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ABSTRACT
Estimating the number of distinct values (NDV) in a dataset is an

important operation in modern database systems, especially for

query optimization. In large scale systems, tables often contain

billions of rows and wrong optimizer decisions can cause severe

deterioration in query performance. Additionally, in many sit-

uations it is not feasible to scan the entire dataset to compute

the NDV, for example when having extremely large tables or

many filter or join operations. In such cases, the only available

option is to use a dataset sample to estimate the NDV. This, how-

ever, is not trivial as data properties of the sample usually do not

mirror the properties of the full dataset. Approaches in related

work have shown that this kind of estimation is connected to

large errors. In this paper, we present two novel approaches for

the problem of estimating the number of distinct values from a

sample: a statistical estimator based on input normalization and

an estimator based on Machine Learning (ML). Both approaches

show good and robust results across a broad range of datasets,

while outperforming the state-of-the-art, with the ML approach

reducing the average error by 3x for real-world datasets. Beyond

pure prediction quality, both approaches have their own set of ad-

vantages and disadvantages, and we show that the right approach

usually depends on the specific application scenario.
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1 INTRODUCTION
Estimating the number of distinct values of a dataset or table

attribute is an important operation in modern database systems,

which is also known as the approximate count distinct prob-

lem. This paper investigates this problem with the additional

constraint that it is not possible to scan the whole dataset for

estimation.

The general problem can be described as follows: we are an-

alyzing a multiset1 with a total population size of 𝑁 elements.

Each element of the multiset has a ‘key’ value, with each key

potentially having a different frequency: the number of times

it occurs in the multiset. We are allowed to take a sample of 𝑟

elements from this multiset (or dataset)
2
. Based on this sample,

the goal is to predict the number of distinct keys in the multiset

*This work was done when the author was an employee at Oracle Labs

1
A multiset is a modification of the concept of a mathematical set, that allows each

of its elements (or keys) to occur multiple times.

2
In this paper the terms multiset and dataset are used interchangeably.
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(also known as the number of distinct values or NDV). A simple

example of a multiset in databases is a table column. The pop-

ulation size is equal to the number of rows in the table and the

number of unique keys in the column (NDV) is the target to be

estimated. For example, in a ‘months’ column, the NDV value is

likely to be 12.

NDV estimates are essential for many database operations.

For example, query optimization may rely on them to estimate

result sizes of join or group-by operators [29]. The estimates can

be used to determine the join order or to optimize the succeeding

query operators, resulting in better and more robust query plans.

Another application of NDV estimates is resource allocation for

indexes or hash tables. The former is important to decide if an

index is worth its memory overhead (e.g., for auto-index-creation

[11]), while the latter is important for performance reasons. Using

a hash table that is too small results in orders of magnitude higher

access latency due to chaining or rehashing [1, 28].

The naïve approach to calculate the NDV is scanning the

full dataset and calculating the exact number of distinct values.

Counting the exact number is resource intensive as either large

intermediate structures need to be maintained (e.g., a hash table)

or the data needs to be scanned multiple times. Many one-pass
approaches [13, 16, 22, 45] have been proposed to address this

problem that scan the whole table but reduce the cost of inter-

mediate structures. However, scanning the entire data is often

not feasible due to time constraints for datasets with billions

of elements, especially in systems where the data can not be

kept in main memory. Histogram based [42, 43] and sketch based

[17] approaches can be used for base data, but are not usable

for intermediate query results after applying filters and joins.

Therefore, the only practical solution in this case is to collect a

random sample of the dataset and to estimate the NDV based on

this sample.

Estimating the number of distinct values from a sample, how-

ever, is a challenging problem, where even the most accurate

estimators occasionally produce large errors. In addition, there

are strong negative results [7, 8] showing that no estimator can

guarantee good results against an adversarial choice of input

data. However, while the inability to provide guaranteed robust

bounds is unfortunate, there are a large number of database sce-

narios, where there is no practical alternative to estimating NDV

from a sample. Despite the need for sampling based estimation

for large datasets, most commercial products are tending towards

one-pass approaches.

To show the feasibility of NDV estimation based on sampling,

we present two novel and inherently different approaches in this

paper. The two approaches are (1) a novel statistical estimator

based on a Binomial model of key selection [7, 44], and (2) a

Machine Learning (ML) approach, build upon an ensemble-based

regression model, while encoding extreme parts of the problem as



an additional classification task. We use a broad range of datasets

and standard metrics for our evaluation, while introducing a new

metric, called signed relative error (sRE), to better understand the

predictions. Both approaches significantly exceed the prediction

quality compared to current state-of-the-art estimators, while

each approach has its own advantages and disadvantages. In fact,

these two approaches were designed and developed indepen-

dently for two different application environments. Therefore, we

not only evaluate their prediction quality in this paper, but also

discuss their properties and applicability to various application

scenarios.

The paper is structured as follows. We discuss related work

in Section 2, introduce our statistical estimation approach in

Section 3, and present our ML approach in Section 4. Afterwards,

we evaluate both approaches in terms of accuracy in Section 5

and compare the approaches along other attributes in Section 6.

Finally, we conclude the paper in Section 7.

2 RELATEDWORK
For calculating the number of distinct keys in a database system,

there are three challenges, which need to be considered:

(1) Computational overhead for calculating the NDV

(2) Overhead for storing an internal state or support structure

(3) Applicability at different stages of a database query

One-Pass Approaches. Scanning the whole multiset on-

demand incurs two major costs: the cost of scanning the entire

multiset and the cost of maintaining an in-memory structure

(such as a hash table), to store the keys already observed during

the scan. There is a large body of work [13, 22, 45] with the goal

of scanning the full dataset once, while keeping a light-weight

in-memory structure that stores an estimate NDV, with the well-

known example being HyperLogLog (HLL) [16]. While this is

a significant improvement in memory space, it does not reduce

the scanning cost, which generally is too large to be applicable

during query optimization or execution.

Building a Support Structure. To improve the computa-

tional cost during optimization, database structures like indexes,

histograms [42, 43], HLL sketches [17, 24], or even ML-based

Deep Sketches [25–27] can be used to estimate the NDV. These

structures are built at a certain time by scanning the whole date-

set and can either not be updated [25] or need to be updated

whenever the data is changing. Each update to the structures

introduces a small computational overhead and need for syn-

chronization, while especially data changes or deletions might

introduce inaccuracies that deteriorate the prediction perfor-

mance [17]. Despite their generally good estimation performance,

there are many situations, where maintaining a support structure

may not be feasible (e.g., when insert throughput is a high prior-

ity) or where the memory overhead may be too high, especially

when creating a structure for all columns in a database. Addi-

tionally, estimates based on these structures can only be used

for base tables. After a join operation or non-equi filter, it is not

easily possible to reuse the initial estimations, so this approach

is not applicable for optimizations during query execution.

Sample-Based Approaches. During query execution, one-

pass approaches are too compute intensive, while support struc-

ture based approaches can not be used beyond the first query

operators. In this case, the only option is data-sampling to esti-

mate the NDV.

This problem is not unique to database systems, as estimating

animal populations [3, 4], file duplication in storage systems

[47], or counting distinct network flows [9] experience the same

challenge. There are a large number of statistical techniques

that address the problem of estimating the NDV from a sample

[5, 6, 12, 19, 20]. Several studies [12, 20] provide a comparison of

the accuracy of these techniques. Deolalikar et al. [12] provide a

more recent survey, specifically focusing on Zipfian distributions

[50], due to their growing prominence in large datasets. Though

all techniques show significant error, they identify the Adaptive

Estimator (𝐴𝐸) [7] as having good performance compared to

other methods.

𝐴𝐸 is a model-based estimator that, along with the Shlosser

estimator [44], can be considered to belong to a family of estima-

tors that share a common Binomial model of key selection. The

Shlosser [44] estimator differs from 𝐴𝐸 in explicitly assuming

that the key frequencies follow a Zipf distribution. This makes

the Shlosser estimator highly effective for Zipf distributions, but

inaccurate for other distributions. To address this, Haas et al. [20]

proposed a hybrid approach combining the Shlosser estimator

[44] and the smoothed Jacknife estimator [4], while switching

between them depending on data properties.

Novel Sample-Based Approaches. This paper introduces
two novel sample-based approaches. The Histogram Normaliza-

tion Estimator (HNE) uses the Binomial sampling model of key

selection, but corrects for sampling errors that can cause esti-

mators such as AE to provide highly inaccurate NDV estimates.

