
Lightweight On-Stack Replacement in Languages
with Unstructured Loops

Matt D’Souza

mwdsouza@uwaterloo.ca
University of Waterloo

Ontario, Canada

Gilles Duboscq

gilles.m.duboscq@oracle.com
Oracle Labs

Zurich, Switzerland

Abstract
On-stack replacement (OSR) is a popular technique used by

just in time (JIT) compilers. A JIT can use OSR to transfer

from interpreted to compiled code in the middle of execution,

immediately reaping the performance benefits of compila-

tion. This technique typically relies on loop counters, so

it cannot be easily applied to languages with unstructured

control flow. It is possible to reconstruct the high-level loop

structures of an unstructured language using a control flow

analysis, but such an analysis can be complicated, expensive,

and language-specific. In this paper, we present a more light-

weight strategy for OSR in unstructured languages which

relies only on detecting backward jumps. We design a sim-

ple, language-agnostic API around this strategy for language

interpreters. We then discuss our implementation of the API

in the Truffle framework, and the design choices we made to

make it efficient and correct. In our evaluation, we integrate

the API with Truffle’s LLVM bitcode interpreter, and find

the technique is effective at improving start-up performance

without harming warmed-up performance.

CCS Concepts: • Software and its engineering → Just-
in-time compilers; Dynamic compilers; Interpreters; Run-
time environments.

Keywords: on-stack replacement, unstructured loops, Truf-

fle, bytecode interpreter, partial evaluation

ACM Reference Format:
Matt D’Souza and Gilles Duboscq. 2021. Lightweight On-Stack

Replacement in Languages with Unstructured Loops. In Proceed-
ings of the 13th ACM SIGPLAN International Workshop on Vir-
tual Machines and Intermediate Languages (VMIL ’21), October 19,
2021, Chicago, IL, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3486606.3486782

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

VMIL ’21, October 19, 2021, Chicago, IL, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9109-2/21/10. . . $15.00

https://doi.org/10.1145/3486606.3486782

1 Introduction
In systems with a method-based just in time (JIT) compiler,

an application will not reach peak performance until its hot

code paths are compiled. If the application contains long-

running methods, it can take even longer to warm up: the

JIT can compile such methods, but any ongoing activations

cannot simply switch to the optimized code; the method is

doomed to run slowly until it finishes executing.

On-stack replacement (OSR) can alleviate this problem.

OSR is a general technique to transfer between different

versions of a method in the middle of execution. By using

OSR to switch from interpreted to optimized code, a runtime

system can improve the start-up performance for certain

classes of programs. Usually, the runtime system uses loop

counters to trigger OSR, but this is not easy in languages

with unstructured control flow (such as JVM bytecode [17]

or LLVM bitcode [16]), since they do not have explicit loops.

Mosaner et al. [19] address this problem by reconstructing

loops using a control flow analysis.

In this paper, we present a simpler approach to OSR for

unstructured languages written in an interpreter framework.

Our work relies on the insight that backward jumps in un-

structured code generally fulfil the same role as loops in the

implementation of an OSR system. Usually, back-edges are

trivial to detect, which enables a more lightweight strategy

for OSR in unstructured language interpreters (Section 3).

In fact, systems like HotSpot [20] and PyPy [3] already use

backward jumps for OSR. We present a simple API to bring

our strategy to interpreters written in a partially evaluating

language framework (Section 4). We implemented this API in

the Truffle framework [25] and discuss some relevant design

choices which make it perform well on Truffle (Section 5).

In our evaluation, we modified Truffle’s LLVM interpreter to

support our flavour of OSR, and find that the technique is ef-

fective at improving the start-up performance of applications

with long-running loops (Section 6).

Concretely, we make the following contributions:

• a summary of an existing technique for OSR using

backward jumps,

• a simple API for language implementation frameworks

to provide to interpreters,

• an implementation of the API in the Truffle framework,

• an evaluation of the technique’s efficacy on Truffle’s

LLVM interpreter.

https://doi.org/10.1145/3486606.3486782
https://doi.org/10.1145/3486606.3486782
https://doi.org/10.1145/3486606.3486782

VMIL ’21, October 19, 2021, Chicago, IL, USA Matt D’Souza and Gilles Duboscq

2 Background
In this section, we provide background context for our work.

First, we discuss on-stack replacement (OSR) as it is used

for improving warm-up. Then, we briefly introduce unstruc-

tured languages. We then give a short overview of the Truffle

framework used to implement our technique. Finally, we dis-

cuss an existing technique for unstructured OSR on Truffle.

