a three-operand instruction that takes an expected value (the object header396

where the CC bit is zero), a destination operand (the address of the object header) and a397

source operand (the object header with the CC bit set). Then, it performs the following398

steps atomically: First, it compares the expected value with the value in the destination399

operand. If the values match (the object header does not have the CC bit set), it writes the400

value in the source operand to the destination operand (sets the CC bit) and returns the401

expected value. If the values are different, it returns the value in the destination operand402

(the actual object header). Subsequently, we can use the return value of the instruction403

to determine whether the current thread could set the CC bit. Therefore, the CAS can404

only ever succeed for a single thread per object. We call this thread the CC thread. The405

CC thread subsequently enters a protected region, where it can safely assign the companion406

object it previously created (D) and also set the CA bit (E) to signal that a companion407

object is available now. Any other thread that tried to CAS the CC bit at the same time has408

to wait until the CC thread has completed the assignment of the companion. We introduce409

a spin lock [21, 50] (F) that loops until the CA bit is set. Note that this branch is entered410

very infrequently, namely only if two threads try to allocate a companion object for the same411

object at the same time. Once the thread leaves the spin lock, it can safely assume that a412

companion object exists and can thus access it and perform its field write (G).413

4.3 Compile-Time Externalization414

As explained in Section 2.2.2, objects that can be created at compile time, but are needed at415

run time, are already allocated during compilation and are stored in the image heap. Our416

externalization process, however, only affects the objects that are created at run time—objects417

allocated at compile time still adhere to their original layout. To ensure that the objects418

in the image heap are compatible with the types after externalization, we introduce special419

handling for all compile-time-allocated objects that have externalized fields. When writing420

those objects into the image heap, we check whether they contain a non-default value for421

an externalized field. If so, we allocate a companion object and copy the values of the422

externalized fields to the companion object. Finally, we link the companion object with the423

original object (now reduced to its non-externalized fields and the companion reference) and424

also store the companion object in the image heap. Thus, the object representation in the425

image heap is compatible with the types after externalization.426

Anonymous author(s) 23:13

yes: o has a comanion object no: o has no companion object

o._ref.discountCode = x

field write complete

<ca_bit_set>(o)

x is default value no: x is no default value and
requires a companion object

var _cmp =
new Order$Companion()

CAS success:
the bit was set

CAS failure: the bit
was set by another thread

pr
ot
ec
te
d
re
gi
on spin lock until

CA is set

notify spinning
threads

<cas_cc_bit>(o)

wait for other thread
to assign companion

o._ref.discountCode = x

companion is available
after spin lock

<set_ca_bit>(o)

o._ref = _cmp

_cmp.discountCode = x

yes: x is the default value
and we can skip the write

Order o = ...;
o.discountCode = x;

A

B

D F

C

E
G

Figure 7 Write accesses to externalized fields including a synchronization mechanism that uses 2
header bits (CA, CC) to ensure that for a specific object only one thread can assign the companion
object. The dashed (green) path is the (most frequent) fast path.

4.4 Field Externalization and Class Inheritance427

Consider the case when a class A has some fields that can be externalized. Suppose that a428

subclass B of A also has externalizable fields, making it eligible for externalization according429

to our heuristic. With our current approach, B would require two companion reference fields430

(for A$Companion and for B$Companion), and thus 4 header bits (two bits per reference field).431

Hence, field externalization does not scale efficiently with class hierarchies. Furthermore,432

the number of object header bits that can be used for field externalization is limited, hence,433

preventing us from using more than 2 object header bits. However, as externalizing fields of434

classes that already have externalized superclasses is beneficial (as it can further shrink the435

object size), we want to support it as well.436

4.4.1 Companion Inheritance437

We present the solution to externalizing fields of class hierarchies based on the example in438

Figure 8. The example shows three classes A, B, and C, where A is the superclass of B and B439

is the superclass of C. In the example, two fields of class C can be externalized. However, the440

superclass A also has externalized fields. To solve this problem in an efficient manner, we441

propose that the companion type that is created for C (C$Companion) is defined as a subclass442

of the companion type of the (closest) externalized superclass (here A$Companion). Thereby,443

the problems mentioned above are solved, as at most one companion object is needed for an444

object. The C$Companion instance now contains both: the fields externalized in C, as well as445

the fields externalized in A. Therefore, only a single companion reference field and 2 object446

header bits are needed.447

However, this approach introduces an additional challenge: We can no longer determine448

at compile time which companion object should be allocated when writing to an externalized449

CVIT 2016

23:14 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

field. For example, if a method has a parameter of type A and subsequently writes a non-450

default value to the a1 field, we would either have to allocate an A$Companion object or a451

C$Companion object depending on the actual object. Thus, the allocated companion object452

now depends on the dynamic type of an object. We solve this by introducing a run-time type453

check on the object, but this introduces overhead in terms of performance and code size.454

Companion creation

if (/*companion allocation required*/) {
 var _cmp = new A$Companion();
 ...
}

Adapted
if (/*companion allocation required*/) {
 var _cmp;
 if (o.getClass() == C.class) {
 _cmp = new C$Companion();
 } else { // o.getClass() == A.class ||
 o.getClass() == B.class
 _cmp = new A$Companion();
 }
 ...
}

Original

A

long a1

String a2

int a3

A$Companion _ref

B

float b1

int b2

C

double c1

float c2

int c3

C$Companion

double c1

float c2

A$Companion

long a1

String a2

Figure 8 Companion hierarchy for a class hierarchy with multiple types with externalized fields.
The necessary adaptations to the companion creation process are illustrated on the right-hand side.

4.4.2 Companion Factory Methods455

The companion creation code gets more complicated the more classes of a class hierarchy are456

externalized. As we need to adapt every write to an externalized field, directly inserting all457

type checks and allocations of the right companion object within the class hierarchy leads to458

code bloat. Therefore, we utilize what we call companion factory methods. A companion459

factory method is a generated method that receives a type with externalized fields as a460

parameter and returns a new instance of the matching companion type. Hence, for each root461

of an externalization hierarchy one companion factory method is generated. That method462

contains the if-else-if ladder for all externalized subtypes of the externalized root type and463

returns a companion object of the respective type.464

Figure 9 shows an example of a companion factory method and its usage. The companion465

factory method createCompanionA is used to create the correct companion object based466

on the class passed as a parameter. During compilation, we insert a call to this method467

when writing a non-default value to an externalized field, as shown on the left-hand side of468

Figure 9. Through these factory methods we can reduce the code bloat. We prevent inlining469

of these methods to not mitigate their effect but also inform the compiler of their effects to470

not prevent other optimizations such as partial escape analysis [52].471

4.5 Masked Companion References472

Our field externalization approach requires adding a reference to a companion object to473

enable us to handle the cases when non-default values are written to externalized fields.474

Therefore, externalization also needs to amortize the cost of that additional field, as explained475

Anonymous author(s) 23:15

static A$Companion createCompanionA(Class c) {

 if (c == C.class){
 return new C$Companion();
 } else { // c == A.class || c == B.class
 return new A$Companion();
 }
}

...

if (/*companion allocation required*/) {
 var _cmp = createCompanionA(o.getClass());
 ...
}
...

Figure 9 Creation of a companion object using a companion factory method.

in Section 4.1. Consequently, this limits the applicability of our approach and thus our476

optimization potential.477

orderId 123

Item[]

it
items

Order

Order o = ...;

shippingCosts 20

discountCode null

items

o.shippingCosts = 20.0;

Order$CompanionItem[]

...

...

Before companion allocation After companion allocation

Item[]

...

...

orderId 123

Item[]

it
items

Order

Figure 10 As long as no companion object is need for an object with externalized fields, the
masked companion reference field (items) holds its normal value. When a companion object is
needed, the value of the items field is evacuated into the companion object and the reference to the
companion object is stored in the items field.

To tackle that issue we propose an optimization of field externalization, which we call478

masked companion references. A masked companion reference is a non-externalized reference479

field of a type that we reuse as the companion reference field. As long as no companion object480

is needed, this field is used just like a normal field and stores its normal value. In Figure 10,481

we again show the Order example from the previous sections with the two externalized482

fields shippingCosts and discountCode. The remaining items field is used as the masked483

companion reference, indicated by the dashed line and light red background. As shown484

in the first part of the image, the items field holds a reference to an ordinary item array,485

because no companion object is required yet. When a non-default value is written to an486

externalized field, a companion object is allocated (as explained in Section 4.2) and the487

reference to the companion object is stored in the items field. However, before writing the488

companion reference, the old value stored in the items field needs to be evacuated in order489

to preserve its value. Therefore, when using masked companion references, the companion490

object contains not only the externalized fields but also the masked companion reference field.491

In the example of Figure 10, when a non-default value is written to the externalized field492

shippingCosts (shown at the right-hand side of the figure), a companion object is allocated493

and the value that should be stored in shippingCosts is stored there. Then, the value494

stored in o.items is evacuated and stored in the companion, and finally, the reference to495

the companion object is stored in the items field (the masked companion reference field) of496

the Order object. By applying this optimization, we do not need to introduce an additional497

companion reference field that increases the size of all Order objects just to hold the reference498

to an—ideally—rarely needed companion object. If a type does not contain a suitable499

reference field, we can still fall back to the original approach.500

CVIT 2016

23:16 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

var old = o.items

CAS failure:
other thread updated
o.items concurrently
so this thread has to

retry write

o._ref = _cmp

CAS success: _cmp was stored in o.items

o.items.items = old

<cas_items_field>(o, old, _cmp)

...

