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Abstract

Compiler optimizations are often limited by control flow,
which prohibits optimizations across basic block boundaries.
Duplicating instructions from merge blocks to their prede-
cessors enlarges basic blocks and can thus enable further
optimizations. However, duplicating too many instructions
leads to excessive code growth. Therefore, an approach is
necessary that avoids code explosion and still finds beneficial
duplication candidates.

We present a novel approach to determine which code
should be duplicated to improve peak performance. There-
fore, we analyze duplication candidates for subsequent op-
timizations by simulating a duplication and analyzing its
impact on the compilation unit. This allows a compiler to
find those duplication candidates that have the maximum
optimization potential.

ACM Reference format:

David Leopoldseder. 2017. Simulation-based Code Duplication for
Enhancing Compiler Optimizations. In Proceedings of Splash 2017
Student Research Competition, Vancouver, Canada, October 2017
(SPLASH’17 SRC), 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Code duplication [4, 10, 11], is a compiler optimization that
moves code from control flow merge blocks to their prede-
cessor blocks. The compiler can specialize the duplicated
code to the types and values used in predecessor branches,
which potentially enables subsequent optimizations.

2 Related Work

Duplication approaches for very long instruction word pro-
cessors [4, 6-8] aim to enlarge basic blocks via tail dupli-
cation in order to enable the compiler to perform better
instruction selection and scheduling,.

Bodik et al. [2] use duplication to perform complete partial
redundancy elimination [9].
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Mueller and Whalley [10, 11] use code duplication to op-
timize branches. In [10] they mention the enabling effect of
code replication on subsequent optimizations.

These approaches lack awareness about the impact of
a duplication on subsequent optimizations, as they do not
analyze the optimization potential after duplications.

3 Approach

Our approach is based on simulating the effects of duplica-
tions which allows the compiler to estimate the peak perfor-
mance impact of each possible duplication without the need
to actually perform it.

We implemented the approach in a global three-tier al-
gorithm. The algorithm first finds optimization opportuni-
ties (simulation), then classifies those opportunities based
on their impact (trade-off) and finally performs beneficial
duplications (optimization).

Simulation Tier We simulate duplications by tentatively
moving instructions from merge blocks to their predecessors.
We then perform optimizations on those copies and save their
optimization potential. This allows us to estimate the impact
of every possible duplication without performing the actual
transformation. The compiler can then weight up between
different duplication candidates.

Simulation incurs significantly less overhead compared to
backtracking-based approaches since it does not require to
maintain consistent data dependencies for the program, it
can be done locally to the merge block.

Additionally, after simulation we know for each instruc-
tion which optimization triggered on it. Therefore, we can
apply those optimizations to the merge block without the
need to inspect the entire program.

Figure 1 illustrates a duplication simulation: Figure 1la
shows a simple program, Figure 1b shows the control-flow
graph after moving the instructions of the merge block b,
into its predecessors. Figure 1c shows the program after ap-
plying optimizations on the duplicated code. We see that copy
propagation and strength-reduction removed useless assign-
ments and optimized a multiplication to a shift operation.

Trade-off Tier We use a trade-off function that decides
whether a duplication should be performed which tries to
maximize peak improvements and minimize code size in-
crease.
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int f(int a, int b, int x) {
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(a) Example Program.

(b) During Simulation.

(c) After Simulation and Duplication.

Figure 1. Duplication Simulation Sample Program

Optimization Tier The last step of the algorithm dupli-
cates and optimizes those candidates for which the trade-off
tier indicated a sufficient optimization benefit.

4 Results

We implemented a prototype of the algorithm in the Graal
compiler [5, 12, 13]. The evaluation results show that the
duplication optimization significantly increases peak perfor-
mance of certain applications.

Experiments We measured the performance impact of our
optimization with the Java DaCapo [1], the Scala-DaCapo [14]
and the JavaScript octane [3] benchmark. We used two con-
figurations: duplication enabled and duplication disabled.

The generated code with duplication enabled shows peak
performance increases from 0% to 30%. None of the bench-
marks showed decreased peak performance with duplication
enabled. Compile time increases range from 5% to 30% and
code size increases range from 2% to 28%.

5 Conclusion

Our work contributes a novel approach to find optimiza-
tion opportunities enabled by code duplication. Based on
the approach we derived a three-tier algorithm that finds
and performs beneficial duplication optimizations. We im-
plemented the algorithm in the Graal compiler and show
that significant peak performance increases can be obtained
by it.
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