2.1 On-Stack Replacement (OSR)
On-stack replacement is a common technique used in sys-

tems with a JIT to transfer execution between different ver-

sions of code [10, 13]. Though OSR has a wide range of

applications [7, 15], in this paper we are concerned with

using OSR to speed up a program by transferring from in-

terpreted code to compiled code. In the case of transferring

execution from compiled code back to the interpreter, we

will use the term deoptimization.
At a high level, a system which uses OSR to improve

warm-up performance:

1. Detects when a method runs for a long time

2. Schedules the method for compilation

3. Transfers execution to the optimized code (when com-

pilation completes), where it finishes executing the

method

OSR is usually designed around loops. An OSR system can

identify long-runningmethods by counting loop iterations. If

a loop runs for enough iterations, it would likely benefit from

OSR, so the system will schedule the method for compilation.

When compiling amethod, there is the question of selecting a

transfer point: a location in the method where the interpreter

can transfer to the compiled code. Compilation is usually

performed asynchronously, so the transfer point should be a

point the interpreter is likely to reach again after compilation

completes (so that the transfer can actually occur). Since OSR

candidates are already running in long loops, loop headers

are commonly chosen as the transfer point.

A particularly challenging aspect of OSR is transferring

state between versions. The optimized code may use a com-

pletely different frame layout, in which case the interpreter

frame must be transformed to the expected layout [6]. If the

compiled code has the potential to deoptimize (e.g., if the JIT

does speculative compilation), a related challenge is recon-

structing interpreter state from the compiled state [8, 12].

2.2 Unstructured Languages
For the purposes of this paper, an unstructured language is

a language without explicit looping abstractions. Instead of

while or for loops, such a language may use goto state-

ments to perform jumps to arbitrary program locations.

Unstructured control flow is generally seen in bytecode

or assembly languages with a low level of abstraction. An

interpreter for such a language can be implemented as a

dispatch loop, like the one seen in Listing 1. Dispatch loops

1 c l a s s Dispa tchLoop {

2 byte [] i n s t r u c t i o n s ;

3 Ob j e c t e x e cu t e (frame) {

4 i dx = 0 ;

5 while (true) {

6 switch (i n s t r u c t i o n s [i dx]) {

7 case INC :

8 frame . s e t (op1 , frame . g e t (op1) + 1) ;

9 i dx = i dx + 2 ;

10 case JUMP_IF_NOT_ZERO :

11 i f (f rame . g e t (op1) != 0) {

12 i dx = op2 ;

13 } e l se {

14 i dx = idx + 3 ;

15 }

16 . . . / / more o p e r a t o r s
17 }

18 }

19 }

20 }

Listing 1. Dispatch loop pseudocode for a simple bytecode

language with unstructured control flow. The frame contains
program state.

1 c l a s s AddNode extends Node {

2 Node l e f t ;

3 Node r i g h t ;

4 public int exe cu t e (Frame f) {

5 return l e f t . e x e cu t e (f) + r i g h t . e x e cu t e (f)

6 }

7 }

Listing 2. A simple AddNode in Truffle which executes its

two operands and returns their sum.

use an instruction index (idx) to iterate through a sequence

of instructions (instructions) and execute each instruction
sequentially. Special instructions manipulate the instruction

index to implement control flow (like JUMP_IF_NOT_ZERO,
which jumps to the index indicated by the second operand if

the first operand is nonzero).

2.3 The Truffle Framework
Truffle is a framework for building high-performance lan-

guage implementations [25]. A Truffle language implemen-

tation is written in Java, typically as an abstract syntax tree

(AST) interpreter. These interpreters define Nodeswithmeth-

ods defining how to execute them (like in Listing 2). Though

Truffle has historically been designed for ASTs, it also sup-

ports dispatch loop interpreters (such as [14, 22]), wherein

each method is implemented as a monolithic dispatch Node.
In the remainder of this section, we discuss two parts of

Truffle which are relevant to our work.

