Toward Just-in-time and Language-agnostic Mutation Testing

Stefan Reschke
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
stefan.reschke@student.hpi.uni-potsdam.de

Fabio Niephaus
Oracle Labs
Potsdam, Germany
fabio.niephaus@oracle.com

ABSTRACT

Mutation Testing is a popular approach to determine the quality of
a suite of unit tests. It is based on the idea that introducing faults
into a system-under-test (SUT) should cause tests to fail, otherwise,
the test suite might be of insufficient quality. In the language of
mutation testing, such a fault is referred to as “mutation”, and an in-
stance of the SUT’s code that contains the mutation is referred to as
“mutant”. Mutation testing is computationally expensive and time-
consuming. Reasons for this include, for example, a high number of
mutations to consider, interrelations between these mutations, and
mutant-associated costs such as the cost of mutant creation or the
cost of checking whether any tests fail in response. Furthermore,
implementing a reliable tool for automatic mutation testing is a
significant effort for any language. As a result, mutation testing is
only available for some languages.

Present mutation tools often rely on modifying code or binary
executables. We refer to this as “ahead-of-time” mutation testing.
Oftentimes, they neither take dynamic information that is only
available at run-time into account nor alter program behavior at
run-time. However, mutating via the latter could save costs on
mutant creation: If the corresponding module of code is compiled,
only the mutated section of code needs to be recompiled. Additional
run-time information (like previous execution results of the mutated
section) selected by an initial test run, could also help to determine
the utility of a mutant. Skipping mutants of low utility could have
an impact on mutation testing efficiency. We propose to refer to
this approach as just-in-time mutation testing.

In this paper, we provide a proof of concept for just-in-time and
language-agnostic mutation testing. We present preliminary results
of a feasibility study that explores the implementation of just-in-
time mutation testing based on Truffle’s instrumentation API. Based
on these results, future research can evaluate the implications of
just-in-time and language-agnostic mutation testing.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; Runtime environments; Software performance.

Conference’17, July 2017, Washington, DC, USA
2022. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Toni Mattis
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
toni.mattis@hpi.uni-potsdam.de

Robert Hirschfeld

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
robert.hirschfeld@hpi.uni-potsdam.de

KEYWORDS

mutation testing, mutation coverage, GraalVM, Truffle, language-
agnostic, polyglot

ACM Reference Format:

Stefan Reschke, Toni Mattis, Fabio Niephaus, and Robert Hirschfeld. 2022.
Toward Just-in-time and Language-agnostic Mutation Testing. In Proceed-
ings of ACM Conference (Conference’17). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Unit testing is a method often employed as the basis of software
validation processes. A good suite of unit tests covers all features
of a specific software component (as well as its non-functional
requirements) and is typically fast to execute. This test suite enables
stable and maintainable development of additional features in a
module. Developers often determine the test suite’s strength by
measuring its coverage of application code. A most basic approach
is to measure which lines of code the tests have been executing (line
coverage). If the code is viewed as an Abstract Syntax Tree (AST),
another approach would be to measure covered nodes of this AST
(node coverage).

Among the more sophisticated coverage criteria, mutation cover-
ageis a “high-end” coverage criterion [1]. It relies on the expectation
that every change to the tested code should cause a test to fail. Ev-
ery encountered violation (a change that caused no test to fail) is
considered a defect of the test suite. The ratio of violations to all
considered changes determines the suite’s mutation coverage. The
process of measuring mutation coverage is referred to as mutation
testing.

Common mutation testing tools (or just mutation tools) such as
MuJava [11] carry out the following operations: (1) determining
viable changes to the tested code by a set of rules (mutation opera-
tions), (2) the creation of code-versions that each contains a specific
change (mutants), (3) running all tests on these code-versions (check
if mutant/mutation is alive). Following this approach, measuring
mutation coverage on larger codebases is usually time-consuming
and computationally expensive, even if the test suite itself runs
fast. As a result, without applying more sophisticated techniques,
mutation testing is (if at all) done infrequently. Enabling research
addressing the scalability problem of mutation testing has been

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

proposed repeatedly, e.g. in [3]. A central focus on research towards
mutation testing has been in eliminating these problems.

