
Online Selection with Cumulative Fairness Constraints

We propose and study the problem of online selection with
cumulative fairness constraints. In this problem, candidates
arrive online, i.e., one at a time, and the decision maker must
choose to accept or reject each candidate subject to
a constraint on the history of decisions made thus far. We
introduce deterministic, randomized, and learned policies
for selection in this setting. Empirically, we demonstrate
that our learned policies achieve the highest utility. However,
we also show—using 700 synthetically generated datasets—
that the simple, greedy algorithm is often competitive with
the optimal sequence of decisions, obviating the need for
complex (and often inscrutable) learned policies, in many
cases. Theoretically, we analyze the limiting behavior of our
randomized approach and prove that it satisfies the fairness
constraint with high probability.

Introduction

Due to their proven effectiveness across a plethora of tasks,
machine learning (ML) algorithms have been incorporated
into many technologies that are widely used across the globe.
In many cases, these technologies are utilitized in high-stakes
situations, such as: hiring, risk assessment in the judicial
system, and law enforcement (Raghavan et al. 2019; Ely-
ounes 2019; Meijer and Wessels 2019). However, ML al-
gorithms have also been shown to discriminate—especially
against candidates from minority groups (Bogen 2019; Lar-
son, Roswell, and Atlidakis 2017; Lum and Isaac 2016). Not
only is this often unjust, but it can also detract from both
short-term and long-term utility of the services these algo-
rithms support (Kleinberg and Raghavan 2018; Wick, Panda,
and Tristan 2019).

When designing ML algorithms intended to minimize such
discriminatory behavior, it is critical to consider a handful
of desiderata; two of which we focus on here. First, many
technologies that encapsulate ML algorithms are used over
time. Instead of all users interacting with these technologies
simultaneously, the ML algorithms are often invoked repeat-
edly for a small batch of users—or even a single user. This
motivates us to focus on the online problem setting. Second,
algorithmic decision-making must be considered cumula-

tively and continueously, rather than instantaneously. In other
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words, when testing for discriminatory behavior, the entire
sequence of decisions made by an ML algorithm should be
considered throughout the algorithm’s lifetime, rather than
only at the end, or any instantaneous point in time. For exam-
ple, it is insufficient for a credit scoring algorithm to assign
lower scores to candidates of one demographic group for 11
months, then, assign similar candidates high scores for one
month, and be considered “fair” over the course of a year.

Literature in algorithmic fairness proposes a number of
strategies for mitigating discrimination. Broadly speaking,
many strategies take one of the following 3 approaches:
1. transform the data on which an ML algorithm is trained
(pre-processing), 2. alter the training procedure (in-process-
ing), or 3. modify the output of the trained ML algorithm
(post-processing) (Friedler et al. 2019; Romei and Ruggieri
2011). We study post-processing since it can be readily uti-
lized in concert with black-box ML algorithms.

In this work, we focus on the family of online selection

problems, which are broadly applicable in domains such as
lending, hiring, and promotion. In an online selection prob-
lem, candidates arrive one at a time. Upon arrival—and using
whatever information is available—the decision-making sys-
tem must choose whether to select the candidate or not. As
is often the case, we treat these decisions as irrevocable (El-
machtoub and Levi 2015; Correa et al. 2020). Intending to
mitigate discriminatory behavior at all points in the decision-
making process, we study selection problems subject to cu-
mulative constraints. In particular, these constraints consider
the entire history of decisions at all points throughout the
process. Our online selection problem can be applied in con-
juctation with a variety of fairness constraints.

We introduce and examine deterministic, randomized, and
learned selection policies in the context of 4 datasets. While
the learned policies perform best in terms of utility maxi-
mization, we find that a simple, greedy approach that ensures
the constraints are always met is often competitive. In or-
der to understand when the greedy policy performs well, we
compare it to the optimal sequence of selections in 700 dis-
tinct, synthetically generated datasets. The results reveal that
the greedy policy is consistently competitive with the opti-
mal sequence of decisions when candidates from different
groups exhibit similar mean utility; this is independent of
the variance in utility, the composition of the sequence (in
terms of fraction of candidates from each group), or the value



of the mean utility. Moreover, when mean utilities diverge,
the greedy selection policy is still often competitive with
the optimal sequence, however its competitiveness exhibits
higher variance. While our learned policies perform best, our
work suggests that when group-dependent mean utility is
nearly equal (as is expected in many settings), greedy but fair
selection is sufficient and complicated learned policies are
unnecessary.