...

...

...

D

D1

D2

D3

Figure 11 Changes necessary to the process shown in Figure 7 at step D for externalized field
writes with masked companion references.

4.5.1 Field Access Adaptations for Masked Companion Reference Fields501

To accommodate masked companion reference fields we also have to slightly change the502

field access pattern introduced in Section 4.2.1. First, both field writes and reads now have503

to access the corresponding masked companion reference to load a companion object if504

required—the check for its existence is still done via the CA bit. Figure 11 shows the change505

necessary for writing to an externalized field, as explained in Figure 7. We now no longer506

have a dedicated companion reference field that points to a companion object. Thus we507

have to consider both cases: another thread writing a new Item[] instance to Order.items,508

and another thread writing a non-default value to an externalized field and thus assigning a509

newly allocated companion object to the masked companion reference field. Therefore, we510

have to ensure that both cases are properly synchronized. As step D of Figure 7 is in the511

protected region, we can at least be sure that no other thread concurrently tries to write512

a companion object. However, regular writes to the masked companion reference field are513

not guarded by the CC bit. Therefore, we have to make sure to check for concurrent writes514

when storing the newly allocated companion object. We first load the original value from the515

companion reference field items (D1). Then, we use a CAS instruction (D2) to atomically516

check, whether the old value in o.items has changed. If not, the CAS instruction stores517

the companion object (_cmp) in the items field. The result of the CAS tells us, whether518

the companion object was stored. If the value did change between reading the field and the519

CAS (and the companion object was not stored), we repeat steps D1 and D2 until they520

succeed. While this is an expensive process, we expect it to be very infrequent. After the521

CAS, we still have to store the old value of the masked companion reference (old) in the522

corresponding companion object field (o.items.items in D3).523

Writing to a Masked Companion Reference Field524

Since the masked companion reference field is a regular field within the original object, we525

have to adapt accesses to it. When writing to the field, we have to check whether it already526

references a companion object. The necessary steps are outlined in Figure 12. Once again,527

the—ideally most frequent—fast path is highlighted with dashed (green) lines. In step A,528

we load the value of the masked companion reference field o.items. The CA and the CC529

bits tell us whether the loaded value might already be a companion object (B). If one of530

the bits is set, we specifically check whether the CA bit is set (C). If not, we know that the531

CC bit is set and that another thread is currently assigning the companion object to this532

object. Hence, we spin lock until this process is complete (D). If the CA bit was set or after533

the spin lock, we know that a companion object must exist and thus assign the value to the534

Anonymous author(s) 23:17

yes: o might hold a
companion object no: o did not hold a companion object

o.items.items = x

field write complete

var old = o.items

yes: o holds a
companion object

no: another thread is
setting companion object

<ca_bit_set>(o)
CAS failure:

another thread changed
the field in-between

write items but make
sure that field was not

modified by other thread

no: another thread wrote
the field regularly - this
represents a racy write

CAS success:
the write was

successful

Order o = ...;
o.items = x;

<ca_or_cc_bit_set>(o)

<cas_items_field>(o, old, x)

spin lock until
CA is set

wait for
other thread

<ca_or_cc_bit_set>(o)

spin lock until
CA is set

o.items.items = x

yes: another thread is
setting companion object

A

B

C

D

E

F

G

Figure 12 Write access adaptations to masked companion reference fields that take into account
multithreaded accesses. As a masked companion reference field can be used both for regular writes
and for storing the companion object, synchronization is more expensive than for regular externalized
field writes.

corresponding items field within the companion object (E). Note that we cannot use the535

value read before from the masked companion reference field (old), as this value may not536

have been a companion object at that point. Therefore, we re-read the companion object537

and assign the actual value (x) to its field (E).538

If step B showed that no bit was set, we try to directly store the value in the masked539

companion reference field (F). As this may again interfere with similar accesses in other540

threads, we use an atomic CAS instruction. This CAS compares the previous value in the541

masked companion reference field (old) with the value currently stored in the field. If this542

comparison succeeds, it stores the desired value x in the masked companion reference field.543

In this case, we are done with the field write. If the CAS did not succeed, we have to perform544

a similar procedure as in B, as some other thread has changed the value of the field. We545

cannot know whether the field still holds a regular value or a freshly allocated companion546

object and thus have to check the header bits again (G). If any bit was set, we make sure547

to wait until the CA bit is set (which ensures that the other thread successfully wrote the548

companion) and only then write the value to the companion object. If no bit was set, we549

know that the other thread writing the same field wrote another regular value (i.e., some550

other Item[] array) to the field. We consider this a race condition (racy write) and can thus551

skip updating the field.552

Reading from a Masked Companion Reference Field553

In contrast to read accesses to externalized fields, reading from a masked companion reference554

field also requires some synchronization, as another thread may concurrently assign a555

companion object to the same field. We discuss the necessary steps in this process based556

on Figure 13—the dashed green path is the fast path. First, we load the current value of557

CVIT 2016

23:18 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

Order o = ...;
var y = o.items;

var _tmp = o.items

<ca_or_cc_bit_set>(o)
yes: o might hold a
companion object

var y = o.items.items

yes: o holds
companion object

no: another thread is
setting companion object

<ca_bit_set>(o)

spin lock until
CA is set

wait for
other thread

field read complete

no: we know that _tmp is
no companion object

var y = _tmp

A

B

C

D

E

Figure 13 Read access adaptations to masked companion reference fields that take into account
multithreaded accesses.

the masked companion reference field (o.items). Then, similar to the writing process, we558

check for either the CA or the CC bit, as either tells us that the previously loaded value559

might be a companion object. If any bit is set, we specifically check the CA bit (C) and560

then either first wait for it to be set or immediately access the corresponding field within561

the—now safely available—companion object (o.items.items in D). If no bit was set, we562

know that the loaded value from step A cannot be a companion object and thus, we simply563

use this value as a result of the field read (E).564

5 Evaluation565

We conducted our evaluation on a comprehensive, mixed benchmark corpus. This corpus566

blends classical benchmark suites (DaCapo 9.12-MR1-bach [5], Scala-DaCapo 0.1.0 [48],567

Renaissance 0.9.0 [40]) with additional benchmark suites designed for Native Image perfor-568

mance assessment, all built atop leading Java microservice frameworks—namely Spring [59],569

Quarkus [42], and Micronaut [44]. Note that we excluded standard benchmarks that are not570

supported by the version of Native Image on which our approach is based. Furthermore, our571

experiments revealed an infrequent bug within GraalVM Native Image related to inlining572

that distorted our measurements for the scala-dacapo factorie benchmark. This bug was573

reported but has not been fixed yet. Thus, we exclude the benchmark from both analysis574

and evaluation. Each framework-based benchmark suite includes a concise “helloworld”575

scenario based on its respective launcher or “getting started” material, thus showcasing the576

fundamental functionalities of the framework. In addition, every suite contains a second,577

more complex benchmark with varying workload parameters (tiny, small, medium, etc.).578

Specifically, the Spring suite employs a tailored version of the Spring Boot PetClinic Sample579

Application [60]. Quarkus incorporates a microservice benchmark originating from the580

Apache Tika Quickstart [41]. Micronaut, in turn, provides a second benchmark known as581

ShopCart, a web shopping application.582

Anonymous author(s) 23:19

Benchmark Methodology583

We compared the standard version of GraalVM Native Image to our modified version of584

Native Image, which automatically externalizes rarely used fields. Both configurations585

involved an initial profiling run with a slightly reduced workload for PGO, followed by the586

actual measurement run for each benchmark. We executed each configuration 8 times—each587

execution involved a new profiling run to get new profiling data. The experimental platform588

was an Intel I7-4790K @ 4.4 GHz with 20 G of main memory. Hyper-threading, frequency589

scaling, and network access were disabled. All benchmarks were performed using Java 21.590

5.1 Benchmark Results591

We present the results of the evaluation of our approach on standard benchmarks in Figure 14.592

Figure 15 contains the results on microservice benchmarks. First, we compare the number of593

overall allocated bytes compared to the baseline (relative allocated bytes). It is important to594

note that the microservice benchmarks are throughput benchmarks, i.e., they are executed for a595

fixed duration and we measure how many requests they manage to process (as they all concern596

web frameworks). The number of requests furthermore represents the performance metric597

for these benchmarks (compared to the benchmark time metric in standard benchmarks).598