Mutation testing has been researched since the 1970s [5, 8].
Statically-typed languages have been popular targets for mutation
testing as valid mutations can be determined easier, but dynamic
languages increasingly moved into focus [2], albeit with less infor-
mation available to mutation tools. Nevertheless, mutation testing
still largely follows a static approach by analyzing and mutating
the program before compilation or execution, thus not leveraging
valuable run-time information. We call this approach ahead-of-time
mutation testing.

Papadakis et al. emphasize that mutants are inherently language-
specific because the method of creating a specific mutant varies
between the languages [13]. However, the way similar mutation
operations are described in different languages is often the same.
Some of these mutation operations can be easily expressed in dif-
ferent languages, for example deleting statements or exchanging
conditional/math operators. The underlying concept of these op-
erations might be language-agnostic. If they are, these mutation
operation’s implementations for different languages are partly re-
dundant. Building a module of these mutation operation’s concepts
enables the reuse of these implementations among mutation tools
of different languages.

Currently, approaches to measuring mutation coverage are of-
ten repeatedly evaluated in different languages. Each mutation
tool is specifically designed to only generate mutants of a specific
programming language or its intermediate representation (e.g. JVM-
bytecode). However, language implementation frameworks such
as Truffle [14], [15] enable language implementers to implement
languages based on a common language-agnostic intermediate rep-
resentation. In the case of Truffle, these representations are Truf-
fle’s ASTs. Truffle also supports developing language-agnostic tools
through its instrumentation API [4]. These tools are implemented as
what is referred to as Truffle instruments. In consequence, with the
introduction of language implementation frameworks such as Truf-
fle, an opportunity to evaluate whether mutation testing approaches
can capture different languages within a language-agnostic muta-
tion tool arises.

In this paper, we provide a proof of concept for just-in-time and
language-agnostic mutation testing. We describe a mutation tool
that uses Truffle’s instrumentation API to mutate Truffle’s AST
just-in-time. Our initial findings indicate that Truffle enables just-
in-time and language-agnostic mutation testing. Based on these
findings, we describe research opportunities in section 5 that future
research can address. We do not yet provide an evaluation of the
concept of just-in-time and language-agnostic mutation testing.

2 APPROACH

Our objective is to provide a proof of concept for just-in-time and
language-agnostic mutation testing. Thus, we present preliminary
results of a feasibility study that explores the implementation of
just-in-time mutation testing based on Truffle’s instrumentation
API. Based on these results, additional research can evaluate the
implications of just-in-time and language-agnostic mutation test-
ing.

Stefan Reschke, Toni Mattis, Fabio Niephaus, and Robert Hirschfeld

mut. testing request _ ——— .
Test Suite Discovery

test suite,
mut. operations

Initial Test Suite Run

covering tests -
Mutation Selection

selected mutations,
covering tests

mutation
candidate nodes, [:

. next
Mutation Test Runs j mut.

mut. testing results

Coverage Reporting
1

F 3

mut. coverage report

process

Figure 1: Algorithm for just-in-time mutation testing based
on AST manipulations. The algorithm consists of five steps:
1) Setting up the mutation tool by collecting test suite and
available mutation operations, 2) an initial run of the whole
test suite to gather all mutation candidate nodes and the
tests covering them, 3) selecting mutations to proceed with,
4) checking if these mutations are alive or not, and 5) building
the mutation coverage report.

First, we considered adapting existing mutation tools to support
using Truffle’s instrumentation API For this feasibility study, we
wanted to avoid using an existing mutation testing API to reduce
complexity. Therefore, we decided to develop a standalone mu-
tation tool as a Truffle instrument. This mutation tool employs
the following algorithm for just-in-time mutation testing: (Step
1) Discover the SUT’s test suite, (Step 2) Perform an initial run
of the entire test suite to determine all mutation candidate nodes
(nodes that available mutation operations could be applied on) and
the tests that cover them. Then, from these candidate nodes: (Step
3) Select mutations (node and mutation operation to apply on this
node) to evaluate. This offers the possibility of discarding (Step
4) For each of these mutations, check if they are alive or not. This
involves running the tests that cover the mutations node. Once the
node is reached on test execution, the mutation operation is ap-
plied. Then, using the gained knowledge about the mutations: (Step
5) Provide a mutation coverage report that the user can interpret
for his purposes.