We show that as a result, HNE outperforms other Binomial esti-

mators across a large range of datasets. In addition to 𝐻𝑁𝐸, this

paper introduces a ML-based approach, different to existing sta-

tistical methods. We show in the evaluation and discussion that

the ML approach shows generally good prediction performance,

while having completely different properties than the existing

approaches. Machine learning has been used in the database con-

text on the query level [21] and the data level [14, 23, 49], and

even for NDV estimation [25], however, our approach does not

need to train on the target dataset beforehand (or re-train when

the data changes) but can utilize one pre-trained model for all

(unknown) datasets.

3 HISTOGRAM NORMALIZATION
ESTIMATOR

This section first provides a description of the estimation prob-

lem along with notation and background information. Then we

provide a derivation for the histogram normalization estimator
(HNE), a novel count distinct estimator.

The problem input is a sample of size 𝑟 from a dataset of

population size 𝑁 , with an unknown number of distinct keys

𝐷 . The input sample allows us to observe a single realization

of a random variable vector 𝐹 = (𝐹1, . . . , 𝐹𝑟 )𝑇 , where 𝐹𝑖 is a

random variable representing the number of keys observed 𝑖

times in a sample of size 𝑟 . The observed realization is written

as 𝒇 = (𝑓1, . . . , 𝑓𝑟 )𝑇 (so 𝐹2 is a random variable representing the

number of keys observed twice in a sample of size 𝑟 , while 𝑓2
is the number of keys observed twice in the current sample).

The number of distinct keys observed in the sample can then be

written as 𝑑 =
∑𝑟
𝑖=1 𝑓𝑖 . Since 𝐷 = 𝑓0 + 𝑑 =

∑𝑟
𝑖=0 𝑓𝑖 , our goal is to

estimate 𝑓0. We call these 𝑓0 keys the missing keys, as they are

missing from the sample. We estimate 𝑓0 by estimating 𝐸 [𝐹0],
the expected number of missing keys in a sample of size 𝑟 .



To avoid confusion, we call the number of times a key is ob-

served in the sample the size of the key in the sample, while we

call the number of times a key of a certain size is present in

the sample, the frequency of the key size in the sample. So, for

example, 𝑓2 represents the frequency with which keys of size 2
are present in the sample. Similarly, we call the number of times

a key is present in the dataset, the size of the key in the dataset.

The Binomial model of key selection [7, 44] models each key

in the sample as drawn from a Bernoulli process with 𝑟 draws.

Thus the probability that a key with size 𝑆 in the dataset is ob-

served 𝑖 times in the sample is given by the Binomial distribution

𝐵𝑖𝑛 (𝑛, 𝑝), where 𝑛 = 𝑟, 𝑝 = 𝑆
𝑁
. The pmf of this distribution is

given by 𝑔 (𝑖, 𝑛, 𝑝) = 𝑃
[
𝑋 = 𝑖 | 𝑛 = 𝑟, 𝑝 = 𝑆

𝑁

]
. Under this model,

𝑓0 is the number of Binomial experiments, out of a total of 𝐷 ,

that yielded 0 successes. The Adaptive Estimator (AE) [7] uses

the Binomial model, and models the sample as drawn from 𝑘

sub-populations, one for each key size 𝑖 having 𝑓𝑖 > 0. Each

key in sub-population with size 𝑖 in the sample is modeled as

undergoing 𝑟 Bernoulli trials, with probability
𝑖
𝑟 of success in

each trial.

Another assumption made by 𝐴𝐸 is that all keys observed

either once or twice in the sample have exactly the same size in

the dataset. This assumption has a serious drawback: it makes

𝐴𝐸 vulnerable to sampling error, as a significant portion of keys

observed twice in the sample could actually be much ‘larger’ keys:

that is, keys with probability { 𝑖𝑟 , 𝑖 ≥ 3} of selection. Assuming

that these keys have the same key size in the dataset, as keys

observed once (whichmay havemuch lower selection probability)

can cause 𝐴𝐸 to seriously underestimate the NDV.

Section 3.2.1, presents a method we call histogram normaliza-
tion to correct for such sampling errors in key frequency esti-

mation. As AE cannot be easily modified to incorporate these

corrections, we develop an alternative estimator which can in-

clude them, in the next section (Section 3.1). This estimator is

then modified to incorporate both: a) histogram normalization

(Section 3.2.1), and also, b) a new model for estimating the num-

ber of missing small keys (Section 3.2). We refer to the resulting

estimator as the Histogram Normalization Estimator (HNE).

3.1 Naïve NDV Estimator
This section provides a naïve estimator for an upper bound on

𝐸 [𝐹0], the expected number of missing keys in the sample. We

consider it a naïve estimator because it does not correct for sam-

pling errors. This drawback is corrected in Section 3.2, leading

to the Histogram Normalization estimator (HNE).

Definition 3.1. Given a sample 𝒇 = (𝑓1, . . . , 𝑓𝑟 )𝑇 of 𝑟 rows, a

naïve upper bound estimator 𝐸 [𝐹0] of the expected number of

missing keys 𝐸 [𝐹0] in the sample is defined as:

𝐸 [𝐹0] =
𝑟∑︁
𝑖=1

P

[
𝑋 = 0 | 𝑛 = 𝑟, 𝑝 = 𝑖

𝑟

]
P

[
𝑋 = 𝑖 | 𝑛 = 𝑟, 𝑝 = 𝑖

𝑟

] · 𝑓𝑖 (1)

Proof. We use the Binomial model of key selection to model

the selection of keys into the sample. We also make a simplifying

assumption: the Bernoulli selection probability of each key in

the dataset is drawn from the set 𝑠 = { 𝑖𝑟 : 𝑖 = 1, . . . , 𝑟 }. That is,
the expected size of each key in the sample is an integer. This

assumption does not impact the final estimator as the observed

size of each key in the sample is naturally always an integer (and

we use the observed size of a key in the sample as its expected

size). But it simplifies the proof considerably, as due to this, the

summation in eq. (2) runs from 1 to 𝑟 (instead of 1 to 𝑁 ).

Let 𝒅 = (𝑑1, 𝑑2, . . . , 𝑑𝑟 )𝑇 be a vector, such that 𝑑𝑖 is the (un-

known) number of keys with Bernoulli probability 𝑝𝑖 = 𝑖
𝑟 of

selection into the sample, in each of 𝑟 trials. Then for any 𝐹 𝑗
(0 ≤ 𝑗 ≤ 𝑟 ):

𝐸 [𝐹 𝑗 ] =
𝑟∑︁
𝑖=1

𝑃

[
𝑋 = 𝑗 | 𝑝 =

𝑖

𝑟
, 𝑛 = 𝑟

]
· 𝑑𝑖 . (2)

Now, let 𝑃 (𝑟+1)×𝑟 be a matrix, such that 𝑃 𝑗𝑖 , 0 ≤ 𝑗 ≤ 𝑟, 1 ≤ 𝑖 ≤ 𝑟

is the Binomial probability of sampling a key 𝑗 times from the

Binomial distribution 𝐵𝑖𝑛(𝑟, 𝑖𝑟 ). Then, in vector format:

𝐸 [𝑭 ] = 𝑃 · 𝒅 (3)

As a special case of eq. (3):

𝐸 [𝐹0] = 𝑃0𝑖𝒅 (4)

Since the linear system in eq. (3) may not have a non-negative

solution, we instead use an upper-bound for all 𝑑𝑖 ∈ 𝒅. Ignoring
non-diagonal values for each row in eq. (3), for each 𝑓𝑖 :

𝐸 [𝐹𝑖 ] ≥ 𝑃𝑖𝑖𝑑𝑖 (5)

⇒ 𝑑𝑖 ≤
𝐸 [𝐹𝑖 ]
𝑃𝑖𝑖

(6)

Replacing eq. (6) in eq. (4):

𝐸 [𝐹0] ≤
𝑟∑︁
𝑖=1

𝑃0𝑖

𝑃𝑖𝑖
𝐸 [𝐹𝑖 ] (7)

In order to get the estimate 𝐸 [𝐹0], we treat the observed values

of 𝑓𝑖 in 𝒇 as the expected values 𝐸 [𝑓𝑖 ]. Replacing the expected

value terms with observed values and expanding the terms gives

the following estimator:

𝐸 [𝐹0] =
𝑟∑︁
𝑖=1

P

[
𝑋 = 0 | 𝑛 = 𝑟, 𝑝 = 𝑖

𝑟

]
P

[
𝑋 = 𝑖 | 𝑛 = 𝑟, 𝑝 = 𝑖

𝑟

] · 𝑓𝑖 (8)

□

However, the above estimator is not accurate for keys observed

either once or twice in the sample. This is because, while the point

estimate 𝑝𝑖 =
𝑖
𝑟 of Bernoulli selection probability is reasonably

accurate for 𝑖 ≥ 3, it is less accurate 𝑖 ≤ 2. In the worst case, for

example, a key seen once in the sample might be a singleton: a
key occurring only once in the entire dataset. As a result, like

𝐴𝐸 [7], we use separate models for keys occurring twice or less

in the sample, and the rest of the keys (though our model differs

from [7]).