Hence, the allocated bytes in a benchmark execution also depend on the number of processed599

requests. Thus, we normalize the relative allocated bytes by the number of processed requests.600

This is represented by the allocated bytes/request metric (row 3 in Figure 15). In addition to601

the allocated bytes, we also compare the execution times/throughput as well as the maximum602

resident set size (RSS) of each benchmark.603

Allocated Bytes604

Because our focus lies on reducing allocated memory, we monitor the total allocated bytes for605

each benchmark by summing the sizes of newly allocated objects. This metric is also used in606

related work to evaluate the effectiveness of field externalization [3]. The total allocated bytes607

are our most stable metric (Figure 14). For this metric, almost all standard benchmarks608

show reductions, namely 2.72% on average for dacapo, 1.30% for scala-dacapo, and 3.60% for609

renaissance. The renaissance benchmarks philosophers and scrabble benefit the most from610

our approach. In both benchmarks, objects with externalized fields appear frequently and611

contribute significantly to the overall allocated bytes. At the same time, they do not show612

many companion objects.613

While the overall allocated bytes are also improved in all microservice benchmarks, the614

normalized metric (allocated bytes per request) shows a minor regression in the tiny workload615

of quarkus tika (Figure 15). This regression stems from a performance degradation (around616

6.52%) that outweighs the improvement in allocated bytes (5.64%).617

The noticeable differences in the results in the spring petclinic benchmarks (Figure 15),618

where we see large improvements for huge and large (35.15% and 20.53%, respectively),619

but only minor improvements for the three smaller workloads, can be explained by the sin-620

gle type java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject621

that shows large fluctuations in its allocations. In the baseline, millions of objects of that622

type are allocated in each run for all workload sizes. With our approach, we still see millions623

of allocations for this type in the smaller workloads but only around 22000 allocations in624

huge, thus explaining the significant improvement here. In the large workload, the allocation625

count fluctuates between the baseline values and the 22000 objects, hence the large error.626

CVIT 2016

23:20 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

RSS627

Although we use the resident set size to estimate memory consumption, we observed high628

RSS fluctuations in many benchmarks, as shown in Figure 14 and Figure 15. This is because629

this metric is highly dependent on the garbage collection behavior in a benchmark. Thus,630

minor variations in the run-time behavior can lead to different RSS values even for the same631

application. Our evaluation shows an average max-RSS reduction of 2.55% on standard632

benchmarks and a reduction of 2.45% on microservice benchmarks.633

Most notable are the results in the renaissance fj-kmeans and scala-doku benchmarks634

(21.97% and 15.13% reductions, respectively)—despite a considerable error, their results635

are consistently below the baseline. Other renaissance benchmarks also show high errors:636

mnemonics seems marginally improved, while par-mnemonics shows a considerable regression.637

For benchmarks from the dacapo and scala-dacapo suites, we see mixed results—most638

benchmarks (e.g., fop, pmd, scaladoc, tmt) show minor reductions of the max-RSS, while639

others (e.g., lusearch, sunflow, apparat) exhibit minor regressions.640

In the microservice benchmarks, the results for the spring petclinic benchmarks are most641

promising, with an average reduction of 6.08% and only a minor regression in the helloworld642

benchmark. While our approach also reduced the max-RSS in the small workload of the643

quarkus tika significantly, the other benchmarks of the suite show minor regressions. Similarly,644

the quarkus benchmarks mostly show regressions (0.90% on average).645

Auxiliary Metrics646

As mentioned in prior sections, we had to introduce additional checks for accesses to647

externalized fields and masked companion reference fields to ensure validity. Therefore, we648

expect a performance impact. Indeed, the standard benchmarks show a slight regression in649

terms of performance (2.14% on average, Figure 14). For most benchmarks, this performance650

impact correlates with their improvement in terms of allocated bytes. The most notable651

exceptions are scala-dacapo scaladoc, renaissance finagle-chirper, and renaissance finagle-http.652

In all three benchmarks, we actually see many externalized objects. Despite that we also653

see that our approach increases the allocation counts for some of the most used types or654

introduces allocations of types that we do not see in the baseline runs. These factors may655

points towards compilation issues: As we insert additional code at field accesses, we may656

exceed budgets for certain compiler optimizations such as inlining or loop optimizations.657

Similarly, we might also prevent escape analysis and scalar replacement of certain allocations.658

As many of these optimizations also are based on heuristics, these individual regressions659

might by solved by retuning these heuristics for our approach.660

Interestingly, the renaissance scala-doku benchmark shows an improvement in terms of661

run-time performance combined with improvements in other metrics as well. The performance662

of the microservice benchmarks is also impacted; the number of processed requests is decreased663

by 6.09% on average (Figure 15).664

In addition to the charts presented above, we also compare the size of the generated665

image (the binary size). As we introduce additional code (cf. field access modifications in666

Section 4.2), new types (companion types), and new methods (cf. companion factory methods667

in Section 4.4.2) into the compiled binary, we expect a slight increase in the image size. Our668

evaluation shows that the image size increases by 2.16% on average for standard benchmarks669

and by 3.36% on average for microservice benchmarks.670

Anonymous author(s) 23:21

0.2
0.4
0.6
0.8
1.0

re
l.

al
lo

c.
by

te
s

0.96 0.94 0.97 0.98 0.99 1.00 0.97

dacapo benchmarks

1.00 0.97 0.99 1.00 0.98 0.99 0.99 0.97

scala-dacapo benchmarks

0.99 1.00 1.00 1.00 0.99 0.98 0.96

0.79

0.97 0.98 0.95 1.00 1.00 0.93

renaissance benchmarks

0.2
0.4
0.6
0.8
1.0

ti
m

e

1.00 1.08 1.01 1.00 1.01 0.99 1.06
0.98 1.02 1.07 1.04 1.01 1.01 1.00 1.01 1.00 1.05 1.05 1.01 1.02 1.06 1.02 1.05 1.03 1.03

0.92
1.01 1.01 1.06

fo
p h2

lu
in

dex

lu
se

ar
ch

pm
d

su
nflow

xa
lan

0.2
0.4
0.6
0.8
1.0

m
ax

-r
ss 0.97 0.98 1.00 1.02 0.97 1.02 0.99

ap
par

at

kia
m

a

sc
ala

c

sc
ala

doc

sc
ala

p

sc
ala

rif
or

m

sc
ala

xb tm
t

1.01 0.99 1.00 0.98 0.99 1.00 1.00 0.97

ak
ka

-u
ct

finag
le-

ch
irp

er

finag
le-

http

fj-
km

ea
ns

fu
tu

re
-g

en
et

ic

m
nem

onics

par
-m

nem
onics

philo
so

pher
s

re
ac

to
rs

rx
-sc

ra
bble

sc
ala

-d
oku

sc
ala

-k
m

ea
ns

sc
ala

-st
m

-b
en

ch
7

sc
ra

bble

0.99 0.99 0.95
0.80

1.01 0.95
1.18 1.00 0.95 1.00

0.86
1.00 0.98 1.00

Figure 14 Evaluation of total memory allocation (relative allocated bytes), benchmark run time
(time), and the max-RSS (max-rss) on standard benchmarks relative to results on Native Image
without our approach.

0.2
0.4
0.6
0.8
1.0

re
l.

al
lo

c.
by

te
s

0.87

0.61
0.75

0.91 0.92 0.86

spring benchmarks

0.89
0.96 0.94 0.94

quarkus benchmarks

0.90 0.91 0.91 0.91 0.91 0.92

micronaut benchmarks

0.2
0.4
0.6
0.8
1.0

re
qu

es
ts 0.97 0.94 0.92 0.92 0.94 0.88

0.95 0.97 0.94 0.93 0.95 0.95 0.95 0.94 0.94 0.94

0.2
0.4
0.6
0.8
1.0

al
lo

c.
by

te
s/

re
q.

0.89

0.65

0.81

0.99 0.98 0.97 0.94
1.00 1.00 1.01

0.95 0.96 0.96 0.96 0.96 0.97

hell
ow

or
ld

pet
cli

nic:
huge

pet
cli

nic:
lar

ge

pet
cli

nic:
m

ed
iu

m

pet
cli

nic:
sm

all

pet
cli

nic:
tin

y

0.2
0.4
0.6
0.8
1.0

m
ax

-r
ss

1.01
0.87

0.95 0.92 0.94 0.95

hell
ow

or
ld

tik
a:

m
ed

iu
m

tik
a:

sm
all

tik
a:

tin
y

1.01 1.03
0.91

1.01

hell
ow

or
ld

sh
opca

rt:
huge

sh
opca

rt:
lar

ge

sh
opca

rt:
m

ed
iu

m

sh
opca

rt:
sm

all

sh
opca

rt:
tin

y

1.01 0.99 1.01 1.02 1.02 1.01

Figure 15 Evaluation of total memory allocation (relative allocated bytes), benchmark throughput
(requests), memory allocation normalized by the performed requests (allocated bytes/request), and
the max-RSS (max-rss) on microservice benchmarks relative to results on Native Image without our
approach.