We focused our efforts on steps 2 and 4 because they are most
important for the feasibility study. For steps 1, 3, and 5, we made
simplifying assumptions. Demonstrating the mutation testing in-
strument on an example project requires selecting a language to
focus our support on. We decided to employ both SimpleLanguage'
and GraalJs®. SimpleLanguage is a Truffle demonstration language
implementation provided by Oracle. We chose SimpleLanguage

Uhttps://github.com/graalvm/simplelanguage/
Zhttps://github.com/oracle/graaljs

https://github.com/graalvm/simplelanguage/
https://github.com/oracle/graaljs

Toward Just-in-time and Language-agnostic Mutation Testing

because it is the most compact Truffle language implementation
and is also extensively documented. GraalJS is a Truffle language
implementation of JavaScript and is also provided by Oracle. We
chose GraalJS, because: (1) It is, compared with SimpleLanguage,
a language that is used in real software projects, (2) it is the only
fully supported Truffle language implementation by Oracle and
thus, (3) promises to be more stable than e.g. GraalPython®.

3 IMPLEMENTATION

In this section, we describe how we implemented mutation oper-
ations and each of the steps of the just-in-time mutation testing
algorithm displayed in Figure 1. Here, we focus on (Step 2) Initial
Test Suite Run and (Step 4) Mutation Test Runs. Before, we briefly
describe the assumptions we made to reduce implementation effort
for steps 1, 3, and 5. Afterward, we sum up the implementation
effort that we require Truffle language implementers to do if they
want their language to be supported by our mutation tool.

AST node manipulation mutation operations. Our feasibility study
requires us to implement a few mutation operations. We chose to im-
plement three simple mutation operations that mutate the result of
AST nodes that are boolean expressions. These are (MO1) overriding
the boolean-expression with true, (MO2) overriding the boolean—
expression with false, and (MO3) negate the result of the boolean
expression (true to false, false to true).

Working assumptions. For the proof of concept, we considered
two approaches for (Step 1) Test Suite Discovery: (a) Assuming
that top-level functions whose name starts with “test” and are
within the SUT’s source file, are tests and collecting handles to these
functions with Truffle’s instrumentation API, and (b) Implementing
an adapter for a popular JavaScript test framework (e.g. Mocha*).
For this proof of concept, we want to avoid dealing with interfaces
of test frameworks for the sake of simplicity. Thus, we went with
(a).

Since the initial test run provides all candidate nodes for available
mutation operations, (Step 3) Mutation Selection gives an opportu-
nity to filter these candidates. For our proof of concept, this is not
required. Our mutation selection strategy is “pick them all”.

Mutation testing without valuable output (Step 5) is not helpful.
For the proof of concept, we decided that a simple console output
suffices.

Initial test suite run. Discovering mutation candidates requires
us to identify nodes that are interesting for our mutation operations.
Truffle’s instrumentation API allows us to attach listeners to node
execution events [4]. These listeners can only listen for nodes that
have a specific tag. In this context, a tag is a label of an AST node
that is used to communicate the purpose of this node. All Truffle lan-
guage implementations are supposed to provide an implementation
of a set of standard tags. However, these standard tags do not pro-
vide enough information to easily select the nodes that are required
by certain mutation operations. For example, (MO1) requires all
nodes that are boolean-expressions. Standard tags, however, only
communicate purpose on the level expression/statement, not the
respective type returned by those. We decided to add an additional

3https://github.com/oracle/graalpython
4https://mochajs.org/

Conference’17, July 2017, Washington, DC, USA

set of tags which we refer to as mutation tags. We assume that
the languages implement these mutation tags just as they do with
Truffle’s standard tags. For the proof of concept, we changed both
SimpleLanguage and GraalJS source code accordingly, overriding
one method per node class. With these mutation tags, we were able
to configure a listener to listen to only those node execution events
that were of interest for our mutation operations.

With the handles discovered by the Test Suite Discovery step
and the configured listener, we are able to perform the initial test
suite run in order to discover mutation candidates and the tests that
cover them. It also enabled us to collect run-time information from
the context of the registered events. Most notably, this run-time
information included the evaluation results of these nodes.

Mutation test runs. In order to apply a mutation just-in-time, we
again listen for node execution events, just as during the initial
test run. However, instead of collecting information about the node
from the event, we alter the node’s evaluation result. Optionally,
the mutation operation could use the actual result the node would
have returned. An example mutation operation that does this is
(MO3), which requires the actual result of the node (true, false)
to determine the correct negated value (false, true). However, if a
mutation operation does not require an evaluation result, executing
the children of the node can be avoided.

