ORACLE

ONNX and the JVM

Adam Pocock

Researcher

Oracle Labs, Machine Learning Research Group
June 24, 2022

W 0w AN /s /) A RIS

A

Why do we want to support ONNX on the JVM?

N

Machine Learning models are an increasingly important component in applications
Most applications (especially large business applications) are developed in non-Python languages
» Either we need to persuade all those developers to move to Python (which seems unlikely)

« Or we bring Machine Learning to them in the languages they work in like Java (or C#, JS)

Java is one of the largest platforms for software development in the world, with millions of Java
developers building software which runs companies

We think that the ONNX community (and the wider ML community) could be building tools to help
Java developers integrate ML into their applications

I've spent the past few years building Java ML tooling, both for ONNX and other ML libraries

Copyright © 2022, Oracle and/or its affiliates 24/06/2022

ONNX Runtime Java API

Developed in Oracle Labs in Spring 2019, contributed to the upstream project in December 2019
« Binaries available on Maven Central since June 2020 as part of ORT 1.3.1
« Used in production in Oracle and other companies

Goal is to provide the whole ORT C APl in Java, keep feature parity with the other APIs
* Currently missing custom allocators & I0Binding due to complexities in exposing pointers
 |f there's something else missing, or you need those features, open an issue

The Java APl is a thin layer over the C APl with minimal performance impact
* |Input tensors have a zero copy path from Java -> ORT
« Qutput tensors currently require a copy (but for many tasks are much smaller than inputs)

Targets Java 8 (and runs on all versions > 8), has no dependencies other than the ORT native library
which is packaged with it

Copyright © 2022, Oracle and/or its affiliates 24/06/2022

ONNX Runtime in Java code example (I)

In [9]: // We can set also a per environment thread pool or logging here
var env = OrtEnvironment.getEnvironment();

// Sessions are configured as usual for ORT
var sessionOpts = new OrtSession.SessionOptions();
sessionOpts.setInterOpNumThreads(4);

var session = env.createSession("./external-models/pytorch cnn mnist.onnx", sessionOpts);

In [10]): // sessions expose the model metadata, inputs and outputs
System.out.println("Metadata "+session.getMetadata() + "\n");
System.out.println("Inputs "+session.getInputInfo() + "\n");
System.out.println("Outputs "+session.getOutputInfo());

Metadata OnnxModelMetadata{producerName='pytorch', graphName='torch-jit-export', domain='"', d
escription='"', version=9223372036854775807, customMetadata={}}

Inputs {input image=NodeInfo(name=input image,info=TensorInfo(javaType=FLOAT,onnxType=ONNX TE
NSOR_ELEMENT DATA TYPE FLOAT,shape=[-1, 1, 28, 28]))}

Outputs {output probs=NodeInfo(name=output probs,info=TensorInfo(javaType=FLOAT,onnxType=0ONNX
_TENSOR_ELEMENT DATA TYPE FLOAT,shape=[-1, 10]))}

4 Copyright © 2022, Oracle and/or its affiliates 24/06/2022

ONNX Runtime in Java code example (ll)

In [12]: // Allocate a buffer to hold 28*28 4 byte floats using the system endian
var buffer = ByteBuffer.allocateDirect(28#%28+%4).order(ByteOrder.nativeOrder()).asFloatBuffer();
buffer.put (mnistExampleArr);
buffer.rewind();

Out[12]: java.nio.DirectFloatBufferU[pos=0 1lim=784 cap=784]

In [13]: // Make a tensor, cleaning it up once the try completes
try (var inputTensor = OnnxTensor.createTensor(env,buffer,new long[]{1,1,28,28})) {
// Run the model
try (var result = session.run(Map.of("input image",inputTensor))) {
// Inspect the results
var output = result.get(0);
System.out.println(Arrays.deepToString((float[][])output.getValue()));

}
}
[[-270.3646, -646.535, -646.535, -612.41016, -646.535, 0.0, -215.17352, -536.0042, -646.535,
-646.535]]
5 Copyright © 2022, Oracle and/or its affiliates 24/06/2022 E

Memory Management

* Much of the work in this APl is shuffling memory between the Java heap and the native heap
» This needs to be as efficient as possible to maximise throughput & minimize latency

 All Java objects which hold native objects must be closed by users otherwise they leak memory

« Thisis typically done with a try-with-resources statement, and in the future we will add a safety
net to ensure memory is freed as the Java objects are GC'd

* We recommend users use NIO direct byte buffers, which allow a zero copy pass through from Java to
native code

» The buffer lifetime needs to be managed so it’s longer than a single call
« Buffers can be reused for same size inputs reducing allocation