CVIT 2016

23:22 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

Externalization Analysis671

To evaluate our externalization approach, including our heuristic, we also evaluated how672

many objects are affected by field externalization and how many companion objects are673

created. Table 2 presents our findings for each benchmark. The externalization ratio specifies674

the ratio of objects in the benchmark that had externalized fields, whereas the companion675

object ratio represents the ratio of objects with externalized fields that required a companion676

object. The ratio of externalized objects varies greatly across benchmarks. For example,677

there are nearly no externalized objects in scala-dacapo apparat, whereas in renaissance678

scrabble 33.4% of the allocated objects have externalized fields. Overall, there is a tendency679

that benchmarks with a higher externalization ratio profit more in terms of reduction of total680

allocated bytes from field externalization, as shown by our memory measurements presented681

above. However, there are outliers as well: For example, the dacapo xalan benchmark is the682

benchmark with the second highest externalization ratio, but the allocated bytes are only683

reduced by 3% and the max-RSS is only reduced by 1%. The reason for the low impact in684

this benchmark is that the objects with externalized fields only make up a minor part of685

the overall memory consumption. Thus, big parts of the allocated memory are unaffected686

by field externalization. Furthermore, the per-object memory savings are quite low in this687

benchmark, i.e., only few fields are externalized for the types with the most allocations.688

The companion object ratio should be quite low—in general below 5%, as that is the689

threshold of our heuristic(cf. Section 4.1). However, as will be discussed in Section 6 there690

could still be cases with higher companion object ratio even if our profiling information691

is accurate. In our results, renaissance rx-scrabble has the highest companion object ratio692

with 6.5%. We found that java.util.stream.SliceOps$1, which is a subclass of the693

externalized class java.util.stream.AbstractPipeline is responsible for creating more694

than 99% of the companion objects allocated in this benchmark. More specifically, all695

java.util.stream.SliceOps$1 instances wrote non-default values to externalized fields696

and thus required the creation of companion objects. In theory, our heuristic should prevent697

such cases by not performing externalization when the non-default value count is too high.698

However, our heuristic can only consider the data gathered during profiling, and in this699

case the ratio of java.util.stream.SliceOps$1 objects was lower compared to the other700

subclasses of java.util.stream.AbstractPipeline (which did not trigger as frequent701

companion object allocations) in the profiling run than in the actual benchmark run. One702

potential reason for this inaccurate profiling information is the reduced workload in the703

profiling run. We made a similar observation in the petclinic benchmarks. Here, the culprit704

is the org.h2.mvstore.Page class. We externalize almost all fields of this abstract class705

because the profiling data reports low usages. However, in the benchmark, we actually allocate706

a companion object for every org.h2.mvstore.Page object, suggesting that the objects of707

this class behave very differently in the real benchmark run compared to the profiling run.708

Despite these issues, the benchmark still shows good results across all workloads.709

6 Limitations710

The main limitations of our approach concern the run-time behavior of companion objects711

and the expressiveness of the profiled heuristics in light of some corner cases. Also, we712

disallow externalization of specific field kinds by default.713

Anonymous author(s) 23:23

Table 2 Evaluation of the ratio of objects with externalized fields (externalization ratio, ER)
compared to the number of total allocated objects. For the companion object ratio (COR), the
amount of externalized objects that used a companion object was calculated.

Suite Benchmark ER COR

da
ca

po

fop 9.4% 0.5%
h2 26.0% 1.4%
luindex 25.3% 0.0%
lusearch 9.0% 3.9%
pmd 4.3% 4.2%
sunflow 0.3% 0.1%
xalan 33.3% 1.3%

sc
al

a-
da

ca
po

apparat 0.0% 2.1%
kiama 9.6% 2.9%
scalac 3.7% 3.4%
scaladoc 4.3% 2.2%
scalap 1.0% 1.1%
scalariform 1.5% 0.8%
scalaxb 2.7% 0.6%
tmt 13.8% 0.0%

re
na

iss
an

ce

akka-uct 1.9% 0.0%
finagle-chirper 5.9% 0.1%
finagle-http 7.4% 0.0%
fj-kmeans 2.7% 0.0%
future-genetic 2.9% 0.0%
mnemonics 16.3% 0.0%
par-mnemonics 18.7% 0.0%
philosophers 15.3% 0.0%
reactors 6.5% 0.1%
rx-scrabble 8.7% 6.5%
scala-doku 7.4% 0.2%
scala-kmeans 0.6% 1.3%
scala-stm-bench7 1.2% 0.0%
scrabble 33.4% 0.7%
Standard Overall 9.3% 1.1%

Suite Benchmark ER COR

sp
rin

g

helloworld 9.4% 0.0%
petclinic:huge 19.0% 5.8%
petclinic:large 11.3% 5.3%
petclinic:medium 11.3% 5.7%
petclinic:small 11.2% 5.1%
petclinic:tiny 11.4% 4.8%

qu
ar

ku
s helloworld 18.1% 0.0%

tika:medium 5.2% 6.0%
tika:small 5.2% 6.0%
tika:tiny 5.2% 6.1%

m
ic

ro
na

ut

helloworld 13.8% 0.0%
shopcart:huge 11.9% 0.0%
shopcart:large 11.9% 0.0%
shopcart:medium 11.9% 0.0%
shopcart:small 11.9% 0.0%
shopcart:tiny 11.9% 0.0%
Mircroservice Overall 11.3% 2.8%

Exclusions714

We prevent profiling and subsequent externalization of fields where we cannot safely adapt715

their accesses during compilation. We prevent externalization of fields of some internal types716

of Native Image, such as implementation classes of the garbage collector and the threading717

implementation. We also exclude types whose fields receive special treatment by the compiler,718

e.g., they are accessed unsafely via a known offset, or via VarHandle [31]. We further exclude719

volatile fields, as we currently cannot safely mimic their semantics after externalization.720

Deallocation of Companion Objects721

We designed our approach such that the allocation of a companion represents a one-way722

degradation. Hence, once a companion object for an object is allocated, there is no way723

to deallocate it, even if it is no longer needed at some later point (i.e., if all externalized724

fields in the companion object hold default values again). Only when the garbage collector725

collects the original object can the companion object also be collected. Chen et al. [9] solve726

this by identifying and collecting such “empty” companion objects during garbage collection.727

CVIT 2016

23:24 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

However, this requires tighter integration with the garbage collector and also increases the728

duration of collection cycles. As companion objects should only be created for few objects,729

empty companions should appear even less frequently. We think optimizing for such a niche730

case is not necessary.731

Deficiencies of the Heuristics732

Our heuristics are based on observations on individual fields. While this enables a very precise733

calculation in terms of the saved memory per externalized field, it also limits the decision on734

whether or not to externalize at all to thresholds on individual fields. As an example, if a735

class has 5 fields for which profiling—based on our threshold of 5%—suggests externalization,736

then our approach would externalize them all. However, the profiling could be misleading737

here: In the best scenario for our approach, the sets of objects that have non-default values738

for the respective externalized field are perfectly overlapping. Then only a maximum of739

5% of the objects would require a companion object. However, if these sets are completely740

disjoint, up to 25% of the objects could require a companion object. Identifying such cases741

via profiling would require profiling the composition of the field values per object. However,742

tracking all field combinations is infeasible due to the associated quadratic complexity.743

7 Related Work744

There is considerable related work on field and general memory footprint optimization745

techniques. However, most such works are implemented either on research compilers and746

VMs or in the context of a JIT compiler, which entails a different set of challenges but747

also opportunities compared to an AOT compiler. Nevertheless, they propose interesting748

and unique approaches that are in parts comparable to our work or propose other footprint749

optimization techniques using profiling information.750

Chen et al. [9] implemented field externalization in the Kaffe VM [55], a Java Virtual751

Machine for embedded programs. They profile field usages and classify the fields into three752

levels based on their profiled value compositions: fields without a dominant value (level 0),753

fields with a dominant value other than the default value (level 1), and fields where the754

default value dominates (level 2). At run time, this information is picked up to, on the one755

hand, strip level 2 fields from objects in a similar manner to our approach and, on the other756

hand, share level 1 fields between objects. Similar to our approach, they use header bits to757

identify compressed (companion object not yet allocated) and uncompressed/shared objects758

(with allocated companion object/shared fields).759

While they do not discuss their approach in the context of multithreading in detail, they760

seem to use some form of synchronization on accesses to externalized and shared fields. They761

note, however, that they can avoid the synchronization overhead in their target (embedded)762

JVMs, since they do not allow threads to preempt one another. Our approach is based763

on a standalone JVM, where multi-threading and concurrency are much more widespread.764

Thus, as detailed in Section 4.2.1, much of the effort of our approach went into designing765

semantically valid access patterns to externalized fields that conform to the Java memory766

model. This also complicates integrating their field sharing approach into our work.767