For completeness, we also experiment with policies con-
structed offline using pre-processed data as well as policies
trained explicitly to be fair (in-processing). We find that these
policies are often unable to satisfy our cumulative fairness
constraints. Furthermore, we find that our online selection
policies tend to achieve higher utility and exhibit more even
selections across groups. Our work underscores the impor-
tance of thoughtfully analyzing and considering the stake-
holders of a deployed system before building any ML compo-
nents, as well as the importance of designing algorithms for
real-world, online usage. In summary a) we pose the online
selection problem with cumulative constraints and study it in
the non-batched setting, b) we introduce deterministic, ran-
domized and learned policies for the online selection problem,
c) we prove strong asymptotic properties of our randomized
policy and d) we conduct a large empirical study that reveals
that the greedy strategy is often competitive with the opti-
mal selection algorithm. We emphasize that our goal is to
study various policies for fair online selection, and analyze
the strengths and weaknesses of each. We do not advocate for
applying these policies in practice precisely as written, nor
are we suggesting that they would necessarily withstand legal
scrutiny. Likewise, we do not advocate for a specific fairness
criterion, but rather consider well-known legal criteria for
concreteness. Throughout this document, we use the term
“fair” to mean adherence to (fairness) constraints.

Fair Online Selection

We study an online selection process in which candidates
arrive one at a time and are immediately either accepted or
rejected. Each candidate belongs to a known group and
exhibits a score. The decision maker would like to accept
candidates with high scores, and reject candidates with
low scores. However, throughout this process, the decision
maker’s actions are subject to a fairness audit, which deter-
mines whether its decisions so far are fair with respect to the
candidates’ groups.

Formally, let X = {st, ct}Nt=1 be a sequence of candidates
where the candidate arriving at time t has score st 2 R and
group ct 2 {1, · · · ,K}. Let A = {accept,reject}, be
the outcomes for a candidate and let U : X ⇥A ! R be the
utility for either accepting or rejecting a candidate. De-
fine a decision making policy, ⇡ : X ⇥  ! A, where  rep-
resents a finite history of decision, and let ⇡t be the decision
for the candidate xt. Finally, let V :  ! {pass,fail} be
a function that determines whether the history of decisions,
 is fair. Requiring a policy to always pass the fairness audit,
V , is an example of a cumulative constraint since it applies
to an aggregate of all decisions made thus far. As such, we
refer to such a requirement as either a fairness constraint or a
fairness audit. Then the decision maker’s goal is to select the

policy,

⇡? = argmax
⇡2⇧

EX⇠D

"
NX

t=1

U(xt,⇡t)

#

s.t. V ( t) = pass, 8t.

In words, the optimal policy, ⇡?, is one that maximizes
expected utility over possible candidate sequences while
passing the fairness audit at each timestep. While this prob-
lem definition is general, we focus on the case in which we
make no distributional assumptions on candidates and where
the candidate sequence length, N , is unknown.

Illustrative Example

To ground the fair online selection problem, we present the ex-
ample in Figure 1. In this example, the sequence of incoming
candidates is of length 10. Each candidate belongs to one of
two groups: } or ~. Moreover, the utility of accepting (X)
a candidate is equal to the candidate’s score, and the utility of
rejecting a candidate (⌦) is the negated candidate score,
i.e., U(xt,accept) = �U(xit,reject) = st. Here, the
cumulative fairness constraint checks whether the absolute
value of the difference between the number of accepted
candidates from the two groups is greater than 2. Formally, if
A⇡[}]t and A⇡[~]t are the number of candidates accepted
from the two groups by a policy, ⇡, after the first t candidates
arrive, then ⇡ fails the audit if |A⇡[}]t �A⇡[~]t| > 2. Con-
cretely, if at time t, a policy has accepted 5 candidates
from group } and only 2 candidates from group ~, the pol-
icy fails the audit.