« Java’s existing multidimensional arrays are a poor abstraction for ML as they are not flat and
require pointer chasing for 2D or higher structures

6 Copyright © 2022, Oracle and/or its affiliates 24/06/2022 a

Future work on ONNX Runtime’s Java API

Moving to a modern version of Java as Java 8 is 8 years old

» Features like the JEP 424 Foreign Function & Memory interface make things faster and safer by
allowing easier cleanup of native memory and autogenerating the native interface

« There have been many language & runtime improvements which should improve the code

« We're interested in adding support for single op execution and training as these provide functionality
hard to access elsewhere on the JVM

« Continued build out to match the ORT C API
* New EPs, new methods, better support for memory pinning with IOBinding

« Contributions are welcome - https://github.com/microsoft/onnxruntime

7 Copyright © 2022, Oracle and/or its affiliates 24/06/2022

Writing ONNX models from Java

* Inference is an important workload but we'd also like to convert models trained in Java to ONNX

« Writing the protobuf directly is possible, but it’s tricky to write well formed ONNX models
» Bare protobufs have no graph validation for cycles or checks that node inputs and outputs line up

» We developed and open sourced a small library for generating ONNX models in Java

|t provides some type safety, graph correctness checking, attribute validation, export of Java
arrays as initializers or attributes, and a fluent interface

» It's Apache 2.0 licensed, and lives inside the Tribuo repository -
https://github.com/oracle/tribuo/tree/main/Util /ONNXExport

 Built to support converting Tribuo models to ONNX, but only depends on protobuf so can be
used without Tribuo, and also targets Java 8 (but works on all versions > 8)

8 Copyright © 2022, Oracle and/or its affiliates 24/06/2022

https://github.com/oracle/tribuo/tree/main/Util/ONNXExport

Writing ONNX Models from Java

Code examples

ONNXContext onnx = new ONNXContext();

ONNXPlaceholder input = onnx.floatInput(featureIDMap.size());
ONNXPlaceholder output = onnx.floatOutput(outputIDInfo.size());
* General Matrix Multiply: {@code alpha*AB + beta*C}.
ONNXInitializer weightTensor = onnx.floatTensor("liblinear weights",
List.of (numFeatures, numLabels), fb -> {
for (int i = 0; i < weights.length - numLabels; i++) {
fb.put (weights[i]);

The {@code C} input is optional, and if not supplied is treated as zero.
y
l

})i

not transposed)

ONNXInitializer biasTensor = onnx.floatTensor("liblinear biases",
List.of (numLabels), fb -> {

8 usages for (int i = numFeatures * numLabels; i < weights.length; i++) {
GEMM(value: "Gemm", numinputs: 2, numOptionalinputs: 1, numOutputs: 1, Arrays.asList(fb.put(weights[i]);

new ONNXAttribute(name: "alpha", OnnxMLl.AttributeProto.AttributeType.FLOAT, mandatory: false), }

new ONNXAttribute(name: "beta", OnnxMl.AttributeProto.AttributeType.FLOAT, mandatory: false), });

new ONNXAttribute(name: "transA", OnnxML.AttributeProto.AttributeType.INT, mandatory: false),

new ONNXAttribute(name: "transB", OnnxML.AttributeProto.AttributeType.INT, mandatory: false) ONNXNode gemm = input.apply(ONNXOperators.GEMM, List.of(weightTensor, biasTensor));
1)

gemm.apply (ONNXOperators.SOFTMAX, Map.of("axis", 1)).assignTo(output);

GraphProto proto = onnx.buildGraph();

9 Copyright © 2022, Oracle and/or its affiliates 24/06/2022

Future work on writing ONNX models in Java

10

We currently support a subset of opset 13 and ONNX-ML v1, those used to export Tribuo models,
we'd like to expand this to full coverage of ONNX ops

* |t's easy to expand the operator enum to fill out the set
* Inthe future we may look at autogenerating the enum (or op classes) from the op definitions

Abstract over opsets to allow users to export models targeting different opsets
« This is straightforward to do, but we haven’t needed it yet
« Also enables users to integrate custom ops into their models

Integrate provenance and metadata into converted models

« Tribuo exports its detailed model provenance as a field in the ONNX metadata, but this isn’t
standardised, we're interested in collaborating with the ONNX community on better solutions

Contributions are welcome - https://github.com /oracle/tribuo

Copyright © 2022, Oracle and/or its affiliates 24/06/2022

https://github.com/oracle/tribuo

Questions?

11 Copyright © 2022, Oracle and/or its affiliates

ORACLE

Our mission is to help people see
data in new ways, discover insights,
unlock endless possibilities.

7 W=,
Q” ﬁl" S =

lf@ 1 >

@\ §—, =
e

= ol L
N
—