Their approach is based on a JIT compiler and ours is based on an AOT compiler. Thus768

we also have different challenges: They use the interpreter to mark instructions that access769

externalized fields, which subsequently allows the JIT compiler to optimize them. Our770

approach is based on a closed-world assumption, thus we have information about all types771

that occur in the application. However, since there is no interpreter that can perform some772

Anonymous author(s) 23:25

levels of profiling when processing objects with externalized fields, all access variants have to773

be compiled immediately.774

The results of our approach are hard to compare: They target embedded JVMs and,775

therefore, use a simulator and the SpecJVM98 benchmark suite [53] that has been retired776

since to gather benchmark results. We use a set of standard and microservice benchmarks to777

evaluate our approach.778

Guo et al. [16] show an improvement to the aforementioned approach, again targeting an779

embedded JVM. They use the same field usage classification approach as Chen et al. [9] and780

generate meta-classes that describe the offsets of externalized and shared fields. As with Chen781

et al., the differences between our approach and theirs are that they target an embedded782

JVM, they scan the heap to gather profiling information, and the targeted benchmark set783

(SpecJVM98). Similarly, they do not mention their synchronization techniques to adhere to784

the Java memory model.785

Ananian and Rinard [3] present a number of optimizations that also include field exter-786

nalization to reduce the memory footprint of objects. This approach is implemented into787

a research Java AOT compiler (MIT FLEX compiler system). Their profiling approach is788

similar to ours; they introduce per-field counters in a separate profiling build and subsequently789

use a heuristic to select externalizable fields. They do not use companion objects that hold790

the externalized fields but use a hashtable that maps objects to their field values. The benefit791

of using a hashtable is that one single non-default-value write does not produce that much792

overhead compared to the allocation of the companion object. However, the hashtable itself,793

as well as the keys, require extra storage and introduce further indirections. Native Image794

supports lazily appending the identity hash code field and the monitor field to objects [37].795

Introducing a hashtable for types with externalized fields would also require the identity796

hash code field for all types, thus reducing the savings potential.797

Sartor et al. [47] present and summarize a number of techniques related to object798

compression. These also include the original approaches by Chen et al. [9] and Ananian799

and Rinard [3]. They implemented their approach on the Jikes RVM [2] but performed the800

evaluation without the optimizing compiler. Hence, comparing the results of our approaches801

is difficult, as we measured the real effects of field externalization after AOT compilation.802

There is also work about other object compression techniques: Venstermans et al. [58]803

reduce or completely remove object headers in the Jikes RVM [2] by allocating all objects804

of a specific type in a contiguous memory region and using a side array for the header bits805

and status information used by the garbage collector. Chen et al. [8] implemented a custom806

garbage collector for the Sun KVM [54] that compresses objects and arrays when space is807

needed. However, every access to a compressed object subsequently has to decompress it808

first. Therefore, they also implemented a partitioning mechanism for objects and arrays that809

also allows lazy allocation of the individual partitions when needed. We see these approaches810

as orthogonal to our work on field externalization. Their work could allow us to compress811

objects even further, even after field externalization.812

8 Conclusion813

In this work, we presented a novel field externalization approach for modern Java VMs that814

reduces the footprint of objects by removing fields that mostly hold the default value. We815

use profiling information to identify such fields and subsequently move them into separate816

companion classes, which are generated at compile time. If, at run time, an externalized field817

is accessed, the corresponding companion object is allocated that holds the externalized fields.818

CVIT 2016

23:26 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

The companion objects are referenced either via an additional injected field or a regular819

reference field that is reused as a masked companion reference field. Since our approach is820

integrated into a modern AOT compilation environment, GraalVM Native Image, we also821

introduce synchronization on accesses to externalized fields by using two header bits. An822

evaluation on a wide variety of benchmarks shows a modest but consistent reduction of the823

total allocated bytes across most benchmarks as well as a reduction in the max-RSS.824

Overall, our work demonstrates the feasibility of field externalization in a state-of-the-825

art AOT compiler without sacrificing feature or language support but also highlights the826

challenges associated with it—particularly when adherence to the language semantics is of827

critical importance and when there is no run-time compilation or interpreter that enable828

fallbacks through recompilation.829

References830

1 Frances E. Allen and John Cocke. A Catalogue of Optimizing Transformations. Design and831

Optimization of Compilers. Prentice-Hall, 1972. Google-Books-ID: oeXaZwEACAAJ.832

2 B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J.833

Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R.834

Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan,835

and J. Whaley. The Jalapeño virtual machine. IBM Systems Journal, 39(1):211–238, 2000.836

Conference Name: IBM Systems Journal. URL: https://ieeexplore.ieee.org/document/837

5387060, doi:10.1147/sj.391.0211.838

3 C. Scott Ananian and Martin Rinard. Data size optimizations for java programs. In Proceedings839

of the 2003 ACM SIGPLAN conference on Language, compiler, and tool for embedded systems,840

LCTES ’03, pages 59–68, New York, NY, USA, June 2003. Association for Computing841

Machinery. URL: https://dl.acm.org/doi/10.1145/780732.780741, doi:10.1145/780732.842

780741.843

4 M. Arnold, S.J. Fink, D. Grove, M. Hind, and P.F. Sweeney. A Survey of Adaptive Optimization844

in Virtual Machines. Proc. IEEE, 93(2):449–466, February 2005. URL: http://ieeexplore.845

ieee.org/document/1386662/, doi:10.1109/JPROC.2004.840305.846

5 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley,847

Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin848

Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko849

Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo850

benchmarks: java benchmarking development and analysis. SIGPLAN Not., 41(10):169–190,851

October 2006. URL: https://dl.acm.org/doi/10.1145/1167515.1167488, doi:10.1145/852

1167515.1167488.853

6 Pohua P. Chang, Scott A. Mahlke, and Wen-Mei W. Hwu. Using profile information to854

assist classic code optimizations. Software: Practice and Experience, 21(12):1301–1321,855

1991. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380211204. URL:856

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380211204, doi:10.1002/spe.857

4380211204.858

7 Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao, Vinodha Ramasamy, Paul859

Yuan, Wenguang Chen, and Weimin Zheng. Taming hardware event samples for FDO860

compilation. In Proceedings of the 8th annual IEEE/ACM international symposium on Code861

generation and optimization, pages 42–52, Toronto Ontario Canada, April 2010. ACM. URL:862

https://dl.acm.org/doi/10.1145/1772954.1772963, doi:10.1145/1772954.1772963.863

8 G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, B. Mathiske, and M. Wolczko.864

Heap compression for memory-constrained Java environments. In Proceedings of the 18th865

annual ACM SIGPLAN conference on Object-oriented programing, systems, languages, and866

applications, OOPSLA ’03, pages 282–301, New York, NY, USA, October 2003. Association867

https://ieeexplore.ieee.org/document/5387060
https://ieeexplore.ieee.org/document/5387060
https://ieeexplore.ieee.org/document/5387060
https://doi.org/10.1147/sj.391.0211
https://dl.acm.org/doi/10.1145/780732.780741
https://doi.org/10.1145/780732.780741
https://doi.org/10.1145/780732.780741
https://doi.org/10.1145/780732.780741
http://ieeexplore.ieee.org/document/1386662/
http://ieeexplore.ieee.org/document/1386662/
http://ieeexplore.ieee.org/document/1386662/
https://doi.org/10.1109/JPROC.2004.840305
https://dl.acm.org/doi/10.1145/1167515.1167488
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/1167515.1167488
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380211204
https://doi.org/10.1002/spe.4380211204
https://doi.org/10.1002/spe.4380211204
https://doi.org/10.1002/spe.4380211204
https://dl.acm.org/doi/10.1145/1772954.1772963
https://doi.org/10.1145/1772954.1772963

Anonymous author(s) 23:27

for Computing Machinery. URL: https://dl.acm.org/doi/10.1145/949305.949330, doi:868

10.1145/949305.949330.869

9 Guangyu Chen, Mahmut Kandemir, and Mary J. Irwin. Exploiting frequent field values in870

java objects for reducing heap memory requirements. In Proceedings of the 1st ACM/USENIX871

international conference on Virtual execution environments, VEE ’05, pages 68–78, New York,872

NY, USA, June 2005. Association for Computing Machinery. URL: https://dl.acm.org/873

doi/10.1145/1064979.1064990, doi:10.1145/1064979.1064990.874

10 Jiho Choi, Thomas Shull, and Josep Torrellas. Reusable inline caching for JavaScript perfor-875

mance. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language876

Design and Implementation, PLDI 2019, pages 889–901, New York, NY, USA, June 2019. Associ-877

ation for Computing Machinery. URL: https://dl.acm.org/doi/10.1145/3314221.3314587,878

doi:10.1145/3314221.3314587.879

11 Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam Midkiff.880

Escape analysis for Java. SIGPLAN Not., 34(10):1–19, October 1999. URL: https://dl.acm.881

org/doi/10.1145/320385.320386, doi:10.1145/320385.320386.882

12 L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the smalltalk-80 system.883

In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming884

languages, POPL ’84, pages 297–302, New York, NY, USA, January 1984. Association for885