In fact, the capabilities of the node execution event listener
best describe the interface that our tool enables language imple-
menters to implement mutation operations in. Language-agnostic
mutation operations such as (MO1), (MO1), and (MO3) require
Truffle-language nodes to cooperate with the host-languages (Java)
primitive types (in this case Booleans). However, language-specific
mutation operations can be implemented with the same interface.
These kinds of mutation operations might involve using a language
concept that is only available in the language implementation it-
self (e.g. by upcasting a node). Therefore, we added this interface
for operations to Truffle, which enables language implementers to
supply their own, language-specific mutation operations.

For each of the selected mutations, determining if the mutation
is alive or not involves running the tests that cover the mutated
node until either a test failed or necessary tests have been run.
During these test runs, the listener is configured to mutate only the
requested node. For the next mutation, the listener is reconfigured.

Implementation effort for language implementers. There are three
aspects language implementers need to attend to. These are dis-
played in Figure 2.

Aspect a) is necessary, because present language implementa-
tions only supply Truffle’s standard AST nodes tags. These tags
do not provide enough information for our mutation tool to easily
determine the purpose of a node.

Furthermore, our mutation tool relies on the aspects b) and c)
to be supplied by language-specific modules. Our assumption for
Test Suite Discovery (“test”-prefix, same file) enabled us to easily
implement this step. However, in order to support common test
frameworks, we require a module that utilizes the framework to
provide our mutation tool with a handle to all individual tests of a
test suite implemented in this framework. If additional language-
specific AST-based mutation operations should be available for a

https://github.com/oracle/graalpython
https://mochajs.org/

Conference’17, July 2017, Washington, DC, USA

MT Instrument

Stefan Reschke, Toni Mattis, Fabio Niephaus, and Robert Hirschfeld

A a)

Language J

Language B J

Just-in-time
mutation testing
algorithm AST AST
b) Test Test
Discovery Discovery
” Impl. Impl.
lang.-agnostic
mutation mutation mutation
operations C) operations operations
Truffle J
AST-Tags
Execution- Test Discovery Standard Tags

EventListener

Mutation Tags

Figure 2: System overview: Just-in-time and language-agnostic mutation testing on Truffle. New modules are highlighted in
green. There are three aspects language implementers need to attend to: a) Implement our mutation tags on Truffle language
nodes, b) Contribute code to provide our tool with a projects test suite, and c) (if necessary) contribute code for language-specific
Mutation Operations. The interface for these language-specific mutation operations is determined by the instrumentation

APT’s ExecutionEventListener.

set of tags, we require a module that provides these mutation oper-
ations to our tool. As described, the interface for these operations
is determined by the capabilities of the listener used to listen for
node execution events.

4 PROOF OF CONCEPT

This section demonstrates an end-to-end mutation testing example
that utilizes the presented mutation tool. Currently, our language-
agnostic mutation operations and Test Suite Discovery support both
SimpleLanguage and GraalJS. We chose to demonstrate a JavaScript
example.

The example source file (example.js) displayed in Listing 1 con-
tains both an example SUT and its tests. It contains a binary predi-
cate calc and tests that verify that calc returns true for some example
input values.

To run our mutation tool on this example, we only have to call
any Truffle executable with the option --mt, and the source file
whose test suite’s mutation coverage should be determined. If our
mutation tool is installed, this option instructs the executable to
enable our mutation tool.

The test suite in Listing 1 covers all lines of the function under
test. It also covers all branches, because both if-statements evaluate
to true and false in the test suite.

Following the execution of the mutation testing run, our mu-
tation tool displays a simple coverage report to the terminal (see
Listing 2). Programmers can learn from this output which test re-
quirements their tests have missed. In this case, a good first step to
improve the quality of the test suite would be to write a test that
specifies the condition under which the predicate can also evaluate
to false.