We divide the problem as follows: let 𝐸 [𝐹 𝑖
0
] be the 𝑖𝑡ℎ of the

𝑟 summation terms in eq. (1). We use eq. (1) to only calculate

the values 𝐸 [𝐹 𝑖
0
], 𝑖 ≥ 3. The final estimate is then the sum of the

following three values, each calculated separately:

• Missing Large Keys: Estimated as

∑𝑟
𝑖=3 𝐸 [𝐹 𝑖0].

• Observed Large Keys: The observed (non-missing) number of

large keys in the sample (𝑓
obs

=
∑𝑟
𝑖=3 𝑓𝑖 ).

• Small Keys: The estimated number of small sized keys (keys

drawn from the same distribution as the keys with observed

frequency 1 or 2 in the sample), written as𝑚.

Then the final estimate of the dataset NDV is given by:

𝐷𝑒𝑠𝑡 =

𝑟∑︁
𝑖=3

𝐸 [𝐹 𝑖
0
] + 𝑓

obs
+𝑚 (9)

The naïve estimator thus allows us to divide the estimation prob-

lem into sub-problems. This division allows us to address the



estimation of𝑚 as a separate problem, that can be solved ana-

lytically (in the next section), and also allows us to correct for

sampling errors when estimating𝑚 (Section 3.2.1).

3.2 Missing Small Keys Estimation
To estimate the number of small keys, we make the same assump-

tion as 𝐴𝐸 [7]: that all keys having size 1 or 2 in the sample have

the same size in the dataset. Let𝑚 be the total number of small

keys in the dataset. Now, let 𝐹𝑠
0
, 𝐹𝑠

1
and 𝐹𝑠

2
be random variables

representing the number of small keys observed zero times, once

and twice in a sample of size 𝑟 respectively. Then we estimate

the number of rows in such a sample that consist of small keys

as 𝑟𝑠 = 𝐸 [𝐹𝑠
1
] + 2𝐸 [𝐹𝑠

2
]. The Bernoulli probability 𝑝𝑠 of success

for a small key, in one out of 𝑟 trials, is then given by:

𝑝𝑠 =
𝑟𝑠

𝑟𝑚
=
𝐸 [𝐹𝑠

1
] + 2𝐸 [𝐹𝑠

2
]

𝑟𝑚
(10)

We can write the expected number of missing small keys (𝐸 [𝐹𝑠
0
])

in two ways: (1) as𝑚 − 𝐸 [𝐹𝑠
1
] − 𝐸 [𝐹𝑠

2
], and (2) using a Binomial

model with𝑚 as a parameter. Equating the two, we solve for𝑚.

So, we write 𝐸 [𝐹𝑠
0
] as:

𝐸 [𝐹𝑠
0
] = P

[
𝑋 = 0 | 𝑛 = 𝑟, 𝑝 =

𝑟𝑠

𝑟𝑚

]
·𝑚 (11)

Similarly, 𝐸
[
𝐹𝑠
1

]
is given by:

𝐸
[
𝐹𝑠
1

]
= P

[
𝑋 = 1 | 𝑛 = 𝑟, 𝑝 =

𝑟𝑠

𝑟𝑚

]
·𝑚 (12)

⇒𝑚 =
𝐸
[
𝐹𝑠
1

]
P

[
𝑋 = 1 | 𝑛 = 𝑟, 𝑝 =

𝑟𝑠
𝑟𝑚

] (13)

Inserting eq. (13) in eq. (11), expanding the Binomial expressions,

and simplifying:

𝐸
[
𝐹𝑠
0

]
=
𝑚

𝑟𝑠

(
1 − 𝑟𝑠

𝑟𝑚

)
· 𝐸

[
𝐹𝑠
1

]
(14)

Also, since 𝐸 [𝐹𝑠
0
] =𝑚 − 𝐸 [𝐹𝑠

1
] − 𝐸 [𝐹𝑠

2
], we equate this to eq. (14).

Then using the observed values 𝑓1 and 𝑓2 for the expected values

𝐸 [𝐹𝑠
1
] and 𝐸 [𝐹𝑠

2
] respectively, and solving for𝑚 gives:

𝑚 =
𝑓1 + 2𝑓2
2𝑓2

(
𝑓1

(
1 − 1

𝑟

)
+ 𝑓2

)
(15)

Note that while we substituted 𝐸 [𝐹𝑠
1
] and 𝐸 [𝐹𝑠

2
] with 𝑓1 and

𝑓2 above (for brevity), we do not use eq. (15) for calculating𝑚.

Instead 𝑓1 and 𝑓2 are corrected for sampling errors, and these cor-

rected values (called 𝑓 ′
1
and 𝑓 ′

2
respectively) are used as estimates

of 𝐸 [𝐹𝑠
1
] and 𝐸 [𝐹𝑠

2
]. This is described in the next section.

3.2.1 Histogram Normalization.
As shown by eq. (2), the observed value 𝑓1 is not an accurate

estimate of 𝐹𝑠
1
, as 𝑓1 would include a sample of both both small

keys, as well as large keys (𝑖 ≥ 3) that were under-sampled by

accident. This is an important problem because, as eq. (15) shows,

our estimate of𝑚 is highly sensitive to estimates of 𝐸 [𝐹𝑠
1
] and

𝐸 [𝐹𝑠
2
]. To address this, we apply a correction to 𝑓1 and 𝑓2 in eq.

(15), as described next. Expanding eq. (2) for 𝑗 = 1, we get:

𝐸 [𝐹1] =
2∑︁
𝑖=1

𝑃1𝑖𝑑𝑖 +
𝑟∑︁
𝑖=3

𝑃1𝑖𝑑𝑖 (16)

Using inequality (6), and writing

∑
2

𝑖=1 𝑃1𝑖𝑑𝑖 as 𝐸 [𝐹𝑠1 ] :

𝐸 [𝐹1] ≤ 𝐸 [𝐹𝑠
1
] +

𝑟∑︁
𝑖=3

𝑃1𝑖
𝐸 [𝐹𝑖 ]
𝑃𝑖𝑖

(17)

Using 𝑓𝑖 as estimate for 𝐸 [𝐹𝑖 ], and writing 𝐸 [𝐹𝑠
1
] as 𝑓 ′

1
:

𝑓 ′
1
≥ 𝑓1 −

𝑟∑︁
𝑖=3

𝑃1𝑖
𝑓𝑖

𝑃𝑖𝑖
(18)

Similarly:

𝑓 ′
2
≥ 𝑓2 −

𝑟∑︁
𝑖=3

𝑃2𝑖
𝑓𝑖

𝑃𝑖𝑖
(19)

So to calculate 𝑚, we substitute 𝑓 ′
1
for 𝑓1 and 𝑓 ′

2
for 𝑓2 in eq.

(15). While technically 𝑓 ′
1
and 𝑓 ′

2
over-correct for large keys,

empirically we find in our experiments that using these corrected

values significantly outperforms using the original values 𝑓1 and

𝑓2. We do use one heuristic to guard against over-correction: we

do not rely on 𝑓 ′
1
and 𝑓 ′

2
estimates if 𝑓 ′

1
is set to 0 or 𝑓 ′

2
is set to

≤ 1. In such cases, we first recalculate 𝑓 ′
1
and 𝑓 ′

2
, after setting

𝑖 > 3. If 𝑓 ′
1
is still equal to 0, or 𝑓 ′

2
≤ 1, we use the original values

of 𝑓1 and 𝑓2.

3.2.2 NDV Upper Bound and Overestimate.
The𝐻𝑁𝐸 estimator assumes that all small keys (Section 3.2) have

the same size. This condition can be relaxed by assuming that

only a subset 𝑔 of 𝑓 ′
1
keys have the same size as the 𝑓 ′

2
keys, while

𝑓 ′
1
−𝑔 of the 𝑓 ′

1
keys have a fixed size 𝑡 . Then the small key NDV

can be estimated as:

𝑚𝑔 =
(
𝑓 ′
1
− 𝑔

) 𝑁
𝑟𝑡
+
𝑔 + 2𝑓 ′

2

2𝑓 ′
2

(
𝑔

(
1 − 1

𝑟

)
+ 𝑓 ′

2

)
(20)

It may be possible to set appropriate values for 𝑔 and 𝑡 , using in-

formation such as database table statistics. In the absence of such

information, it can be seen that setting 𝑡 = 1, 𝑔 = 0 maximizes

𝑚𝑔 . The NDV upper bound 𝐷𝑈𝐵 is then given by:

𝐷𝑈𝐵 =
𝑁

𝑟
+

𝑟∑︁
𝑖=2

𝐸 [𝐹 𝑖
0
] (21)

This 𝐷𝑈𝐵 estimate is similar (though not identical) to the worst-

case upper bound established in [8], and is often too high to be

useful.