The Figure visualizes 3 selection policies.
UNFAIR (rows 4-7) This policy greedily accepts and
rejects candidates to maximize utility without regard for
the fairness constraint. In this example, UNFAIR accepts can-
didates with positive scores and rejects candidates with nega-
tive scores. In doing so, it violates the fairness constraint at 5
timesteps.
Greedy But Fair (GBF; rows 8-11) This policy makes the
same decisions as UNFAIR unless doing so would violate
the fairness constraints. When GBF deviates from UNFAIR,
we say that GBF has triggered the failsafe. In Figure 1, GBF
triggers the failsafe twice (visualized by yellow-filled cells),
at timesteps 4 and 8, missing out on two high-scoring candi-
dates.
Optimal (OPT; rows 12-15) This reflects the optimal se-
quence of decisions. Notice that OPT deviates from GBF at
critical points (timesteps 1 and 7). In doing so, it provides
itself with the flexibility to accept the high-scoring can-
didates at timesteps 4 and 8, culminating in the maximal
cumulative utility for any fair policy. Computing OPT re-
quires knowledge of the full sequence a priori and is therefore
unrealizable in online settings.

Algorithmic Policies

In addition to introducing the problem, in the previous sec-
tion, we discussed 3 deterministic policies for online selec-
tion: UNFAIR, GBF, and OPT. Of these, only GBF can be
used in practice since UNFAIR does not adhere to the fair-
ness constraints, and computing OPT requires knowledge



1 Candidate x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

2 score 1 2 �1 3 5 �4 1 9 9 3
3 group } } ~ } ~ } } } ~ }

4 UNFAIR

5 accept/reject X X ⌦ X X ⌦ X X X X
6 |A[}]t �A[~]t| 1 2 2 3 2 2 3 4 3 4
7 Cum. Utility 1 3 4 7 12 16 17 26 35 38
8 Greedy But Fair

9 accept/reject X X ⌦ ⌦ X ⌦ X ⌦ X X
10 |A[}]t �A[~]t| 1 2 2 2 1 1 2 2 1 2
11 Cum. Utility 1 3 4 1 6 10 11 2 11 14
12 Optimal

13 accept/reject ⌦ X ⌦ X X ⌦ ⌦ X X X
14 |A[}]t �A[~]t| 1 2 2 2 1 1 1 2 1 2
15 Cum. Utility �1 1 2 5 8 12 11 20 29 32

Figure 1: Fair Online Selection Example. The first 3 rows visualize a sequence of 10 candidates, their scores, and their groups
(} or ~). The following rows visualize the 3 selection policies: Unfair, Greedy But Fair, and Opt. For each policy, 3 statistics
are show: 1) its decision—either accept (X) or reject (⌦), 2) the absolute difference between the number of accepted
candidates from both groups, and 3) the cumulative utility achieved. Red-filled cells indicate timesteps at which a policy is
unfair; yellow-filled cells indicate instances in which the failsafe is triggered, i.e., the is decision made exclusivley for the sake of
satisfying the fairness constraint. The myopic decisions of Greedy But Fair force unfortunate reject decisions at timesteps 4
and 8, ultimately leading to its low utility in comparison to Optimal.

of the entire sequence of candidates. In this section we in-
troduce a randomized policy as well as two policies trained
on historical data. We design these policies with the goal
of maximizing cumulative utility subject to the cumulative
constraints.

Randomized Positive Override

We open the discussion with a statistical policy called Ran-
domized Positive Override (RPO). At a high-level, this policy
aims to increase the probability of accepting candidates
that belong to groups with low acceptance rates. This policy
is appropriate when the fairness constraint tests whether the
selection rates between the two groups exceeds some ratio,
such as in the 4/5-Rule used by the U.S. Equal Employment
Opportunity Commision (Commission 1978).

Formally, RPO assumes the following model. Let there be
two groups of candidates, C1 and C2. Define the acceptance

rate of a group, C, to be the number of candidates accepted
from C as the number of candidates arriving from C goes to
infinty. Let ✓ and � be the True acceptance rates for C1 and
C2, respectively, and assume ⇡t follows a group-dependent
Bernoulli distribution with the True parameters, i.e.,

Yt ⇠

⇢
Bern(✓) if ct = C1
Bern(�) if ct = C2,

where ⇡t accepts a candidate if Yt = 1. We would like the
impact ratio, ⇢ = �

✓ , of RPO to be close to some target value,
⌘ (e.g., 4

5 ). Finally, let ✓̂ and �̂ be the empirical acceptance
rates of the two groups under the UNFAIR policy. Without
loss of generalized, assume ✓̂ > �̂.