Computing Machinery. URL: https://dl.acm.org/doi/10.1145/800017.800542, doi:10.886

1145/800017.800542.887

13 Gilles Duboscq, Lukas Stadler, Thomas Wuerthinger, Doug Simon, Christian Wimmer,888

and Hanspeter Mössenböck. Graal IR: An Extensible Declarative Intermediate Representa-889

tion. In Proceedings of the Asia-Pacific Programming Languages and Compilers Workshop,890

page 9, Shenzhen, China, February 2013. URL: https://ssw.jku.at/General/Staff/GD/891

APPLC-2013-paper_12.pdf.892

14 Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and893

Hanspeter Mössenböck. An intermediate representation for speculative optimizations in894

a dynamic compiler. In Proceedings of the 7th ACM workshop on Virtual machines and895

intermediate languages, VMIL ’13, pages 1–10, New York, NY, USA, October 2013. ACM.896

doi:10.1145/2542142.2542143.897

15 Google. Profile-guided optimization - The Go Programming Language, 2024. URL: https:898

//go.dev/doc/pgo.899

16 Zhuang Guo, José Nelson Amaral, Duane Szafron, and Yang Wang. Utilizing field usage900

patterns for Java heap space optimization. In Proceedings of the 2006 conference of the901

Center for Advanced Studies on Collaborative research, CASCON ’06, pages 6–es, USA,902

October 2006. IBM Corp. URL: https://dl.acm.org/doi/10.1145/1188966.1188974, doi:903

10.1145/1188966.1188974.904

17 Michael Hind. Pointer analysis: haven’t we solved this problem yet? In Proceedings of the 2001905

ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering906

- PASTE ’01, pages 54–61, Snowbird, Utah, United States, 2001. ACM Press. URL: http:907

//portal.acm.org/citation.cfm?doid=379605.379665, doi:10.1145/379605.379665.908

18 Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed object-oriented909

languages with polymorphic inline caches. In Pierre America, editor, ECOOP’91 European910

Conference on Object-Oriented Programming, pages 21–38, Berlin, Heidelberg, 1991. Springer.911

doi:10.1007/BFb0057013.912

19 Urs Hölzle and David Ungar. Optimizing dynamically-dispatched calls with run-time type913

feedback. SIGPLAN Not., 29(6):326–336, June 1994. URL: https://dl.acm.org/doi/10.914

1145/773473.178478, doi:10.1145/773473.178478.915

20 Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic916

Architecture, Chapter 7 - Programming With General-Purpose Instructions. manual, Intel, Oc-917

tober 2024. URL: https://www.intel.com/content/www/us/en/content-details/835781/918

CVIT 2016

https://dl.acm.org/doi/10.1145/949305.949330
https://doi.org/10.1145/949305.949330
https://doi.org/10.1145/949305.949330
https://doi.org/10.1145/949305.949330
https://dl.acm.org/doi/10.1145/1064979.1064990
https://dl.acm.org/doi/10.1145/1064979.1064990
https://dl.acm.org/doi/10.1145/1064979.1064990
https://doi.org/10.1145/1064979.1064990
https://dl.acm.org/doi/10.1145/3314221.3314587
https://doi.org/10.1145/3314221.3314587
https://dl.acm.org/doi/10.1145/320385.320386
https://dl.acm.org/doi/10.1145/320385.320386
https://dl.acm.org/doi/10.1145/320385.320386
https://doi.org/10.1145/320385.320386
https://dl.acm.org/doi/10.1145/800017.800542
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/800017.800542
https://ssw.jku.at/General/Staff/GD/APPLC-2013-paper_12.pdf
https://ssw.jku.at/General/Staff/GD/APPLC-2013-paper_12.pdf
https://ssw.jku.at/General/Staff/GD/APPLC-2013-paper_12.pdf
https://doi.org/10.1145/2542142.2542143
https://go.dev/doc/pgo
https://go.dev/doc/pgo
https://go.dev/doc/pgo
https://dl.acm.org/doi/10.1145/1188966.1188974
https://doi.org/10.1145/1188966.1188974
https://doi.org/10.1145/1188966.1188974
https://doi.org/10.1145/1188966.1188974
http://portal.acm.org/citation.cfm?doid=379605.379665
http://portal.acm.org/citation.cfm?doid=379605.379665
http://portal.acm.org/citation.cfm?doid=379605.379665
https://doi.org/10.1145/379605.379665
https://doi.org/10.1007/BFb0057013
https://dl.acm.org/doi/10.1145/773473.178478
https://dl.acm.org/doi/10.1145/773473.178478
https://dl.acm.org/doi/10.1145/773473.178478
https://doi.org/10.1145/773473.178478
https://www.intel.com/content/www/us/en/content-details/835781/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/content-details/835781/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/content-details/835781/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

23:28 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.919

html.920

21 Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2: Instruction921

Set Reference, A-Z, Chapter 4 Instruction Set Reference, M-U. manual, Intel, Octo-922

ber 2024. URL: https://www.intel.com/content/www/us/en/content-details/835781/923

intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.924

html.925

22 Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu, and Toshio Nakatani.926

A study of devirtualization techniques for a Java Just-In-Time compiler. SIGPLAN Not.,927

35(10):294–310, October 2000. URL: https://dl.acm.org/doi/10.1145/354222.353191, doi:928

10.1145/354222.353191.929

23 JavaNexus. Optimizing Java Performance with Thread-Local Al-930

location Buffers, May 2024. URL: https://javanexus.com/blog/931

java-performance-thread-local-allocation-buffers.932

24 Roman Kennke, Vladimir Kozlov, Aleksey Shipilev, Erik Österlund, John Rose, Stefan Karlsson,933

and Thomas Stuefe. JEP 450: Compact Object Headers (Experimental), December 2024.934

URL: https://openjdk.org/jeps/450.935

25 Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program936

Analysis & Transformation. In Proceedings of the international symposium on Code generation937

and optimization: feedback-directed and runtime optimization, CGO ’04, page 75, USA, March938

2004. IEEE Computer Society.939

26 Junpyo Lee, Byung-Sun Yang, Suhyun Kim, Kemal Ebcioğlu, Erik Altman, Seungil Lee, Yoo C.940

Chung, Heungbok Lee, Je Hyung Lee, and Soo-Mook Moon. Reducing virtual call overheads in941

a Java VM just-in-time compiler. SIGARCH Comput. Archit. News, 28(1):21–33, March 2000.942

URL: https://dl.acm.org/doi/10.1145/346023.346037, doi:10.1145/346023.346037.943

27 David Leopoldseder, Roland Schatz, Lukas Stadler, Manuel Rigger, Thomas Würthinger, and944

Hanspeter Mössenböck. Fast-path loop unrolling of non-counted loops to enable subsequent945

compiler optimizations. In Proceedings of the 15th International Conference on Managed946

Languages & Runtimes, ManLang ’18, pages 1–13, New York, NY, USA, September 2018.947

Association for Computing Machinery. doi:10.1145/3237009.3237013.948

28 David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon, and Hans-949

peter Mössenböck. Dominance-based duplication simulation (DBDS): code duplication to950

enable compiler optimizations. In Proceedings of the 2018 International Symposium on Code951

Generation and Optimization - CGO 2018, pages 126–137, Vienna, Austria, 2018. ACM Press.952

URL: http://dl.acm.org/citation.cfm?doid=3168811, doi:10.1145/3168811.953

29 LLVM Project. How To Build Clang and LLVM with Profile-Guided Optimizations — LLVM954

18.0.0git documentation, 2024. URL: https://llvm.org/docs/HowToBuildWithPGO.html.955