However, database systems often require an upper bound on

the NDV estimate, even if there is a risk of occasional underesti-

mation. For example, a query optimizer might choose a certain

plan only if an NDV estimate is below a certain threshold. In

such situations, if it can obtain an over-estimate (even though the

true NDV might exceed this value occasionally), the optimizer

can proceed with the plan with greater confidence compared to

a point estimate (which might be expected to be above or below

the ground truth with equal probability). To address this, we find

that empirically, the geometric mean of the 𝐻𝑁𝐸 estimate and

the NDV upper bound is able to provide a risk-averse overestimate
of the ground truth NDV, even for highly skewed datasets. Intu-

itively, the use of geometric mean can be understood as follows:

in situations where we suspect that the dataset might contain

singletons, we might prefer to be as close to the𝐻𝑁𝐸 estimate as

possible, while trying to minimize the error due to the presence

of singletons. A common error measure used in NDV literature

is the error ratio, defined as:

Error Ratio = max

(
True NDV

Estimate

,
Estimate

True NDV

)
(22)

To minimize our error with respect to this error measure, we

could use the geometric mean (rounded to the closest integer) as

an upper bound on the NDV (𝐷gm =
√
𝐷𝑒𝑠𝑡 · 𝐷𝑈𝐵 ).



4 MACHINE LEARNING APPROACH
In the previous section, we introduced a new statistical estimator.

In this section, we present our second approach using ML to

predict the NDV of a dataset given only a data sample.

Traditional approaches to theNDVproblem [7, 20] usemanually-

tuned statistical methods. This manual tuning involves adjusting

and extending the theoretical principles of the model itself, which

needs an expert in the field to do so.

Classical ML algorithms, on the other hand, are usually out-

of-the-shelf tools provided by different libraries in nearly all

programming languages. The main complexity for an ML ap-

proach is to find the right set of features, choose a model, and

fine-tune the models hyper-parameters. For the later two points,

there is already a selection of AutoML tools, which can do this

automatically [10, 15, 48]. With the ML approach, our goal is

to utilize this already existing ML environment, to simplify and

improve the NDV prediction.

In the following, we introduce the key ideas as our general ML

approach, a regression model, to predict the NDV of a dataset.

Afterwards, we present optimizations to the initial model, which

let the model perform better for cases with NDVs close to zero

or close to the population size. Finally, we give an overview on

how model training and inference is performed.

4.1 General ML Approach
For the general approach, we devise a single regression model

that predicts the NDV of a dataset. As stated before, choosing

and engineering the right input features is the most important

part for the model. In this section, we show the key ideas for

defining the input features and target data (label) to train our

regression model.

4.1.1 Using Multiple Samples.
Approaches in the literature usually use a random data sam-

ple of a certain percentage and estimate the NDV based on the

properties seen in this sample.

One of our key ideas for the ML model is taking multiple sam-

ples and comparing the unique keys in these different samples.

This can also be achieved by taking only one sample and dividing

it randomly into multiple sample chunks.
Figure 1 shows an example of gaining information by using

multiple sample chunks. The dataset contains 100K unique keys,

while each key occurs 10 times in the dataset. For this graph, we

divide the dataset in 10 random sample chunks, each containing

10% of the dataset. Each of the separate chunks contains around

65K unique keys. This does not give much information about the

NDV of the full dataset (i.e., 100K). However, more information

becomes visible when comparing sample chunks, like investigat-

ing how many new (i.e., never-before-seen) keys are observed

in an additional chunk given the context of the sample chunks

seen before. In Figure 1, this means 65K new unique keys for

the first sample, 24K new unique keys, when adding the second

sample, 8K new unique keys for the third sample, and so on. This

reduction rate is a good indicator on the key distribution of the

entire dataset, so we want to use it for our feature creation. With

the chunking approach, it is easier for the ML model to extract

information by comparing 𝑛 chunks to 𝑛 + 1 chunks, compared

to a single sample approach with the same size of 𝑛 + 1 chunks.
Generally, our approach can be used with a variable number

of chunks and chunk sizes. However, for this paper, we define

the chunk size to 0.5% of the dataset, while using three chunks

in total, leading to a full sample size of 1.5% of the dataset.
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Figure 1: Example of a dataset with 100K unique keys,
where each key occurs exactly 10 times. Samples are taken
randomly in chunks of 100K without replacement.

4.1.2 Input Features.
To construct themodel features, we are using themultiple sample-

chunks idea as introduced above. Features are either based on

single chunks or a combination of chunks, e.g., groups of two or

three chunks treated as a combined sample.

For some of the used features, we construct a frequency his-

togram of the data distribution for a chunk or groups of chunks.

The histogram is similar to the approach in Section 3.2 (without

normalization). For each key, the frequency of its occurrence in

the sample is calculated, before aggregating the frequencies to

the frequency histogram. For example, if a sample contains 100

keys and the frequency histogram of this sample only contains

𝑓1 = 100, we know that each key occurs only once, i.e., each key is

unique. On the other side, if 𝑓100 = 1, we know that there is only

one unique key occurring 100 times in the sample (frequency of

100).

To create features out of the sample chunks and frequency

histograms, we compose a large amount of features and feature

combinations and apply feature selection [30] to reduce the set

of features to important ones for the prediction. The resulting

feature set contains 14 features, which can be grouped into three

categories.

Category 1: Features based on the frequency histograms:

(1.1) Amount of keys with frequency 1 based on a single chunk
(1.2) Amount of keys with frequency 2 based on a 2 chunk group
(1.3) Amount of keys with frequency 1 based on 3 chunk group
(1.4) Amount of keys with frequency 2 based on 3 chunk group
(1.5) Amount of keys with frequency 3 based on 3 chunk group
(1.6) Amount of keys with frequency 4 based on 3 chunk group

Six features are based directly on the frequency histograms. Most

features are using the three chunk group, because this group

contains the largest sample (three times 0.5%), hence it uses the

most amount of data containing the most information compared

to single chunks or two-chunk groups.

Category 2: Features based on unique keys and chunk differ-

ences:

(2.1) Amount of new unique keys in the second chunk when con-
sidering the first chunk

(2.2) Amount of new unique keys in the third chunk when con-
sidering the first two chunks

(2.3) Total amount of unique values (NDV) for 3 chunk group



There are two features looking at the additional unique keys that

can be observed by adding one chunk to one or two previous

chunks and one feature that is using the NDV of the three chunk

group.

Category 3: Feature Combinations:

(3.1) Feature 2.2 divided by Feature 2.1
(3.2) Feature 2.1 divided by Feature 1.4
(3.3) Feature 2.2 divided by Feature 1.4
(3.4) Feature 1.2 divided by Feature 1.5
(3.5) Feature 2.3 divided by population size.

There are five features either using a division of the previous

features or a division by the population size. These features are

determined as important by feature selection [30] and extensive

testing, given hundreds of similar feature combinations as initial

input.

4.1.3 Averaging Chunk-based Statistics.
In the previous section, we introduced features either based on

single chunks or groups of chunks, e.g., groups of two or three

chunks treated as a combined sample. To add robustness to our

features, we average the chunk and chunk group statistics, when-

ever there are multiple possible combinations.

For the single-chunk features, there are exactly three chunks

to choose from so we compute the feature for each chunk and

average the results. For the two-chunk-group features, there are

three different combinations of two chunks, so we compute the

feature for each combination and average the results. For the

three-chunk-group there is only one possible combination. For all

cases, where we have multiple possible combinations of chunks,

we look at every combination, extract our features, and average

the feature values over similar combinations. This averaging

approach helps to mitigate the randomness of the sampling.

4.1.4 Feature and Label Normalization.
So far, the features taken from the sample chunks are absolute

values or averages of absolute values. To make our approach

generalized for dataset sizes that have not been seen by the

model, we need to normalize them depending on the sample size.

Therefore, we divide the features by the total number of keys in

the chunk or chunk-group, on which the feature is based on. For

example, if a chunk contains 200 keys and there are 100 keys that

occur only once, then Feature 1.1 is using the normalized value of

0.5 instead of the absolute value of 100. This allows our approach

to identify similar pattern for datasets with completely different

numbers of keys, since after normalization, features are in the

same range of values. This kind of normalization is applied to all

features of Category 1 and 2, but not Category 3, since there the

features are already normalized through the inherent division.