RPO operates as follows. When a candidate arrives from
C1, RPO makes the same decision as UNFAIR. Similarly,
when a candidate arrives from C2 that the UNFAIR policy

would accept, RPO also accepts the candidate. Other-
wise, draw a random variable, Zt as follows:

Zt ⇠ Bern

 
(⌘ + ✏(t)� ⇢̂t)✓̂t

1� �̂t

!
,

where the function ✏ controls how aggressively the impact
ratio should be forced to ⌘. The only requirement on this
function is that it be a decreasing function that converges to
0. If Zt = 1, RPO accepts the candidate. In practice, we
choose ✏(t) = e�t where  controls the convergence rate.
A pseudocode specification of RPO appears in Algorithm 1.
In the algorithm, we constrain the parameter to the Bernoulli
distribution used for sampling so that it lies in the interval
[0, 1].

We prove that, in the limit, this procedure drives the accep-
tance rate for C2 to ⌘✓ almost surely, so that the impact ratio
of the RPO policy converges to ⌘. In the following, define
Y 0
t = 1 if RPO accepts the tth candidate of C2; otherwise

Y 0
t = 0.

Theorem 1. If ✏(t) ! 0 then
1
t

⇣Pt
i=1 Y

0
t

⌘
a.s.
! ⌘✓

Proof. Set Qt = E
h
Y 0
t | ✓̂t, �̂t

i
. Then:

Qt = �+ (1� �)E
h
Zt | ✓̂t, �̂t

i
(1)

= �+ ✓̂t ·

✓
1� �

1� �̂t

◆
(⌘ + ✏(t)� ⇢̂t) (2)

By the strong law of large numbers, ✓̂t
a.s.
! ✓ and �̂t

a.s.
! �.

Hence Qt
a.s.
! ⌘✓.

Setting Rt = Y 0
t �Qt, we have that E

h
Rt | ✓̂t, �̂t

i
= 0.

Moreover, E
⇥
R2

t

⇤
is bounded by a constant, so by the strong



law of large numbers for martingale differences (Feller 1971,
VII.9, Theorem 3), we have that

1

t

tX

i=1

(Y 0
i �Qi)

a.s.
! 0

Because Qt
a.s.
! ⌘✓, we have that t�1

Pt
i=1 Qi

a.s.
! ⌘✓ as well,

and hence t�1
Pt

i=1 Y
0
i

a.s.
! ⌘✓.

When deploying RPO, we still ensure that its decisions
satisfy the cumulative fairness constraints by triggering the
failsafe as necessary. To better understand the complex trade-
off between reduction of utility coming from such tiggers,
we further analyze a simplified version of the RPO policy,
which provides explicit formulae for the expected costs of
the policy.

The analysis appears in the appendix.

Algorithm 1 Randomized Positive Override
Input: UNFAIR policy’s decision, Gt, fairness constraint, V ,
decision history,  t�1,candidate of class C
Output: Decision ⇡t

if V ( t�1 [ accept) == fail then

⇡t = reject
else if V ( t�1 [ reject) == fail then

⇡t = accept
else if C == C2 ^Gt = 0 then

⇢̂t = �̂t/✓̂t, Dt ⇠ Bern
⇣

(⌘+✏(t)�⇢̂t)✓̂t
1��̂t

⌘

if Dt == 1 then

⇡t = accept
else

⇡t = reject
end if

else

⇡t = Gt

end if

Imitation Learning

Given a full candidate sequence, rather than one candidate at
a time, it is possible to compute the sequence of decisions that
globally maximizes utility subject to the fairness constraint.
The dynamic programming algorithm for computing the op-
timal sequence, OPT, runs in O(Cn2) time and space for a
sequence of length n and where C is the cost of evaluating
the fairness audit.

Therefore, it is possible train a policy to mimic OPT on
simulated or historical data. We call this policy Imitation
Learning (IL). To train IL, we simulate sequences of can-
didates and use OPT to compute the optimal sequence of
decisions. Then we train a binary classifier to predict this
sequence. Features used during training include statistics
summarizing the current candidate, the sequence of candi-
dates observed so far and the impending accept/reject
decision.