O 0NN U R W N

Listing 1: Example JavaScript source file to demonstrate the
difference between line-, branch- and mutation-coverage. It
contains the binary predicate function “calc” and two tests.
Note the two alternatives (b; and b;) that each depend on
only one of two input-parameters

function calc(i, j) {

if (i< 10) { // b_i
i =1+ 100;

<

}
if (j
i

100) {
j + 10;

/1 b_j

}

return i < j;

}

console.log (" GraalJS requires not-empty main to make our
Test Suite Discovery work");

function test_lineCoverage () {

if (!calc(5, 99)) { // b_i: true, b_j: true
throw Error();
}
}
function test_additionalBranchCoverage () {
if (!calc(11, 111)) { // b_i: false, b_j: false

throw Error ();

}

5 OPPORTUNITIES

This section gives an overview of what future research can focus
on, based on the presented results. Our next steps will expand
on the presented proof of concept. To enable a comparison with

O 0 NG R W N

L T ST T G Sy
DN = O 0 0 O U b W= O

Toward Just-in-time and Language-agnostic Mutation Testing

Listing 2: Mutation Coverage Report of mutation testing run
on Listing 1. Our three mutation operations were applica-
ble on three nodes, resulting in nine available mutations. Of
these nine mutations, only three mutations are alive. While
this test suite had a line and branch coverage of 1, its muta-
tion coverage is <1.

Mutation coverage score: 0.67
Tests run per mutation: 1.6

Total number of tests run: 14
Considered tests in test-suite: 2

alive mutations: 3
on i < j @(example.js
on j < 100 @(example.js
on i < 10 @(example.js
killed mutations: 6
on i < j @(example.js [8:12-8:16]) override with false
was killed by # test_additionalBranchCoverage
on i < j @(example.js [8:12-8:16]) negate result
was killed by # test_additionalBranchCoverage
on j < 100 @(example.js [5:9-5:15]) override with false
was killed by # test_lineCoverage
on j < 100 @(example.js [5:9-5:15]) negate result
was killed by # test_lineCoverage
on i < 10 @(example.js [2:9-2:14]) override with true
was killed by # test_additionalBranchCoverage
on i < 10 @(example.js [2:9-2:14]) negate result
was killed by # test_additionalBranchCoverage

[8:12-8:16]) override with true
[5:9-5:15]) override with true
[2:9-2:14]) override with false

other JavaScript mutation tools, we need to implement additional
JavaScript mutation operations. We also need to add additional
configuration options for our mutation tool, e.g. to enable or disable
sets of mutation operations. We also need to make sure that our
Test Suite Discovery for Mocha is fully functional, to easily compare
mutation coverage results based on real-world example projects.
With the presented mutation tool, we enable further research on
the following three aspects:

Just-in-time mutation testing. Continue research on the implica-
tions of the just-in-time approach to mutation testing. (1) Just-in—
time mutation operations. Discover which additional mutation op-
erations can be implemented with this just-in-time mutation ap-
proach. We expect that some of these mutation operations could
replace common operations known in ahead-of-time mutation test-
ing. In order to measure if these operations could replace known
operations, they need to be compared separately. We expect these
operations to be able to replace each other if they enable creating
the same mutants. Running mutation tools with them should re-
sult in equal mutation coverage reports. If they are qualitatively
different from related known operations, these differences need to
be discussed. (2) Performance evaluation. We expect that our ap-
proach leads to a reduced number of mutations considered. Because
we rely on run-time AST node manipulation, we expect to have
a reduced cost of mutant creation. We expect these reductions to
reduce the end-to-end time of mutation testing runs. We plan to
evaluate this with benchmarks, comparing our tool’s end-to-end
mutation testing time with other tools, making sure that employed
mutation operations are comparable, as described above.

Conference’17, July 2017, Washington, DC, USA

Mutation testing dynamic languages. Employing our just-in-time
mutation approach, we hope to reduce the number of available
mutation operations in dynamic languages. Just-in-time mutation
testing enables using (previously not used) type information avail-
able at run-time and supports taking other specific run-time aspects
into account. However, to evaluate our mutation tool to other mu-
tation tools for JavaScript, we need to implement further mutation
operations. A candidate mutation tool we would like to compare
our mutation tool is StrykerjS®, an open-source mutation tool for
JavaScript. Future work can then deal with such a comparison with
regard to supportable mutation operations and end-to-end mutation
testing costs.

Language-agnostic framework for mutation testing. Our mutation
tool relies on manipulating nodes of the language-agnostic AST
employed by Truffle. This enables us to find out if these language-
agnostic manipulations are available for different Truffle languages.
Language-specific mutation operations form another category of
supported mutation operations. If our mutation tool provides an
interface that enables language authors to add language-specific
mutation operations while re-using our mutation testing approach,
we could reduce the cost of maintaining a mutation tool for these
languages. Instead of these separate tools, more lightweight addi-
tional modules to our mutation tool could be maintained. A map of
how different languages support simple mutation operations (based
on the realizable AST node value manipulations) could be valuable
for mutation testing research.