A similar normalization is done for the prediction label (i.e., the

NDV). There, instead of predicting the NDV directly, we follow

our idea of feature-normalization and predict the relative NDV
(

𝑁𝐷𝑉
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒

) instead. This has two advantages, as datasets

with different NDV and different number of elements might be

similar through their relative NDV, and the ML target values

are limited to numbers between 0 and 1. The latter is a large

advantage as most ML algorithms can only predict labels that lie

within the range of labels seen in the training data.

Using labels and features in a normalized format allows us

to predict for arbitrary datasets, even if they are not within the

boundaries of our training data. During inference, the model

predicts relative NDVs, so for a final result the prediction needs

to be multiplied by the population size.

4.2 Model Optimizations
In addition to our general ML approach, we present two opti-

mizations to improve the predictions for low and high relative

NDVs.

4.2.1 Label Transformation.
As stated before, we are normalizing prediction labels (NDVs)

with the population size to predict relative NDVs instead of ab-

solute NDVs. There could be large relative NDVs close to and

including the value 1.0, which represent an NDV close to the

population size of a dataset, hence, most of the values are unique.

There could also be low relative NDVs close to (but not including)

the value 0.0, which represent a NDV with a small number of

unique values.

ManyML algorithms internally use a scoring metric like mean-

absolute-error (MAE) or mean-squared-error (MSE), which are

optimized to penalize large errors, while being willing to allow

smaller ones. With our approach of using a relative NDV as

target, this might cause problems for small relative NDVs. As

an example, for a Dataset 𝐴 with 100M keys and a NDV of 1M,

the target value is 0.01. For Dataset 𝐵 with 2M keys and an NDV

of 1M, the target value is 0.5. If the model is using a metric like

MSE, it might consider an error of +0.1 as acceptable. For Dataset
𝐴, this implies a percentage error of 1000%, while for Dataset

𝐵, with exactly the same NDV, this only causes an error of 20%.

In general, we found that a percentage error or mean-absolute-

percentage-error (MAPE) is more suited as an optimization goal

for our purposes. However, many ML algorithms inherently do

not support this optimization metric, so we have to use MAE or

MSE.

To avoid this imbalance and allow smaller relative NDV to be

predicted in a good quality, we transform our label using loga-

rithmic transformation. Before training, we apply a logarithmic

operation to all labels (𝑦) and then train the algorithm with the

new label (𝑦𝑙𝑜𝑔 = 𝑙𝑜𝑔(𝑦)). During inference, the model predicts

the log-scaled label, so the actual prediction needs to be trans-

formed again using the constant 𝑒 to the power of the log-scaled

prediction (𝑦 = 𝑒𝑦𝑙𝑜𝑔 ). With this transformation, very small labels

are transformed to larger negative values and prediction errors

on these values have a larger magnitude than before, hence, are

more prioritized in the optimization of the ML algorithm.

4.2.2 Edge-Case Model.
In addition to the label transformation, we noticed that NDV edge

cases need more optimization as they are hard to predict exactly

right for the presented regression model. Such edge cases are

either very small NDVs, where the NDV observed in the sample

is close to the NDV of the full dataset; or large NDVs close to or

equal to the population size. We further noticed for these cases,

that the actual prediction target is represented in one or multiple

of the input features. For example, for very small NDVs, where

all unique keys of the dataset can be seen in the sample, Feature

3.5 equals the relative target NDV. Additionally, when all keys

of the dataset are unique, Feature 1.1 and 1.3 have the value 1.0,

which also equals the relative target NDV in this case.

To detect these cases automatically, we construct a ML model

to predict when a Feature 𝐹𝑖 equals the label and thus can be

used directly as result. An example for this problem is shown in



𝐹1 𝐹2 𝐹3 𝐹4 label class

1 2 10 20 10 A

2 5 20 30 20 A

11 2 10 40 40 B

12 3 20 50 50 B

1 7 20 40 30 X

Table 1: Features values can be used as label. Here two
patterns emerge (A) when 𝐹1 ≤ 2 and 𝐹2 ≤ 5 then 𝑙𝑎𝑏𝑒𝑙 = 𝐹3
and (B) when 𝐹1 ≥ 11 then 𝑙𝑎𝑏𝑒𝑙 = 𝐹4. (X) symbolizes no
match.

Table 1. There Feature 𝐹3 equals the label but only if Feature 𝐹1
is less or equal to 2 and Feature 𝐹2 is less or equal to 5.

The presented ML regression model is not suited for finding

these cases and in general it is not common for ML algorithms to

conditionally use an exact feature value as prediction result. To

solve this problem, we create a classification ML model, where

we encode certain patterns in the data (like (A) and (B) in Table 1)

as separate classes. In detail, we apply the following steps:

(1)With the given training data, we check if a feature is equal

to the prediction label (relative NDV). For training data, both, the

features and the label are known.

(2)We assign classes for each instance, where features equal

the label. In our example from Table 1, this results in Class A

(𝑙𝑎𝑏𝑒𝑙 = 𝐹3) and Class B (𝑙𝑎𝑏𝑒𝑙 = 𝐹4). The classes only describe

the observable outcomes (𝑙𝑎𝑏𝑒𝑙 = 𝐹𝑖 ), but do not know the reason

or pattern behind it. The number of classes depends on the num-

ber of features that, for some datasets, equal the label, with an

additional Class X for the remaining cases (no matching feature).

For the example in Table 1 this results in three different classes.

(3) Based on the created classes, the classification model uses

the same features as the regression model, however, using the

classes as prediction label instead of the relative NDV values. We

only provide the classes to the model. The model itself finds the

underlying pattern, when these classes (i.e. label matches) occur.

(4) During the inference, the model predicts a class for every

instance. For each predicted class, we either convert the class

to a result value by replacing the class with the corresponding

feature value or use the described regression model to predict the

NDV if the predicted class indicated that no feature is matching.

4.3 Model Training and Inference
Given our general ML approach and the proposed optimizations,

Figure 2 is illustrating the model training and inference steps.

Formodel training, we use dataset samples with the corre-

sponding relative NDV numbers of the full dataset (relNDV label).

The samples are used for generating the features as described in

Section 4.1. The regression model is trained with the generated

features and the log-transformed NDV labels. The Edge-Case

model first needs to detect and encode features classes based on

the generated features and the relative NDV labels. The model

then is trained using the detected classes and the generated fea-

tures. We evaluated multiple ML algorithms for our two models

and found that ensemble models based on multiple decision-trees

are suited best for this task. As a result, we are using a Random

Forest [2] algorithm for our regressionmodel and a AdaBoost [18]

algorithm for the Edge-Case model. The ML model training is

performed off-line, which means it is trained outside production

environment, where we have time and resources for extended

model optimization. Only the trained and optimized models are

deployed.
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Figure 2: Training and inference for the ML approach.

For model inference, we generate features in the same way

as in the training step. The features are used to first predict a

feature class with the Edge-Case model. If the predicted class

is a feature, we resolve this class by using the corresponding

feature value and return the relative NDV. If the predicted class is

indicating no feature match, then the generated features are used

with the regression model and the reverse log-transformation to

predict the final relative NDV.

Depending on the prediction problem, the real NDV numbers

need to be transformed into relative NDV values ( 𝑟𝑒𝑙𝑁𝐷𝑉 =
𝑁𝐷𝑉

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒
) for the training step and the predicted relative

NDVs need to be transformed back into real NDV values (𝑁𝐷𝑉 =

𝑟𝑒𝑙𝑁𝐷𝑉 · 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 ).

5 EVALUATION
In this section, we evaluate our two approaches together with the

state-of-the-art described in related work. First, we describe the

evaluation setup used in the experiments and then we present a

general comparison of the different approaches, followed by a

more detailed investigation for our approaches.

5.1 Evaluation Setup
Our evaluation setup consists of the evaluation datasets and their

generation, algorithms, and error metrics.

5.1.1 Datasets.
To compare the different approaches, we generate a number of

different dataset corpora. We only use datasets with a population

size of 100K keys or more, because smaller datasets can be com-

pletely scanned to compute the NDV without high overhead. In

addition to datasets with specific distributions, we create larger

corpora of datasets from common database benchmarks and open

data sources, as these are relevant examples for database systems.

Finally, we generate a large dataset corpus based on random data

to train our ML approach. The ML model is only trained on this

corpus, which does not include any other datasets we test on.

The details of the datasets are the following:

• The Uniform corpus contains 7 datasets, each with a popu-

lation size of 10M, where values occur uniformly 1, 2, 3, 4, 5,

10, 100, and 1000 times, resulting in relative NDVs from 0.1%

to 100%.