Learning to Search

The fair online selection problem can be viewed as an in-
stance of structured prediction. In this light, we also investi-

gate training via learning to search. In this work, we exper-
iment with LOLS, a member of the family of learning to
search algorithms (Chang et al. 2015). Like in IL, we train
a binary classifier, hL. However, the classifier is trained on
a sequence of cost sensitive examples generated as follows.
Let S be a sequence of candidates. To generate training ex-
ample t, we use hL as a policy to decide whether to accept
or reject the first t � 1 candidates. Then, at time t, we
hallucinate two futures: in one the candidate is rejected
and in the other, the candidate is accepted. Then, for each
future, we run a reference policy (we select either OPT or
GBF as the reference) to make decisions for the remainder
of the candidates. A cost-sensitive training instance is then
generated that includes the state at time t (including candi-
date xt) and a label that is determined by which hallucinated
future achieved higher utility. The weight of this training
instance is equal to the difference in utility between the two
futures. We call this policy L2S and note that it was shown
to be successful in recent work that studied online selection
in the batched setting (Gupta et al. 2021).

Experiments

In this section, we study fair online selection empirically.
First, we compare our proposed policies on real and synthetic
data. We analyze the learned policies in an attempt to better
understand their decision making strategies. Noticing the ef-
fectiveness of GBF, we analyze how group score distributions
and group proportions effect utility maximization. Finally,
we compare fairness of all policies, and also demonstrate
that in-processing methods for learning fair classifiers are
not sufficient for guaranteeing fairness in the online setting.
Our synthetic experiments are inspired, in part, by recent
work that highlights computation as a means for problem
diagnosis (Abebe et al. 2019).

Setup and Audit In each experiment, there are a sequence
of candidates that arrive online (i.e., one at a time). The
candidate arriving at timestep t has score st. We use the
score and a score threshold, �, to compute the utility of
accepting and rejecting the candidate in one of two
ways: Ut(accept) = |st � �| and U (exp)

t (accept) =
(1 + (|st � �|))� where the second represents the case where
the utility of accepting a candidate with a high score earns
exponentially more utility than accepting a candidate with
a score close to the threshold. In either case, we define
U(accept) = �U(reject). Each candidate belongs to
one of two groups: C1 or C2. Throughout the decision mak-
ing process, each policy must satisfy demographic parity—in
particular, the 4/5-Rule. Formally, let �̂n, ✓̂n be the accep-
tance rate among candidates of C1 and C2, respectively. Then,
any policy must satisfy min(�̂n, ✓̂n) �

4
5 max(�̂n, ✓̂n), or

in words, the lower acceptance rate must be at least 4/5 the
higher rate. We choose this fairness constraint because it
is conceptually simple, it is related to other fairness audits
based on selection rates (Raghavan et al. 2019), and is used
in legal standards (Commission 1978).

Since our work centers on online decision making, the
fairness audit must be robust when the number of candi-
dates seen so far from any group is small. Therefore, we



apply an audit that uses Bayes Factors (Kass and Raftery
1995), as they allow for the incorporation of a prior, and
are capable of representing uncertainty. To do so, we cal-
culate the likelihood ratio between two binomial distribu-
tions: the first has success parameter drawn uniformly at ran-
dom between [0, 4

5 max{�̂n, ✓̂n}] and the second between
[ 45 max{�̂n, ✓̂n}, 1]. If the ratio is greater than 101 then the
decision maker violates the fairness constraint. We use Monte
Carlo integration to estimate the Bayes Factors. Because of
variance in these estimates, a policy may appear to temporar-
ily violate the fairness threshold by a small amount.

Utility Maximization

First, we compare all proposed polices with respect to util-
ity maximization on 3 real datasets (below) and 1 synthetic
dataset.
1. Compas (Larson, Roswell, and Atlidakis 2017): The

COMPAS recidivism prediction dataset compiled by ProP-
ublica lists data on 5278 criminal offenders screened using
this risk assessment tool in Broward County, Florida, dur-
ing 2013-14. We set gender and race as the protected
attribute (in separate set of experiments).