30 Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In956

Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of program-957

ming languages, POPL ’05, pages 378–391, New York, NY, USA, January 2005. Associa-958

tion for Computing Machinery. URL: https://dl.acm.org/doi/10.1145/1040305.1040336,959

doi:10.1145/1040305.1040336.960

31 Oracle. Java Development Kit Version 21 API Specification: VarHandle. URL:961

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/invoke/962

VarHandle.html.963

32 Oracle. Java HotSpot Virtual Machine Performance Enhancements: Compressed Ordinary964

Object Pointer, September 2023. Publisher: September2023. URL: https://docs.oracle.965

com/en/java/javase/21/vm/java-hotspot-virtual-machine-performance-enhancements.966

html#GUID-932AD393-1C8C-4E50-8074-F81AD6FB2444.967

33 Oracle. GraalPython, January 2025. original-date: 2018-04-17T09:54:59Z. URL: https:968

//github.com/graalvm/graalpython.969

34 Oracle. GraalVM, January 2025. URL: https://www.graalvm.org/.970

https://www.intel.com/content/www/us/en/content-details/835781/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/content-details/835781/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/content-details/835781/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/content-details/835781/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/content-details/835781/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/content-details/835781/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/content-details/835781/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/content-details/835781/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/content-details/835781/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://dl.acm.org/doi/10.1145/354222.353191
https://doi.org/10.1145/354222.353191
https://doi.org/10.1145/354222.353191
https://doi.org/10.1145/354222.353191
https://javanexus.com/blog/java-performance-thread-local-allocation-buffers
https://javanexus.com/blog/java-performance-thread-local-allocation-buffers
https://javanexus.com/blog/java-performance-thread-local-allocation-buffers
https://openjdk.org/jeps/450
https://dl.acm.org/doi/10.1145/346023.346037
https://doi.org/10.1145/346023.346037
https://doi.org/10.1145/3237009.3237013
http://dl.acm.org/citation.cfm?doid=3168811
https://doi.org/10.1145/3168811
https://llvm.org/docs/HowToBuildWithPGO.html
https://dl.acm.org/doi/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/invoke/VarHandle.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/invoke/VarHandle.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/invoke/VarHandle.html
https://docs.oracle.com/en/java/javase/21/vm/java-hotspot-virtual-machine-performance-enhancements.html#GUID-932AD393-1C8C-4E50-8074-F81AD6FB2444
https://docs.oracle.com/en/java/javase/21/vm/java-hotspot-virtual-machine-performance-enhancements.html#GUID-932AD393-1C8C-4E50-8074-F81AD6FB2444
https://docs.oracle.com/en/java/javase/21/vm/java-hotspot-virtual-machine-performance-enhancements.html#GUID-932AD393-1C8C-4E50-8074-F81AD6FB2444
https://docs.oracle.com/en/java/javase/21/vm/java-hotspot-virtual-machine-performance-enhancements.html#GUID-932AD393-1C8C-4E50-8074-F81AD6FB2444
https://docs.oracle.com/en/java/javase/21/vm/java-hotspot-virtual-machine-performance-enhancements.html#GUID-932AD393-1C8C-4E50-8074-F81AD6FB2444
https://github.com/graalvm/graalpython
https://github.com/graalvm/graalpython
https://github.com/graalvm/graalpython
https://www.graalvm.org/

Anonymous author(s) 23:29

35 Oracle. GraalVM JavaScript, January 2025. URL: https://github.com/oracle/graaljs.971

36 Oracle. Native Image, January 2025. URL: https://www.graalvm.org/latest/972

reference-manual/native-image/.973

37 Oracle. Object layout description in GraalVM Native Image when using Ep-974

silon/Serial GC, January 2025. URL: https://github.com/oracle/graal/blob/975

261c38a7a47dd87f13ec3cbe0fbb85cfdff17963/substratevm/src/com.oracle.svm.hosted/976

src/com/oracle/svm/hosted/HostedConfiguration.java#L125-L145.977

38 Oracle. TruffleRuby, January 2025. original-date: 2016-02-05T18:03:11Z. URL: https:978

//github.com/oracle/truffleruby.979

39 Karl Pettis and Robert C. Hansen. Profile guided code positioning. SIGPLAN Not., 25(6):16–980

27, June 1990. URL: https://dl.acm.org/doi/10.1145/93548.93550, doi:10.1145/93548.981

93550.982

40 Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin983

Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger,984

and Walter Binder. Renaissance: benchmarking suite for parallel applications on the JVM.985

In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design986

and Implementation, PLDI 2019, pages 31–47, New York, NY, USA, June 2019. Association987

for Computing Machinery. URL: https://dl.acm.org/doi/10.1145/3314221.3314637, doi:988

10.1145/3314221.3314637.989

41 Red Hat. Quarkus: Apache Tika Quickstart, March 2021. URL: https://github.com/990

quarkusio/quarkus-quickstarts/tree/758dd049407c6aa41c79c0d0dac1cff830ff9217/991

tika-quickstart.992

42 Red Hat. Quarkus, December 2024. URL: https://quarkus.io/.993

43 Manuel Rigger, Matthias Grimmer, and Hanspeter Mössenböck. Sulong - execution of994

LLVM-based languages on the JVM: position paper. In Proceedings of the 11th Workshop995

on Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and996

Systems - ICOOOLPS ’16, pages 1–4, Rome, Italy, 2016. ACM Press. URL: http://dl.acm.997

org/citation.cfm?doid=3012408.3012416, doi:10.1145/3012408.3012416.998

44 Graeme Rocher. Micronaut, December 2024. URL: https://micronaut.io/.999

45 Nadav Rotem and Chris Cummins. Profile Guided Optimization without Profiles: A Machine1000

Learning Approach, January 2022. arXiv:2112.14679 [cs]. URL: http://arxiv.org/abs/2112.1001

14679, doi:10.48550/arXiv.2112.14679.1002

46 Barbara G. Ryder. Dimensions of Precision in Reference Analysis of Object-Oriented Pro-1003

gramming Languages. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Görel1004

Hedin, editors, Compiler Construction, volume 2622, pages 126–137. Springer Berlin Hei-1005

delberg, Berlin, Heidelberg, 2003. Series Title: Lecture Notes in Computer Science. URL:1006

http://link.springer.com/10.1007/3-540-36579-6_10, doi:10.1007/3-540-36579-6_10.1007

47 Jennifer B. Sartor, Martin Hirzel, and Kathryn S. McKinley. No bit left behind: the limits1008

of heap data compression. In Proceedings of the 7th international symposium on Memory1009

management, ISMM ’08, pages 111–120, Tucson, AZ, USA, June 2008. ACM. URL: https:1010

//dl.acm.org/doi/10.1145/1375634.1375651, doi:10.1145/1375634.1375651.1011

48 Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. Da capo con scala: design1012

and analysis of a scala benchmark suite for the java virtual machine. In Proceedings of the1013

2011 ACM international conference on Object oriented programming systems languages and1014

applications, OOPSLA ’11, pages 657–676, New York, NY, USA, October 2011. Association1015

for Computing Machinery. URL: https://dl.acm.org/doi/10.1145/2048066.2048118, doi:1016

10.1145/2048066.2048118.1017

49 Denys Shabalin. Just-in-time performance without warm-up. PhD thesis, EPFL, Lausanne,1018

2020. doi:10.5075/epfl-thesis-9768.1019

50 Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System Concepts, 10th1020

Edition - Chapter 6: Synchronization Tools. In Operating System Concepts, 10th Edition, pages1021

CVIT 2016

https://github.com/oracle/graaljs
https://www.graalvm.org/latest/reference-manual/native-image/
https://www.graalvm.org/latest/reference-manual/native-image/
https://www.graalvm.org/latest/reference-manual/native-image/
https://github.com/oracle/graal/blob/261c38a7a47dd87f13ec3cbe0fbb85cfdff17963/substratevm/src/com.oracle.svm.hosted/src/com/oracle/svm/hosted/HostedConfiguration.java#L125-L145
https://github.com/oracle/graal/blob/261c38a7a47dd87f13ec3cbe0fbb85cfdff17963/substratevm/src/com.oracle.svm.hosted/src/com/oracle/svm/hosted/HostedConfiguration.java#L125-L145
https://github.com/oracle/graal/blob/261c38a7a47dd87f13ec3cbe0fbb85cfdff17963/substratevm/src/com.oracle.svm.hosted/src/com/oracle/svm/hosted/HostedConfiguration.java#L125-L145
https://github.com/oracle/graal/blob/261c38a7a47dd87f13ec3cbe0fbb85cfdff17963/substratevm/src/com.oracle.svm.hosted/src/com/oracle/svm/hosted/HostedConfiguration.java#L125-L145
https://github.com/oracle/graal/blob/261c38a7a47dd87f13ec3cbe0fbb85cfdff17963/substratevm/src/com.oracle.svm.hosted/src/com/oracle/svm/hosted/HostedConfiguration.java#L125-L145
https://github.com/oracle/truffleruby
https://github.com/oracle/truffleruby
https://github.com/oracle/truffleruby
https://dl.acm.org/doi/10.1145/93548.93550
https://doi.org/10.1145/93548.93550
https://doi.org/10.1145/93548.93550
https://doi.org/10.1145/93548.93550
https://dl.acm.org/doi/10.1145/3314221.3314637
https://doi.org/10.1145/3314221.3314637
https://doi.org/10.1145/3314221.3314637
https://doi.org/10.1145/3314221.3314637
https://github.com/quarkusio/quarkus-quickstarts/tree/758dd049407c6aa41c79c0d0dac1cff830ff9217/tika-quickstart
https://github.com/quarkusio/quarkus-quickstarts/tree/758dd049407c6aa41c79c0d0dac1cff830ff9217/tika-quickstart
https://github.com/quarkusio/quarkus-quickstarts/tree/758dd049407c6aa41c79c0d0dac1cff830ff9217/tika-quickstart
https://github.com/quarkusio/quarkus-quickstarts/tree/758dd049407c6aa41c79c0d0dac1cff830ff9217/tika-quickstart
https://github.com/quarkusio/quarkus-quickstarts/tree/758dd049407c6aa41c79c0d0dac1cff830ff9217/tika-quickstart
https://quarkus.io/
http://dl.acm.org/citation.cfm?doid=3012408.3012416
http://dl.acm.org/citation.cfm?doid=3012408.3012416
http://dl.acm.org/citation.cfm?doid=3012408.3012416
https://doi.org/10.1145/3012408.3012416
https://micronaut.io/
http://arxiv.org/abs/2112.14679
http://arxiv.org/abs/2112.14679
http://arxiv.org/abs/2112.14679
https://doi.org/10.48550/arXiv.2112.14679
http://link.springer.com/10.1007/3-540-36579-6_10
https://doi.org/10.1007/3-540-36579-6_10
https://dl.acm.org/doi/10.1145/1375634.1375651
https://dl.acm.org/doi/10.1145/1375634.1375651
https://dl.acm.org/doi/10.1145/1375634.1375651
https://doi.org/10.1145/1375634.1375651
https://dl.acm.org/doi/10.1145/2048066.2048118
https://doi.org/10.1145/2048066.2048118
https://doi.org/10.1145/2048066.2048118
https://doi.org/10.1145/2048066.2048118
https://doi.org/10.5075/epfl-thesis-9768