• The Zipf corpus includes 11 datasets generated from a stan-

dard Zipf distribution [50] with a infinite vocabulary, so that

the probability of sampling key 𝑖 is given by 𝑓 (𝑘) = 𝑘−𝑠

𝜁 (𝑠) ,
where 𝜁 (𝑠) is the Reimann Zeta function, and 𝑠 is a parameter



governing the skewness of the data. The population size was

set to 10M and 𝑠 was set to values 𝑠 ∈ {1.01, 1.1, 1.2, . . . , 2}.
The observed relative NDVs range from 0.04% to 70%.

• The dZipf (discrete Zipf) corpus includes 20 datasets having

the following Zipfian property: if the keys are arranged in

decreasing order of frequency, the frequency of the 𝑘𝑡ℎ order

key is proportional to 𝑘−𝑠 . Each of the 20 datasets was gener-

ated by a unique value from the set 𝑠 ∈ {0.1, 0.2 . . . 2.0}. The
target population size was set to 𝑁 = 10𝑀 , and the number of

distinct values𝐷 was set so that the lowest order key had a fre-

quency of 1. The value of 𝐷 meeting this condition was found

by numerically finding the largest 𝐷 such that 𝐻𝐷,𝑠 ·𝐷𝑠 ≤ 𝑁 ,

where 𝐻𝐷,𝑠 is the Harmonic number 𝐻𝐷,𝑠 =
∑𝐷
𝑖=1

1

𝑖𝑠 .

• The TPCH corpus is taken from TPCH database benchmark

tables [46], using the scale factor 1024. The benchmark tables

contain a total of 61 columns, however, only 54 columns have

more than 100K rows. The largest columns contain 6.1B rows.

• The TPCDS corpus is taken from TPCDS database bench-

mark tables [31], also using a scale factor of 1024. There, 206

columns contain more than 100K rows (out of 429 columns in

total). The largest columns contain up to 2.9B rows.

• The RWD (RealWorldData) corpus is constructed using 10

real-world data sources from the cities of Seattle and NewYork

[32–41]. The sources consist of multiple tables and result in

340 columns with more than 100K rows. The largest columns

contain about 62M rows.

• The MLtrain corpus was specifically created to train the

ML models for the ML approach. It contains 100K datasets

with a population size between 100K to 10M. Algorithm 1

shows the algorithm used to generate the MLtrain datasets.

The goal of the algorithm is not to randomly generate a full

dataset but to generate a random frequency histogram that

represents a dataset. First a target population size is defined

as a random number between 150K and 10M (Line 2). This

target population size is reduced with every iteration until it

is smaller than 50K. With every iteration (Line 3), an initial

frequency is set to the population size (Line 4). Afterwards,

this frequency is reduced (Line 7) by multiplying it with a ran-

dom floating point number between 0 and 1. This reduction

is performed between 1 and 9 times (Line 5). After defining

the frequency, the amount (how often this frequency occurs)

is chosen randomly between 1 and the remaining population

size divided by the chosen frequency (Line 9). Finally, the

population size is reduced by the chosen frequency multiplied

with the chosen amount (Line 10) and both values are up-

dated in the frequency histogram (Line 11). The iterations are

repeated until the population size is below 50K. To produce

the MLtrain dataset corpus, this algorithm is executed 100K

times. It is important to check if exactly matching datasets

have been created, as these need to be deleted in order to

allow correct leave-out cross-validation.

Table 2 summarizes the properties of the dataset corpora. To cat-

egorize the datasets, we investigate their frequency histograms.

We use the standard deviation of observed frequencies divided

by the mean frequency as a measure of data uniformity. Uniform

datasets have a value close to 0 as only one frequency is observed

(e.g., frequency 10 for cases where each key occurs 10 times). Less

uniform datasets (like Zipf distribution) have a higher value. As

we can see from Table 2, TPCH has more uniform datasets, while

TPCDS and MLtrain have more datasets that are less uniform.

The relative NDV statistics show that TPCH has both low and

Algorithm 1 Dataset generation for MLtrain dataset corpus

1: procedure generate_dataset
2: 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 ← 𝑔𝑒𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡 [150𝐾, 10𝑀 ]
3: while 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 > 50𝐾 do
4: 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ← 𝑝𝑜𝑝𝑆𝑖𝑧𝑒

5: 𝑛_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝑔𝑒𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡 [1, 9]
6: while 𝑛_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 ≠ 0 do
7: 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ← 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝑔𝑒𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑙𝑜𝑎𝑡 (0.0, 1.0]
8: 𝑛_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝑛_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 − 1
9: 𝑎𝑚𝑜𝑢𝑛𝑡 ← 𝑔𝑒𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡 [1, 𝑝𝑜𝑝𝑆𝑖𝑧𝑒/𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ]
10: 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 ← 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 − (𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝑎𝑚𝑜𝑢𝑛𝑡 )
11: 𝑢𝑝𝑑𝑎𝑡𝑒_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 (𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑎𝑚𝑜𝑢𝑛𝑡 )

relative SD relative NDV

#datasets #<0.5 #≥0.5 #<1% #>95% #rest

Uniform 7 7 0 1 1 5

Zipf 11 0 11 6 0 5

dZipf 20 1 19 8 1 11

TPCH 54 41 13 30 12 12

TPCDS 206 54 152 175 6 25

RWD 340 31 309 296 9 35

MLtrain 100000 4036 95964 70859 133 29008

Table 2: Properties of the datasets used in experiments. The
relative standard deviation (SD) is the standard deviation
of observed frequencies divided by the mean frequency.

high NDVs, while TPCDS, RWD, and MLtrain have mainly small

NDVs.

For sampling, we always take a 1.5% random sample, if not

otherwise stated. The percentage is based on the default input

size of our ML approach (Section 4.1.1) and we discuss this choice

of percentage further in Section 6. We differentiate the sample

type between sampling with replacement (i.i.d. or independent
and identically distributed) and sampling without replacement

(in this paper marked as non i.i.d.). For our tests, exactly the same

sample is given to all approaches for the prediction.

5.1.2 Algorithms.
For the quality comparison, we use the two approaches presented

in this paper and compare them to two approaches from related

work. The evaluated approaches are, in detail:

• TheHybrid approach based on a combination of Shlosser [44]

and Smoothed Jackknife [20]. Combining both approaches

was proposed by Haas et al. [20].

• The Adaptive Estimation approach (Charikar AE) proposed
by Charikar et al. [7].

• Our Histogram Normalization Estimator (HNE) presented in

Section 3.

• Our ML approach based on two machine learning models as

presented in Section 4.

5.1.3 Metrics.
As comparison metrics, we use error ratio (eq. (22)) and Mean

Absolute Percentage Error (MAPE). Both metrics characterize

the relative error of the different approaches and a lower value

symbolizes a smaller error.

Additionally, we introduce a new metric to differentiate be-

tween over-prediction and under-prediction, because the differ-

entiation is not possible in Error Ratio or MAPE. We call this

metric signed relative error (sRE), which is similar to error ratio

(eq. (22)) with changes to make the result signed and based on 0



Corpus (n_datasets) Uniform (7) Zipf (11) dZipf (20) TPCH (54) TPCDS (206) RWD (340) MLtrain (100K)

Sampling Type i.i.d. n.i.i.d. i.i.d. n.i.i.d. i.i.d. n.i.i.d. i.i.d. n.i.i.d. i.i.d. n.i.i.d. i.i.d. n.i.i.d. i.i.d. n.i.i.d.
Hybrid 4.62 4.68 1.05 1.06 1.76 1.79 2.53 2.55 2.03 2.04 1.92 1.92 3.94 3.98

Charikar AE 1.05 1.28 4.52 4.27 2.59 2.45 1.08 1.09 1.17 1.17 2.11 2.09 1.82 2.05

HNE 1.07 1.29 2.02 1.94 1.61 1.46 1.04 1.04 1.13 1.13 1.56 1.55 1.50 1.49

e
r
r
o
r
r
a
t
i
o

ML approach 1.02 1.26 1.76 1.59 1.39 1.35 1.03 1.04 1.06 1.16 1.56 1.54 1.25 1.24

Hybrid 361.6% 368.0% 5.5% 5.8% 76.2% 79.0% 152.7% 155.1% 102.6% 104.0% 79.3% 80.2% 277.3% 281.6%

Charikar AE 5.1% 28.2% 76.5% 74.1% 55.6% 52.7% 4.0% 4.5% 10.1% 10.7% 73.3% 75.1% 41.1% 68.7%

HNE 6.5% 28.5% 61.8% 67.6% 37.8% 31.6% 3.1% 3.6% 10.1% 10.7% 42.9% 42.2% 23.8% 26.3%

M
A
P
E

ML approach 1.8% 25.7% 39.1% 32.3% 24.6% 24.5% 2.9% 4.0% 5.0% 6.6% 25.3% 24.4% 17.2% 16.7%

Table 3: Overall results for different approaches and different dataset corpora, for i.i.d. and non i.i.d. (n.i.i.d.) sampling. ML
model is being trained on the corresponding MLtrain data (i.i.d. or non i.i.d.). In the upper half the error is calculated as
error ratio (eq. (22)) and in the lower half the same error is shown as MAPE.

instead of 1:

𝑠𝑅𝐸 =


1 ∗

(
Estimate

Target
− 1

)
, if Estimate > Target

−1 ∗
(

Target

Estimate
− 1

)
, if Estimate ≤ Target

(23)

With this metric, over-prediction has a relative error above

zero, under-prediction a relative error below zero, and zero itself

symbolizes no error. Please note, that sRE can only be aggregated

for positive and negative results separately, as differently signed

errors might cancel each other out.