Future work. We hope to contribute the mutation tool to the Or-
acle Graal repositoryf’. Through this, our mutation tags, interfaces
for Test Suite Discovery, and implementing additional (language-
specific or language-agnostic) mutation operations could become
part of Truffle’s APL

Future work can focus on enabling other languages like for
example GraalPython or TruffleSqueak [12] to benefit from our
mutation tool or expanding on the existing support for Graal]S.
This involves changing these languages to implement our mutation
tags. It also involves developing additional implementations for
(Step 1) Test Suite Discovery to support more test frameworks of
each of these languages. If required, language-specific mutation
operations could also be contributed.

Future work on the mutation tool can also focus on the other
steps of the applied just-in-time mutation testing algorithm that
the presented feasibility study neglected (steps 3, 5, see Figure 1).
The (Step 2) Initial Test Suite Run (see Figure 1) enables collecting
run-time information for mutation candidate nodes, e.g. previous
evaluation results of these nodes. Additional research can explore
which additional run-time information from the context of accessed
node execution events can be used to further specify mutations.
An idea here would be the position of the node in its tree. Next
steps can also explore how this run-time information can be used
to further specify mutations. An idea here would be to enable a
mutation operation on a node only on the node’s n-th execution.
We also see the chance to explore how this run-time information
can be used to guide (Step 3) Mutation Selection, e.g. to assume

Shttps://github.com/stryker-mutator/stryker
®https://github.com/oracle/graal

https://github.com/stryker-mutator/stryker
https://github.com/oracle/graal

Conference’17, July 2017, Washington, DC, USA

the likely utility of a mutation. Next could also investigate how the
intermediate results of the (Step 4) Mutation Test Runs provide ad-
ditional information that can contribute to reducing or re-ordering
the mutations selected in (Step 3).

GraalVM and Truffle’s language-agnostic ASTs enable multiple
languages to be used within a single application (polyglot pro-
gramming). Future work can evaluate how our mutation tool could
be used to perform mutation testing on polyglot code. We expect
that language-agnostic mutation operations, as well as language-
specific mutation operations of the employed languages, can be
applied to evaluate the test suite of a polyglot application. Future
research could also evaluate if there are additional, polyglot-specific
mutation operations.

6 RELATED WORK

Papadakis et al. gave an invaluable overview of advances in muta-
tion testing research [13]. Using the AST location of a mutation to
determine if the mutant is useful, was proposed in [10]. Before our
tool, other tools have employed just-in-time mutation testing:

SMutant, a mutation tool for the Smalltalk programming lan-
guage was among the first tools to apply mutations at run-time
during test execution [7]. Instead of relying on an AST representa-
tion of Smalltalk code, it directly manipulated the source code.

MutPy, a mutation tool for Python, employed an AST represen-
tation of Python code to increase the performance of its mutation
testing capabilities [6].

7 CONCLUSION

In this paper, we provided proof of concept for just-in-time and
language-agnostic mutation testing. The presented preliminary re-
sults of a feasibility study indicate that Truffle’s instrumentation API
supports implementing just-in-time mutation testing. We presented
a mutation testing tool that is implemented as a standalone Truffle
instrument. It employs a just-in-time mutation testing algorithm
that relies on an initial test suite run to collect mutation candidate
AST nodes, and then mutation test runs to check if these mutations
are alive or not. A mutation is applied at run-time while the tests
that cover the mutated node are running. Next steps include further
development of this mutation tool to enable a comparison with
established JavaScript mutation tools like Stryker]S [9].

Future research can evaluate the implications of this approach.
This includes exploring mutation operations for just-in-time mu-
tation testing and how they relate to classic ahead-of-time muta-
tion operations. This also includes evaluating the performance of
described mutation testing approach compared to ahead-of-time
mutation testing.

Our mutation tool allows for previously unused run-time in-
formation (e.g. previous evaluation results of an AST node or the
position of a node in its AST) to be employed in mutation testing
efforts. We see the necessity to explore how useful this run-time
information is. It could be used to specify when to apply a mutation
operation during the test run (e.g. only on a node’s n-th execution).
However, it could also help to determine relations between mutants
or determine a mutant’s utility.