2. German (Dua and Graff 2017): This dataset from the
UCI repository consists of a 1000 instances, each with 20
attributes and assigned to good or bad credit risk. We set
gender and age (� 25 and < 25) as the protected attribute
in independent experiments.

3. Income (Dua and Graff 2017): This dataset extracted
from the 1994 Census database contains 14 attributes on
demographic information from 45221 adults and whether
each person earns � 50K USD. We set gender and race
as the protected attribute.

We divide each real dataset into train, development and test
splits and train a logistic regression classifier on the training
set. The output of the classifier is the score of the candidate.
The synthetic dataset contains candidates belonging to C1
and C2. The scores of the C1 candidates are drawn from a
Beta distribution with µ1 = 0.83 and the scores of the C2 are
drawn from a Beta with µ2 = 0.16; for both groups,⌧ = 6.
There are an equal number of candidates from both groups.
For all 4 datasets, we use the second (exponentiated) utility
function defined above.

IL and L2S We experiment with two trained policies:
1. imitation learning (IL), and 2. learning to search (L2S).
We train both policies offline on designated training data. For
each dataset, we train 10 models. We evaluate each model
on the corresponding development set and select the best
performing, which is, in turn, used in experiments on the test
set.

In training L2S on the real data, we use a mixture reference
policy that chooses GBF 90% of the time and the learned
policy otherwise. For the simulated data, we set the reference
to be OPT, the dynamic program that computes an optimal
fair selection of candidates. We find that these choices of

1A Bayes Factor above 10 constitutes “strong” evidence accord-
ing to Kass and Raftery (1995)

reference policy are most effective. While we hypothesize
that this could be related to local optimality of the reference
(as mentioned in previous work (Chang et al. 2015)), we
leave investigation of how to choose appropriate reference
policies for future work.

Our implementation deviates from the originally proposed
LOLS algorithm in two ways. First, during training, we only
roll out the reference policy for 20 steps, rather than rolling
out the reference policy for the entire sequence length. We do
this because the training sequences are long (100s to 1000s
of candidates), and thus any reference policy is likely to be
locally optimal (i.e., at time t, either decision may lead to
the same cumulative utility after a full roll out). Since the
training set is of a fixed size, this helps our model become
more robust to arbitrarily sized testing sequences. Finally,
rolling out 20 steps, rather than to the end of the candidate
sequence, drastically improves the speed of training.

For IL implementation, we use a 3-layer feed-forward
neural network with 24 hidden units per layer and Relu ac-
tivations. We train with a cross-entropy loss using Adagrad
with a learning rate of 0.1. For L2S implementation, the
architecture is composed of 2 parallel sequences of layers,
one representing each potential action. Each sequence has
two layers of 24 hidden units each and Relu activations. The
output of each sequence is a 24 dimentional vector. The two
output vectors are substracted (as in ranking) and passed
through a final layer with sigmoid activation. We train with a
cross-entropy loss using Adagrad with a learning rate of 0.1.

Baseline Selection Policies We test 4 selection policies
that require no training:1. UNFAIR, 2. greedy but fair (GBF),
3. randomized positive override (RPO), and 4. the random-
ized positive override with feedback loop (RPO-FL). RPO-FL

is the same as RPO except that instead setting ✓̂t and �̂t to be
the empirical estimates of UNFAIR’s selection rates for candi-
dates of the two groups, they are the policy’s own empirical
selection rates. We run RPO and RPO-FL 10 times on each
test set and report means and standard deviations.

Results We run each policy on each dataset and measure
cumulative and average utility per candidate. A visual repre-
sentation of the cumulative utility on the simulated dataset ap-
pears in Figure 2(a). For the simulated data, the Figure shows
that the learned policies dominate the baseline strategies, and
that L2S outperforms IL. This echos recent results showing
that L2S is effective in the batched online setting (Gupta
et al. 2021). UNFAIR (the top-most black line), represents the
maximum achievable utility per candidate. Of the baseline
approaches, RPO and RPO-FL achieve higher cumulative util-
ity than GBF, however RPO exhibits relatively high variance
across the 10 runs.