5.2 General Evaluation
Table 3 shows the error ratios and MAPE scores for the different

approaches using the datasets presented in Section 5.1.

The Hybrid approach performs well for the Zipf datasets in

experiments, while producing larger errors for the other datasets.

This illustrates the statement made by Haas et al. [20] that it is

nearly impossible to have an approach work well with all distri-

butions. Here, the internal Shlosser algorithm [44] is highly tuned

to skewed datasets like Zipf and dZipf. The type of sampling does

not seem to impact results for this approach.

The Charikar AE approach shows good results for uniform

data and the benchmark datasets, but shows worse results for

Zipf distributed data, RWD, and the MLtrain dataset corpus. In

general, it outperforms the Hybrid approach except for the Zipf

corpus. For the Zipf-like datasets, it performs better on MAPE,

compared to the error ratio (e.g., 50% MAPE ideally corresponds

to an error ratio of 1.5). This is caused by strong under-prediction,

which causes the MAPE to show a 100% error in the worst case,

while the error ratio can show amuch higher value. i.i.d. sampling

is better for Charikar AE for Uniform and MLtrain datasets with

MAPE differences of up to 5.5x compared to non i.i.d. sampling.

Our HNE based approach is either similar or significantly

better than the Charikar AE approach, which becomes especially

visible for the error ratios of the Zipf-like datasets and RWD.

The difference between MAPE and error ratio is not as strong

as the Charikar AE approach, which illustrates that the under-

prediction problem is less pronounced. Except for the uniform

corpus, we do not see a significant preference for i.i.d. or non i.i.d.
sampling.

Finally, our ML approach shows good results for all corpora,

except for the the Zipf datasets, where it outperforms all ap-

proaches except the Hybrid approach. For all the experiments,

the model is trained on the full MLtrain dataset. When predict-

ing the MLtrain dataset itself, the model is trained using 10-fold

leave-out cross-validation (CV). This means it is trained on 90%

of the datasets, while only predicting for the remaining 10%. This

is shifted 10 times until the NDV for all datasets is predicted.

Using CV avoids that information about the test data is used

for training the model. For the RWD corpus, the ML approach

outperforms the other approaches, with a 3x MAPE reduction

compared to Charikar AE. Interestingly, the ML approach has a

similar error ratio as HNE but a much better MAPE, caused by

slight over-prediction for HNE and slight under-prediction for

the ML approach. The error is generally a bit higher for RWD

compared to most other corpora, due to containing many zipf-

like datasets as indicated in Table 2. The ML approach is flexible

in using the i.i.d. and non i.i.d. data; however, for the uniform
corpus it shows a similar behavior as Charikar AE and HNE,

where i.i.d. is much better than non i.i.d. .
To summarize, both of our approaches improve upon the cur-

rent state-of-the-art in general, while the ML approach shows the

best results over all. The only exception is the Hybrid approach,

which is specifically optimized for highly skewed datasets (Zipf),

while showing larger errors for all other corpora.

5.2.1 Detailed Evaluation on MLtrain Datasets.
As theMLtrain corpus provides uswith a large number of datasets,

we investigate the predictions for these datasets in more detail.

Figure 3 shows the predictions for all four approaches as a scatter

plot using our sRE metric (eq. (23)). The true relative NDV of

the dataset is on the x-axis and the signed relative error on the

y-axis. Predictions closer or equal to zero sRE are better. In each

figure, there are 100K dataset predictions with the majority of

predictions being for low relative NDVs (Table 2), i.e., on the

left side of the graph. Additionally, we added statistics about the

percentage of the predictions, which are over-predicted (over),
under-predicted (under), or correctly predicted (correct), together
with error aggregations.

The first observation is the shape of the scatter plot. The

Hybrid approach has the most errors for low relative NDVs

with a strong tendency to over-predict. The average sRE for

over-predicted datasets is 4.2 (equal to an error ratio of 5.2).

The Charikar AE approach has also the majority of errors as

over-prediction, however, these predictions are much closer to

the correct NDV, resulting in an average sRE of 0.6. The under-

predictions have the same sRE as the Hybrid approach, while oc-

curring for small and large relative NDVs. Our HNE approach re-

duces the average error for over-prediction and under-prediction

compared to both previous approaches, while the general shape

of the plot looks similar to Charikar AE. The ML approach shows

a much tighter scatter plot with a tendency to over-predict with



(a) Hybrid approach (b) Charikar AE approach (c) HNE approach (d) ML approach

Figure 3: Prediction errors (sRE, eq. (23)) for the MLtrain dataset using i.i.d. samples ordered by the relative NDV of the
datasets.

a sRE of 0.2, while also only having an under-prediction sRE of

only -0.5.

When looking at the exactly matching estimations, the Hybrid

approach (19.9%) and the Charikar AE approach (21.7%) have

the most amount of correct predictions compared to the HNE

approach (15.8%) and the ML approach (19.2%). This means that

for HNE and the ML approach, many predictions are close to

the correct values and few predictions are exactly correct. This

influences the average sRE numbers to be closer to 0 than for

the other approaches, as more predictions are included into the

average. However, the shape of the scatter plot and the results in

Table 3 show that these approaches are performing well and that

this is not solely the effect of these non-correct predictions.

5.2.2 Detailed Evaluation on Zipf Datasets.
In general, our approaches show good results for all the datasets

in Table 3. But specifically for the Zipf dataset corpus the Hy-

brid approach performs much better. Therefore, we illustrate the

results of the Zipf and dZipf corpus in detail in Figure 4. The

datasets are plotted according to the distribution parameter used

during their creation, while showing the signed relative error

(sRE).

Figure 4a shows that the Hybrid approach is indeed nearly

always close to zero, indicating near-perfect predictions. The Hy-

brid approach consists of two internal algorithms, one of which is

chosen automatically based on the data distribution in the sample.

For the Zipf datasets, the chosen algorithm internally is always

the Shlosser approach [44], which seems highly optimized for

exactly this Zipf distributions. The HNE and ML approaches are

close to the Hybrid approach, however, often predicting around

half of the actual NDV (sRE of -1). The HNE approach also seems

to alternate between over-prediction and under-prediction de-

pending on the Zipf distribution parameter. The Charikar AE

approach constantly under-predicts by a large margin, with an

sRE of -5 in the extreme case.

For the HNE and ML approach, the behavior is similar in

Figure 4b for slightly less skewed Zipf-like data. Charikar AE

shows a better sRE, while still under-predicting more than the

other approaches. The Hybrid approach, however, shows a much

higher error resulting in often over-predicting about 1x. This

shows that the internal Shlosser model [44] is highly optimized

for the specific distribution shown in Figure 4a but performs

worse for any deviation from this target distribution.
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Figure 4: Zipf-like distribution using i.i.d. sampling.

5.3 Upper Bound on NDV Estimates
As previous theoretical negative results [7, 8] prove, error ratio

bounds on NDV estimates are expected to be large, as any sample

data could have been drawn one of two extreme distributions:

either the sample NDV could be the dataset NDV, or the dataset

NDV could be an extremely high value due to presence of sin-

gletons. As a result, while two-sided bounds on NDV estimates

can be provided (by using the sample NDV as the lower bound,

and the singleton estimate as the upper bound), they are often

too broad to be useful.

WithHNEwemainly address the upper-bound problem. There,

the goal is to be as close to the ground truth as possible, while

avoiding under-estimation. We do not provide a lower bound, but

use the natural lower bound being the sample NDV. The upper-

bound estimation has many applications in database systems.

For example, a query optimizer might have a threshold NDV

value, where a certain plan is only chosen above a certain value.

Additionally, NDV estimates may be used for memory allocation

and risks from under-allocation might mean that the system

would prefer to over-allocate memory based on an upper bound.

As described in Section 3.2.2, such an upper bound is provided

by eq. (21). Figure 5a shows the distribution of the ratio of the

upper bound to the NDV ground truth across test corpora. The

upper bound correctly over-estimates the NDV ground truth

in almost all cases (as the upper-bound to ground truth ratio is

above 1). There are only 15 datasets, all in the MLTrain corpus

(0.015%), which do not over-estimate the NDV.