Lightweight On-Stack Replacement in Languages with Unstructured Loops VMIL ’21, October 19, 2021, Chicago, IL, USA

2.3.1 Partial Evaluation. When running Truffle with the

Graal compiler [25], it uses partial evaluation (PE) to opti-

mize the interpretation of ASTs [11, 24]. In PE, the compiler

aggressively constant-folds interpreter code, treating the

AST being compiled as constant. For example, PE can re-

place a dispatch loop for a bytecode sequence 𝐵𝐶1, . . ., 𝐵𝐶𝑛

with code which sequentially executes 𝐵𝐶1 through 𝐵𝐶𝑛 ,

removing the loop dispatch overhead.

Partial evaluation enables several optimizations, including

escape analysis [5, 23], wherein the compiler detects when

an object does not escape its allocating context. If an object

does not escape, the compiler can avoid heap allocation,

elide synchronization, and use scalar replacement [4, 23] to

replace objects with the scalars they comprise.

Scalar replacement is especially important for optimizing

Truffle Frames, which contain the state of an interpreted pro-
gram. With scalar replacement, the interpreted program’s

local variables (normally accessed through the Frame’s getter
and setter methods) can be treated like regular Java variables

by the compiler. This effectively eliminates the overhead of

Frame accesses, and allows the compiler more flexibility to

optimize [25]. Our implementation includes a state trans-

fer mechanism designed to support scalar replacement of

Frames.
A key aspect of the Truffle framework is to allow lan-

guage implementers to take advantage of deoptimization.

One example is the @CompilationFinal annotation which

can be used to mark fields that PE should consider final

when constant folding. Changing these fields is permitted as

long as the implementer inserts deoptimization directives to

invalidate code compiled using old constants.

2.3.2 Loop-Based OSR. When a Truffle interpreter uses

the built-in LoopNode class to implement loops, it gets OSR

for free. The LoopNode executes a loop body node repeat-

edly until it indicates that the loop should exit. Internally,

the LoopNode tracks the number of loop iterations, and re-

quests compilation once an OSR threshold is exceeded. Once

a compiled version of the LoopNode is available, it will call
it, passing its Frame (the object containing all program state)

along as argument.

LoopNodes can be used when loops are reducible [9] and

the interpreter knows which code is contained in a loop.

This is often the case for structured languages, since they

use explicit loop syntax (e.g., while loops) and do not permit

jumps into the middle of a loop. Unstructured languages

generally cannot use LoopNodes because the loops are not
easy to determine (and control flow may be irreducible).

2.4 Unstructured OSR Using Loop Reconstruction
Performing OSR in an unstructured language is difficult be-

cause there are no explicit loops. Mosaner et al. [19] ad-

dress this problem by reconstructing loops from unstruc-

tured code.

1 # i n pu t s : x and y

2 SET r e s u l t 0

3 ou t e r :

4 SET temp y

5 inne r :

6 INC r e s u l t

7 DEC temp

8 JUMP_IF_NOT_ZERO temp inne r

9 DEC x

10 JUMP_IF_NOT_ZERO x ou t e r

11 RETURN r e s u l t

Listing 3. A pseudocode method to multiply two numbers.

The language does not contain structured loops.

The technique consists of a few steps:

1. First, construct a control flow graph of the program.

2. Next, perform a depth-first traversal over the basic

blocks to detect loops.

3. Then, traverse the basic blocks inside each loop to

determine nesting and successor relations (these are

necessary for technical reasons).

4. During execution, whenever the interpreter dispatches

to an instruction marked as a loop header, collect loop

counts and perform loop-based OSR as usual.
1

This technique is complex, using a control flow analysis

with multiple traversals. The need to detect irreducible con-

trol flow (i.e., multiple entry points to a loop body) further

increases the complexity of the implementation [9, 19]. Since

loop reconstruction must happen before the code runs, this

requires extra start-up time when loading a new application.

In this work, we present a simpler solution which does not

require a control flow analysis.

3 Using Back-Edges for OSR
In this section we discuss the high-level technique. We use

Listing 3 as a running example; this method computes the

product of inputs x and y using repeated addition.

The key idea behind the approach is to use backward

jumps (or back-edges) instead of loops for OSR. Conceptually,
back-edges fulfil a similar role to loops in structured OSR.

This approach is already used by the Java HotSpot virtual

machine [20], and is similar to how PyPy performs meta-

tracing [3]. To our knowledge, we are the first to apply this

technique to a partially-evaluating method-based framework

like Truffle.