Results for the remaining datasets appear in Table 1. Inter-
estingly, on the remaining datasets, GBF is a strong contender
while RPO and RPO-FL are relatively weaker. This is related
to the fact that the GBF is competitive with OPT: since it is
possible to largely follow a greedy policy, randomly accept-
ing candidates from the group with lower acceptance rate (as
in RPO and RPO-FL), is not required. The table also shows
that the learned methods are top-performers across datasets,
highlighting their robustness and the viability of learning



(a) (b)

Figure 2: (a) Cumulative Utility on Simulated Data. The learned policies L2S and IL outperform the non-learned policies.
RPO and RPO-FL outperform GBF however RPO exhibits high variance across 10 runs. Error bars indicate 1 standard dev.
(b) Evaluation of offline fairness intervention algorithms in the online setting, on income dataset. Pre and in-processing
algorithms aggressively violate the audit threshold demonstrating their insufficiency. Post-processing also violates the threshold
initially.

Policy Income-G Income-R Compas-G Compas-R German-A German-G Simulated

L2S 0.89 ± 0.00 0.99 ± 0.01 0.92 ± 0.00 0.94 ± 0.00 0.97 ± 0.00 1.00 ± 0.00 0.71 ± 0.01
IL 0.87 ± 0.02 0.99 ± 0.01 0.92 ± 0.00 0.94 ± 0.00 0.97 ± 0.00 1.00 ± 0.00 0.63 ± 0.02

RPO 0.89 ± 0.00 0.97 ± 0.00 0.80 ± 0.02 0.93 ± 0.01 0.98 ± 0.01 1.00 ± 0.00 0.27 ± 0.04
RPO-FL 0.89 ± 0.00 0.98 ± 0.00 0.89 ± 0.01 0.94 ± 0.00 0.98 ± 0.01 1.00 ± 0.01 0.31 ± 0.02

GBF 0.90 0.97 0.92 0.93 0.97 1.00 0.24
UNFAIR 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 1: Competitive ratios of cumulative utility. These ratios represent the average and standard deviation of cumulative
utility achieved be each policy reported as a fraction of the maximum possible cumulative utility (i.e., achieved by UNFAIR).

selection policies. Since GBF is frequently competitive with
OPT, we conduct experiments to understand the conditions
under which GBF maximizes utility (details in appendix).
We find that GBF (and other methods) are close to optimal
when the means of the score distributions for C1 and C2
are close. For cases where a marked difference in average
ability between two groups is unexpected (e.g., in loan dis-
bursement between men and women), this result suggests that
learned policies are unnecessary. Instead, greedily selecting
candidates while abiding by fairness mandates yields close
to optimal utility. Moreover if the model assigning scores to
candidates does show significant difference in average scores
between candidates from C1 and C2, it may be more appro-
priate to improve the scoring model than compensate with a
complex selection policy.

Analysis of Learned Policies

We study the learned policies to better understand their deci-
sion making strategies. In Figure 3, we plot each candidate
as an (x, y) pair of their score and the Bayes Factor at the
point in time in which that candidate arrives in the candidate
sequence. Here, the Bayes Factor for a candidate arriving
at time t is a function of the policy’s decision for all can-

didates arriving before t. The colors of the points indicate
group membership and the mark type (either o or x) indicates
whether that candidate was either accepted or rejected,
respectively. The dotted black lines represents the average
Bayes Factor achieved. We compare the IL and L2S to GBF.

The Figure reveals a number of interesting properties about
the three policies. First, we observe that GBF has a higher
average Bayes Factor than either of the learned methods,
and that IL has a higher average Bayes Factor than L2S. In
fact, this suggests that among the most competitive methods,
operating close to the audit threshold is inversely proportional

to cumulative utility. This makes intuitive sense: methods that
operate more fairly (i.e., further from the audit threshold) are
more likely to be able to accept or reject strings of
candidates with extreme scores without violating the fairness
constraints. This is in concert with the observation that L2S
triggers the failsafe the least among the three methods.