Because ahead-of-time mutation testing approaches have prob-
lems in dynamic languages, we see the chance to investigate if

Stefan Reschke, Toni Mattis, Fabio Niephaus, and Robert Hirschfeld

just-in-time mutation testing could be a modern standard for muta-
tion testing in dynamic languages.

Because our approach relies on the manipulation of Truffle’s
ASTs, which are language-agnostic, it can be used to do mutation
testing on multiple languages. Further research can explore if main-
taining an adapter to our mutation tool by implementing a Truffle
interface is easier than maintaining a standalone mutation tool for
this language.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of Oracle Labs’,
HPI’s Research School®, and the Hasso Plattner Design Thinking
Research Program”®.

REFERENCES

[1] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge
University Press.

Leonardo Bottaci. 2010. Type sensitive application of mutation operators for
dynamically typed programs. In 2010 Third International Conference on Software
Testing, Verification, and Validation Workshops. IEEE, 126-131.

Thierry Titcheu Chekam. 2017. Automated and Scalable Mutation Testing. In
2017 IEEE International Conference on Software Testing, Verification and Validation
(ICST). IEEE, 559-560.

Michael L. Van de Vanter, Chris Seaton, Michael Haupt, Christian Humer, and
Thomas Wiirthinger. 2018. Fast, Flexible, Polyglot Instrumentation Support
for Debuggers and other Tools. Art Sci. Eng. Program. 2, 3 (2018), 14. https:
//doi.org/10.22152/programming-journal.org/2018/2/14

[5] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. 1978. Hints on
test data selection: Help for the practicing programmer. Computer 11, 4 (1978),
34-41.

[6] Anna Derezinska and Konrad Hatas. 2015. Improving mutation testing process
of python programs. In Software Engineering in Intelligent Systems. Springer,
233-242.

[7] Milos Gligoric, Sandro Badame, and Ralph Johnson. 2011. SMutant: a tool for
type-sensitive mutation testing in a dynamic language. In Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering. 424-427.

[8] Richard G. Hamlet. 1977. Testing programs with the aid of a compiler. IEEE
transactions on software engineering 4 (1977), 279-290.

[9] Nico Jansen and Simon de Lang. 2022. StrykerJS. https://github.com/stryker-
mutator/stryker

[10] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring Mutant Utility from
Program Context. In Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA
2017). Association for Computing Machinery, New York, NY, USA, 284-294.
https://doi.org/10.1145/3092703.3092732

[11] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. 2006. MuJava: a mutation system

for Java. In Proceedings of the 28th international conference on Software engineering.

827-830.

Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2019. GraalSqueak:

Toward a Smalltalk-Based Tooling Platform for Polyglot Programming. In Pro-

ceedings of the 16th ACM SIGPLAN International Conference on Managed Pro-
gramming Languages and Runtimes (Athens, Greece) (MPLR 2019). Association
for Computing Machinery, New York, NY, USA, 14-26. https://doi.org/10.1145/

3357390.3361024

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark

Harman. 2019. Mutation testing advances: an analysis and survey. In Advances

in Computers. Vol. 112. Elsevier, 275-378.

Christian Wimmer and Thomas Wiirthinger. 2012. Truffle: a self-optimizing run-

time system. In Proceedings of the 3rd annual conference on Systems, programming,

and applications: software for humanity. 13-14.

Thomas Wiirthinger, Christian Wimmer, Andreas W68, Lukas Stadler, Gilles Du-

boscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. 2013.

One VM to Rule Them All. In Proceedings of the 2013 ACM International Sympo-

sium on New Ideas, New Paradigms, and Reflections on Programming amp; Software

(Indianapolis, Indiana, USA) (Onward! 2013). Association for Computing Machin-

ery, New York, NY, USA, 187-204. https://doi.org/10.1145/2509578.2509581

[2

[3

[4

[12

[13

[14

[15

"https://labs.oracle.com/
8https://hpi.de/en/research/research-school.html
“https://hpi.de/en/dtrp/

https://doi.org/10.22152/programming-journal.org/2018/2/14
https://doi.org/10.22152/programming-journal.org/2018/2/14
https://github.com/stryker-mutator/stryker
https://github.com/stryker-mutator/stryker
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1145/3357390.3361024
https://doi.org/10.1145/3357390.3361024
https://doi.org/10.1145/2509578.2509581
https://labs.oracle.com/
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/

	Abstract
	1 Introduction
	2 Approach
	3 Implementation
	4 Proof of Concept
	5 Opportunities
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