23:30 Profile-Guided Field Externalization in an Ahead-of-Time Compiler

257–288. Wiley, 10 edition, April 2018. URL: https://www.wiley.com/en-us/Operating+1022

System+Concepts%2C+10th+Edition-p-9781119320913R150.1023

51 Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. Alias1024

Analysis for Object-Oriented Programs. In Dave Clarke, James Noble, and Tobias Wrigstad,1025

editors, Aliasing in Object-Oriented Programming. Types, Analysis and Verification, Lecture1026

Notes in Computer Science, pages 196–232. Springer, Berlin, Heidelberg, 2013. doi:10.1007/1027

978-3-642-36946-9_8.1028

52 Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. Partial Escape Analysis and1029

Scalar Replacement for Java. In Proceedings of Annual IEEE/ACM International Symposium1030

on Code Generation and Optimization, CGO ’14, pages 165–174, Orlando, FL, USA, February1031

2014. ACM. doi:10.1145/2581122.2544157.1032

53 Standard Performance Evaluation Corporation. SPEC JVM98. URL: https://www.spec.1033

org/osg/jvm98/.1034

54 Sun Microsystems, Inc. J2ME Building Blocks for Mobile Devices: White Paper on KVM and1035

the Connected, Limited Device Configuration (CLDC). Technical report, Sun Microsystems,1036

Inc., Palo Alto, CA, USA, May 2000. URL: https://www.oracle.com/technetwork/java/1037

embedded/javame/java-mobile/kvmwp-150240.pdf.1038

55 Tim Wilkinson. The Kaffe Virtual Machine, December 2024. original-date: 2010-12-1039

13T05:20:52Z. URL: https://github.com/kaffe/kaffe.1040

56 Po-An Tsai and Daniel Sanchez. Compress Objects, Not Cache Lines: An Object-Based1041

Compressed Memory Hierarchy. In Proceedings of the Twenty-Fourth International Conference1042

on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19,1043

pages 229–242, New York, NY, USA, April 2019. Association for Computing Machinery. URL:1044

https://dl.acm.org/doi/10.1145/3297858.3304006, doi:10.1145/3297858.3304006.1045

57 Tomoharu Ugawa, Stefan Marr, and Richard Jones. Profile Guided Offline Optimiza-1046

tion of Hidden Class Graphs for JavaScript VMs in Embedded Systems. In Proceedings1047

of the 14th ACM SIGPLAN International Workshop on Virtual Machines and Intermedi-1048

ate Languages, VMIL 2022, pages 25–35, New York, NY, USA, December 2022. Associa-1049

tion for Computing Machinery. URL: https://dl.acm.org/doi/10.1145/3563838.3567678,1050

doi:10.1145/3563838.3567678.1051

58 Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere. Java object header elimination1052

for reduced memory consumption in 64-bit virtual machines. ACM Trans. Archit. Code Optim.,1053

4(3):17–es, September 2007. URL: https://dl.acm.org/doi/10.1145/1275937.1275941, doi:1054

10.1145/1275937.1275941.1055

59 VMware. Spring, December 2024. URL: https://spring.io/.1056

60 VMware. Spring PetClinic Sample Application, December 2024. URL: https://github.com/1057

spring-projects/spring-petclinic.1058

61 Christian Wimmer. GraalVM native image: large-scale static analysis for Java (keynote). In1059

Proceedings of the 13th ACM SIGPLAN International Workshop on Virtual Machines and1060

Intermediate Languages, VMIL 2021, page 3, New York, NY, USA, October 2021. Association1061

for Computing Machinery. doi:10.1145/3486606.3488075.1062

62 Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wögerer, Peter B.1063

Kessler, Oleg Pliss, and Thomas Würthinger. Initialize once, start fast: application initialization1064

at build time. Proc. ACM Program. Lang., 3(OOPSLA):184:1–184:29, October 2019. doi:1065

10.1145/3360610.1066

63 Patrick Wintermeyer, Maria Apostolaki, Alexander Dietmüller, and Laurent Vanbever. P2GO:1067

P4 Profile-Guided Optimizations. In Proceedings of the 19th ACM Workshop on Hot Topics1068

in Networks, HotNets ’20, pages 146–152, New York, NY, USA, November 2020. Association1069

for Computing Machinery. URL: https://dl.acm.org/doi/10.1145/3422604.3425941, doi:1070

10.1145/3422604.3425941.1071

64 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,1072

Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to rule them all.1073

https://www.wiley.com/en-us/Operating+System+Concepts%2C+10th+Edition-p-9781119320913R150
https://www.wiley.com/en-us/Operating+System+Concepts%2C+10th+Edition-p-9781119320913R150
https://www.wiley.com/en-us/Operating+System+Concepts%2C+10th+Edition-p-9781119320913R150
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/2581122.2544157
https://www.spec.org/osg/jvm98/
https://www.spec.org/osg/jvm98/
https://www.spec.org/osg/jvm98/
https://www.oracle.com/technetwork/java/embedded/javame/java-mobile/kvmwp-150240.pdf
https://www.oracle.com/technetwork/java/embedded/javame/java-mobile/kvmwp-150240.pdf
https://www.oracle.com/technetwork/java/embedded/javame/java-mobile/kvmwp-150240.pdf
https://github.com/kaffe/kaffe
https://dl.acm.org/doi/10.1145/3297858.3304006
https://doi.org/10.1145/3297858.3304006
https://dl.acm.org/doi/10.1145/3563838.3567678
https://doi.org/10.1145/3563838.3567678
https://dl.acm.org/doi/10.1145/1275937.1275941
https://doi.org/10.1145/1275937.1275941
https://doi.org/10.1145/1275937.1275941
https://doi.org/10.1145/1275937.1275941
https://spring.io/
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic
https://doi.org/10.1145/3486606.3488075
https://doi.org/10.1145/3360610
https://doi.org/10.1145/3360610
https://doi.org/10.1145/3360610
https://dl.acm.org/doi/10.1145/3422604.3425941
https://doi.org/10.1145/3422604.3425941
https://doi.org/10.1145/3422604.3425941
https://doi.org/10.1145/3422604.3425941

Anonymous author(s) 23:31

In Proceedings of the 2013 ACM international symposium on New ideas, new paradigms, and1074

reflections on programming & software, Onward! 2013, pages 187–204, Indianapolis, Indiana,1075

USA, October 2013. ACM. doi:10.1145/2509578.2509581.1076

65 Pengfei Yuan, Yao Guo, and Xiangqun Chen. Experiences in profile-guided operating system1077

kernel optimization. In Proceedings of 5th Asia-Pacific Workshop on Systems, APSys ’14,1078

pages 1–6, New York, NY, USA, June 2014. Association for Computing Machinery. URL:1079

https://dl.acm.org/doi/10.1145/2637166.2637227, doi:10.1145/2637166.2637227.1080

CVIT 2016

https://doi.org/10.1145/2509578.2509581
https://dl.acm.org/doi/10.1145/2637166.2637227
https://doi.org/10.1145/2637166.2637227

	1 Introduction
	2 Background
	2.1 GraalVM
	2.2 GraalVM Native Image
	2.2.1 Points-to Analysis
	2.2.2 Image Heap
	2.2.3 Profile-Guided Optimization

	3 Field Profiling
	3.1 Information needed for field externalization
	3.2 Metrics

	4 Field Externalization
	4.1 Externalization Heuristic
	4.2 Rewiring Accesses to Externalized Fields
	4.2.1 Adhering to the Java Memory Model

	4.3 Compile-Time Externalization
	4.4 Field Externalization and Class Inheritance
	4.4.1 Companion Inheritance
	4.4.2 Companion Factory Methods

	4.5 Masked Companion References
	4.5.1 Field Access Adaptations for Masked Companion Reference Fields

	5 Evaluation
	5.1 Benchmark Results

	6 Limitations
	7 Related Work
	8 Conclusion