IL and L2S seem to learn soft per-group thresholds for
accepting candidates, which can be seen by the visual
columns of accepted and rejected candidates. Consider
Figures 3(b) and 3(c) and the accept decisions for C2
(purple marks). In Figure 3(c) we observe a fuzzy decision
boundary with positive slope, i.e, as the Bayes Factor in-



(a) GBF (b) IL (c) L2S

Figure 3: Classifier scores vs. Bayes Factors on simulated data. Orange markers represent candidates from C1 and purple
markers represent candidates from C2. Circles and ’x’s represent accepted and rejected candidates, respectively. Bolded ’x’s and
’*’ markers represent decision made by the failsafe. The dotted black line represents the average Bayes Factor achieved.

creases, L2S is less likely to accept a high scoring candidate.
In Figure 3(b), a similar fuzzy decision boundary exists how-
ever it appears to have much steeper slope. This is likely to
account for the higher average Bayes Factor for IL. These
structures are in sharp contrast to GBF which exhibits no
such structure.

Policy Fairness

While our work focuses on maximizing utility subject to
passing the fairness audit at all times, we also study the
average Bayes Factor achieved by all methods. Table 2 con-
tains these statistics for the simulated dataset. Unsurprisingly,
RPO maintains the lowest Bayes Factor (i.e., is the most
fair). However, RPO-FL achieves the second highest average
Bayes Factor, potentially due to the instability associated the
post-processor’s average rates of hiring candidates from both
classes. Interestingly, L2S achieves the second lowest Bayes
Factor while achieve the highest cumulative utility (Table
1) suggesting that it is arguably the best overall policy. GBF
achieves the highest average Bayes Factor, as expected.

Average Bayes Factor
RPO L2S IL RPO-FL GBF

3.1 ± 2.7 4.6 ± 2.6 6.8 ± 2.1 7.2 ± 2.0 8.1 ± 1.4

Table 2: Average Bayes Factor. The table contains the Bayes
Factor per policy averaged over the candidate sequence for
single run of each algorithm on the Simulated data.

Related Work

The field of Algorithmic Fairness has enjoyed significant
research attention, but online selection problems with fair-
ness constraints have only recently become the subject of
increased study. The most similar to ours is on fair online
ranking where candidates arrive in batches and the ranking al-
gorithm must satisfy a cumulative fairness constraint (Gupta
et al. 2021). However, in our work, a single candidate—rather
than a batch of candidates—is available at each timestep.
Other closely related work is inspired by the secretary prob-

lem, in which the goal is to select the maximum value from a

sequence of known and bounded length (Dynkin 1963; Stoy-
anovich, Yang, and Jagadish 2018; Salem and Gupta 2019;
Kleinberg and Raghavan 2018). However, in our setting, the
sequence is of unknown size, and the number of candidates
to select is unbounded. Additionally, in our work a policy
must satisfy fairness constraints at all timesteps, rather than
only at the end of the sequence. Less closely related are stud-
ies focused on fairness in online settings, but for problems
other than selection (Joseph et al. 2016; Kannan et al. 2017;
Bechavod et al. 2019; Lakkaraju et al. 2017; Kilbertus et al.
2020; Cayci, Gupta, and Eryilmaz 2020).

The selection policies we study can be classified as fair
post-processing methods (Hardt, Price, and Srebro 2016;
Kamiran, Karim, and Zhang 2012; Canetti et al. 2018). In
seminal work on post-processing, a randomized classifier is
derived from an existing (possibly) unfair classifier, so as
to achieve required fairness criteria in expectation (Hardt,
Price, and Srebro 2016). However, methods that guarantee
fairness in expectation are inappropriate in our setting, in
which fairness constraints must be satisfied at all timesteps.
Moreover, our work centers on the online setting.

Conclusions

We study the online selection problem with cumulative fair-
ness constraints. We propose deterministic, randomized and
learned policies and demonstrate that the learned selection
policies achieve the highest utility. However, the greedy
algorithm—GBF—is competitive with the optimal sequence
of selections whenever the distributions of scores of candi-
dates from C1 and C2 have similar means. Our experiments
underscore the importance of deep consideration of the prob-
lem at hand, the tendencies of the scoring model, and the
characteristics of the expected input sequence, before select-
ing a policy. In our setup, the goal of the selection policy is
to maximize utility. However, using utility maximization as
the primary objective should be carefully considered in real-
world scenarios. For this reason, RPO and RPO-FL—which
have provable convergence properties when it comes to bal-
ancing acceptance rates—merit further investigation, despite
performing worse than methods like L2S.
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