
ONNX and the JVM

Adam Pocock
Researcher
Oracle Labs, Machine Learning Research Group
June 24, 2022



• Machine Learning models are an increasingly important component in applications

• Most applications (especially large business applications) are developed in non-Python languages
• Either we need to persuade all those developers to move to Python (which seems unlikely)
• Or we bring Machine Learning to them in the languages they work in like Java (or C#, JS)

• Java is one of the largest platforms for software development in the world, with millions of Java 
developers building software which runs companies

• We think that the ONNX community (and the wider ML community) could be building tools to help 
Java developers integrate ML into their applications

• I’ve spent the past few years building Java ML tooling, both for ONNX and other ML libraries

Why do we want to support ONNX on the JVM?

24/06/2022Copyright © 2022, Oracle and/or its affiliates2



• Developed in Oracle Labs in Spring 2019, contributed to the upstream project in December 2019
• Binaries available on Maven Central since June 2020 as part of ORT 1.3.1
• Used in production in Oracle and other companies

• Goal is to provide the whole ORT C API in Java, keep feature parity with the other APIs
• Currently missing custom allocators & IOBinding due to complexities in exposing pointers
• If there’s something else missing, or you need those features, open an issue

• The Java API is a thin layer over the C API with minimal performance impact
• Input tensors have a zero copy path from Java -> ORT
• Output tensors currently require a copy (but for many tasks are much smaller than inputs)

• Targets Java 8 (and runs on all versions > 8), has no dependencies other than the ORT native library 
which is packaged with it

ONNX Runtime Java API

24/06/2022Copyright © 2022, Oracle and/or its affiliates3



ONNX Runtime in Java code example (I)

24/06/2022Copyright © 2022, Oracle and/or its affiliates4



ONNX Runtime in Java code example (II)

24/06/2022Copyright © 2022, Oracle and/or its affiliates5



• Much of the work in this API is shuffling memory between the Java heap and the native heap
• This needs to be as efficient as possible to maximise throughput & minimize latency

• All Java objects which hold native objects must be closed by users otherwise they leak memory
• This is typically done with a try-with-resources statement, and in the future we will add a safety 

net to ensure memory is freed as the Java objects are GC’d

• We recommend users use NIO direct byte buffers, which allow a zero copy pass through from Java to 
native code
• The buffer lifetime needs to be managed so it’s longer than a single call
• Buffers can be reused for same size inputs reducing allocation
• Java’s existing multidimensional arrays are a poor abstraction for ML as they are not flat and 

require pointer chasing for 2D or higher structures

Memory Management

24/06/2022Copyright © 2022, Oracle and/or its affiliates6



• Moving to a modern version of Java as Java 8 is 8 years old
• Features like the JEP 424 Foreign Function & Memory interface make things faster and safer by 

allowing easier cleanup of native memory and autogenerating the native interface
• There have been many language & runtime improvements which should improve the code

• We’re interested in adding support for single op execution and training as these provide functionality 
hard to access elsewhere on the JVM

• Continued build out to match the ORT C API
• New EPs, new methods, better support for memory pinning with IOBinding

• Contributions are welcome – https://github.com/microsoft/onnxruntime

Future work on ONNX Runtime’s Java API

24/06/2022Copyright © 2022, Oracle and/or its affiliates7



• Inference is an important workload but we’d also like to convert models trained in Java to ONNX

• Writing the protobuf directly is possible, but it’s tricky to write well formed ONNX models
• Bare protobufs have no graph validation for cycles or checks that node inputs and outputs line up

• We developed and open sourced a small library for generating ONNX models in Java
• It provides some type safety, graph correctness checking, attribute validation, export of Java 

arrays as initializers or attributes, and a fluent interface
• It’s Apache 2.0 licensed, and lives inside the Tribuo repository –

https://github.com/oracle/tribuo/tree/main/Util/ONNXExport
• Built to support converting Tribuo models to ONNX, but only depends on protobuf so can be 

used without Tribuo, and also targets Java 8 (but works on all versions > 8)

Writing ONNX models from Java

24/06/2022Copyright © 2022, Oracle and/or its affiliates8

https://github.com/oracle/tribuo/tree/main/Util/ONNXExport


Code examples
Writing ONNX Models from Java

24/06/2022Copyright © 2022, Oracle and/or its affiliates9



• We currently support a subset of opset 13 and ONNX-ML v1, those used to export Tribuo models, 
we’d like to expand this to full coverage of ONNX ops
• It’s easy to expand the operator enum to fill out the set
• In the future we may look at autogenerating the enum (or op classes) from the op definitions

• Abstract over opsets to allow users to export models targeting different opsets
• This is straightforward to do, but we haven’t needed it yet
• Also enables users to integrate custom ops into their models

• Integrate provenance and metadata into converted models
• Tribuo exports its detailed model provenance as a field in the ONNX metadata, but this isn’t

standardised, we’re interested in collaborating with the ONNX community on better solutions

• Contributions are welcome – https://github.com/oracle/tribuo

Future work on writing ONNX models in Java

24/06/2022Copyright © 2022, Oracle and/or its affiliates10

https://github.com/oracle/tribuo


Questions?

11 Copyright © 2022, Oracle and/or its affiliates 24/06/2022





Our mission is to help people see 
data in new ways, discover insights,
unlock endless possibilities.