An interesting aspect of Figure 5a is the set of outlier values

that represent a high over-estimate, particularly for TPCH. This

is in line with the scenario mentioned above, where the sample

NDV is actually the dataset NDV. Technically in these cases, the

guarantee of an over-estimate still holds.
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(b) Upper Bound based on Geometric Mean

Figure 5: Distribution of the bound width (using bounds
provided byHNE) on dataset corpora, for 1.5% i.i.d. samples.
The value is divided by the NDV ground truth for normal-
ization.

Overall, the strict upper bound is generally high, compared to

the ground truth. For this reason, as discussed in Section 3.2.2,

we propose the use of the geometric mean of the HNE and upper-

bound NDV estimates, as an alternative risk-averse overestimate.
Figure 5b shows the ratio of the geometric mean based upper

bound estimate to the ground truth. While the geometric mean

(GM) upper bound is less strict, in practice, it over-estimates the

ground truth NDV in almost all cases. The GM upper bound to

ground truth ratio is greater than 1 for all histograms across

all datasets, with the exception of the Zipf, MLTrain, and RWD

datasets. For the Zipf dataset, the under-estimate occurs for about

60% of datasets. However, the under-estimate is small in magni-

tude: the ratio of estimate to ground truth is 0.8 in the worst case.

Besides this, the GM bound under-estimates in 3% of histograms

in the MLTrain dataset, and 4% of histograms in RWD. Note,

however, that the GM bound has a much narrower range. For

a large number of histograms across all corpora, the bound is

within 2.5𝑥 of the ground truth. In situations where the system is

robust to occasional under-estimates, the GM bound can provide

a reasonably narrow upper bound estimate.

5.4 Optimization Impact for ML approach
In this part, we illustrate the impact of our optimizations for

the ML model (Section 4.2). We evaluate the general Regression

model (RM, Section 4.1) separately and add two optimizations,

Optimizations # affected MAPE gain

(from → to) datasets before after

RM → RM+ECM 7151 2.66% 0.34% 7.8x

RM → RM+yT 78858 28.22% 21.22% 1.3x

RM+yT→ RM+yT+ECM 7044 1.38% 0.34% 4x

Table 4: Improvements using ML optimizations tested with
Regression model (RM), Edge-Case model (ECM), and label
transformation (yT).

(1) label transformation (yT) and (2) the Edge-Case model (ECM),

one at a time (Section 4.2). Table 4 shows the results of these

experiments with the MLtrain dataset corpus using cross valida-

tion. We can see, that the Edge-Case model affects about 7% of

the datasets, which is expected since this model is designed to

handle the edge cases and not the majority of the datasets. This

means that for 93% of the datasets, this model will predict the

’no-match’ class indicating that the regression model should be

used. When only looking at the 7% affected datasets separately,

the MAPE changed from 2.66% to 0.34%, showing that the regres-

sion model handled these cases already reasonably well, but the

Edge-Case model still reduces the errors of these cases by about

8x. The impact of the label transformation (yT) is only 1.3x error

improvement, however, this optimization is affecting the major-

ity of the datasets (79%). Interestingly, the label transformation

and the Edge-Case model improve similar kinds of datasets. This

can be seen in Table 4, where adding the Edge-Case model to

the Regression model with label transformation shows only an

improvement of 4x (instead of 7.8x) for the affected datasets.

6 DISCUSSION
In this section, we want to discuss different perspectives of judg-

ing our approaches for the final question: which approach is the

best?

6.1 Estimation Quality
As shown in Section 5.2, both, the ML approach and HNE ap-

proach show a robust performance without larger errors as seen

with the other approaches. In general, the ML approach surpasses

the HNE approach, but the errors of both are comparably low.

6.2 Varying the Sampling Percentage
One of the main limitations of the ML model is the fixed sample

percentage. The ML model is specifically trained on the 1.5%

sample size.While it is expected that themodel will do reasonably

well with smaller or larger sample percentages, it needs to be

trained for every new scenario. This means that the ML approach

either supports only one fixed sample percentage or that several

models need to be trained and deployed for a number of fixed

percentages.

In contrast, HNE supports a variable sample percentage, since

the percentage is an input to the model. The percentage can be

adjusted for each separate prediction, allowing further optimiza-

tions. One optimization could be upper sampling limits, where

the algorithm never samples more than an absolute number of

keys. For example, while 1.5% could be the default sampling per-

centage, the system might have an absolute upper limit and not

sample more than a certain number of keys for performance

reasons. This is especially useful for runtime critical applications.

Another use case is adaptive sampling, where the model starts

sampling with a small percentage and increases the percentage

if the bounds indicate high prediction uncertainty. Generally,



having upper and lower bounds is also a feature of HNE, which

is not provided by the ML approach.

6.3 Sampling Type
Especially with larger sampling percentages, the sampling type

becomes important. TheML approach does not show a significant

difference between i.i.d. and non i.i.d. sampled data, as long as

the model is trained on the same type of sampling. For the HNE

approach, the sampling type only made a significant difference

for the uniform dataset corpus, but in general the underlying

statistical methods assume i.i.d. sampling, which becomes more

important for larger sample percentages. That means for HNE,

the final application ideally should support i.i.d. sampling, which

might not be possible for every application.

6.4 Maintainability
We have seen in Section 5.2 that models perform differently on

different datasets and further adjustments might be needed for

different applications. For example, both of our approaches need

to be improved if the target datasets are mainly consisting of Zipf

distributed keys.

For the HNE approach, this involves changing and extending

the theoretical principles of the model itself and certainly needs

an expert in the field to do so. On the other side, the ML approach

can be trained with data that is targeted by the application. So it

is possible to specifically generate or observe target data to train

the ML model. The model could even be trained online, where
it predicts the NDV for certain datasets, while at a later stage it

gets the real NDV as feedback. This can be used to automatically

specialize the model without changing any core principles.

6.5 Applicability
Finally, the question arises on how easy can the approaches be

deployed and applied to existing applications.

For the ML approach, specific libraries are needed, which

have to be present in the product. This involves licensing of these

libraries and it prevents themodel from being deployed in specific

sand-boxed environments like SQL-based stored procedures in

a database system. Additionally, the trained model itself has a

significant memory footprint. Our ML model contains hundreds

of underlying decision tree structures and when stored to disk, it

results in about 200MB of compressed model-internal data. This

might make it unusable for environments with limited resources.

On the other side, the HNE approach does not need specific

libraries and mainly consists of a few hundred lines of code. This

is much easier to deploy in limited environments and can be

ported easily to any target programming language.

6.6 Which Approach is the Best? ... It depends!
Judging from the prediction quality and maintainability, the ML

approach should be preferred. However, this is only possible if the

dependency on libraries and fixed sample percentages does not

pose a limitation for the final application. Seeing that the HNE

approach has a similar prediction quality, is easier to integrate

to existing projects, and supports variable sample percentages, it

seems that this approach is more flexible in its application. Espe-

cially the latter point is important since sampling percentages

are usually preferred smaller than 1.5% with the option to sample

more if the prediction is not good enough. In the end, it mainly

depends on the application environment and the usage of the

NDV predictor.

7 CONCLUSION
In this paper, we investigated the problem of distinct value es-

timation based on a dataset sample. We proposed two novel

approaches using different methods, a statistical method and a

Machine Learning based method. Both our approaches outper-

form the competitors, though performing worse for very specific

datasets, which other approaches are specifically optimized for.

Overall, the ML based technique performs best, with up to 3x in

average error reduction for real-world datasets. However, better

prediction quality does not mean that this approach can be ap-

plied directly to existing projects. It rather depends on the project

specifics and it might be better to choose a statistical method for

easier integration. This is the main reason why we explore two

inherently different approaches in this paper.

In future work, we plan to extend the HNE approach into an

adaptive sampling framework, where the algorithm starts with a

small sample size, and the sampling percentage is increased until a

certain exit criteria is reached. This can result in faster processing

because large samples are only taken where required. We also

plan to investigate extending HNE to include information from

multiple samples, like the ML approach. A key problem statistical

estimators face is that the number of singletons in the dataset

are not known. Incorporating the rate at which new keys are

observed with each additional sample could address this problem.

The ML approach can always be extended by more targeted

training data for certain distributions (e.g., Zipf) or additional

features. Additionally, the whole approach could be extended

by incorporating other approaches like HNE or the Shlosser

estimator [44] in the model. Currently the Edge-Case model is

deciding to use a certain feature value or the regression model.

This makes it easily extensible to add more models and let the

edge-casemodel decide, which one to use for a given data sample.
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