3.1 Selecting OSR Targets
First, an OSR system should detect methods which run for a

long time in the interpreter. We count backward jumps for

this purpose. In Listing 3, there are back-edges on lines 8 and

10.When these back-edges are taken, we increment a counter

1
In Truffle, loops are reified as LoopNodes, so OSR is handled transparently.

VMIL ’21, October 19, 2021, Chicago, IL, USA Matt D’Souza and Gilles Duboscq

for the method. If the counter exceeds a pre-defined thresh-

old, the method is “hot” and we select it for OSR compilation.

Dispatch loop interpreters (see Section 2.2) can easily detect

back-edges by comparing the current and next instruction

indices, so this technique can often be implemented with

little effort.
2

For the purposes of triggering OSR, all backward jumps

in a method use the same counter. Intuitively, the counter

is important for detecting a method’s hotness, but detecting

the hotness of individual loops is not as important. A single

counter is also simpler to implement and introduces less

overhead for the interpreter than a per-target counter.

3.2 Compiling OSR Targets
When compiling a method for OSR, the system should select

a point (or points) in the code where it can transfer control

to the OSR target. The location should be somewhere the

interpreter is likely to hit again, so that it can perform the

transfer. We use the targets of back-edges for this purpose.

The runtime system optimizes and compiles the method

starting at the given code location.

For example, in Listing 3, if a jump on line 8 triggers

OSR compilation, we will compile an OSR target starting

from inner. Once compilation succeeds, the next time the

interpreter jumps back to inner it can transfer execution to

the compiled code.

In some situations, using just a single transfer point is

insufficient. Consider if we instead compile an OSR target

starting from outer: the interpreter will not be able to trans-
fer execution until outer is hit again, even if the inner loop

runs for a long time. To account for cases like this, we permit

multiple transfer points. Once the back-edge threshold is

exceeded, we request compilation for each unique back-edge

target we encounter (as is done in [20]). Thus, in Listing 3,

we would only be “stuck” in the inner loop until the OSR

system can compile an OSR target starting from inner.
A performance concern with OSR is the additional pres-

sure it puts on the compilation system. Compiling a target for

each back-edge is, inevitably, a wasted effort since only one

target will ever actually be used. Also, since unstructured

languages do not require back-edges to correspond to loops,

we could waste effort compiling OSR targets for locations the

interpreter is unlikely to hit again. We can avoid this issue

by maintaining separate counters for each target. However,

since the languages we evaluated do not contain such back-

edges, our implementation uses a single counter. One way

our implementation minimizes wasted compilations is with

polling: once the threshold is reached, instead of potentially

requesting compilation at every back-edge, we only request

compilation periodically. This reduces the likelihood that

compilation would be requested for an infrequent back-edge.

2
This approach assumes that there exists a total ordering for instructions

(e.g., by bytecode index or line number).

1 in te r face UnstructuredOSRNode {

2 Ob j e c t executeOSR (osrFrame , t a r g e t ,

i n t e r p r e t e r S t a t e) ;

3 void s e tMe t ada t a (metada ta) ;

4 Metadata ge tMe tada t a () ;

5 }

6 boolean pol lOSR () { . . . }

7 Ob j e c t tryOSR (parentFrame , t a r g e t ,

i n t e r p r e t e r S t a t e , beforeOSR) { . . . }

Listing 4. Our API for unstructured OSR.

3.3 Transferring Control to an OSR Target
Finally, once a compiled OSR target is available, we can

transfer execution to it. Since the interpreter already detects

back-edges, and the OSR targets start from back-edge targets,

it is convenient to transfer control when taking a back-edge.

For example, in Listing 3, suppose we compile an OSR

target starting from inner. When we detect a back-edge to

inner, we can check if an OSR target exists; if it does, we

can transfer control to the OSR target. All of the current

method’s state (i.e., x, y, result, and temp) should be copied
over during this step. We cannot simply reuse the interpreter

activation, because the generic interpreter and dedicated

OSR target usually represent the method’s state differently.

While it is logically the same representation, in the OSR

target, the partial evaluator has specialized it to the specific

method and entry-point.

4 An API for Language Interpreters
In this section, we provide an overview of the high-level

API we designed to be used in interpreters for unstructured

languages, and provide an example integration. We also com-

ment on how this API interacts with a system which uses

partial evaluation.

4.1 The API
The API consists of the UnstructuredOSRNode interface and
the helper functions in Listing 4. A dispatch loop node must

do a few things to integrate with this API.

First, it must implement the UnstructuredOSRNode inter-
face. The executeOSR method should define how to resume

execution of the node, typically by running the dispatch loop

starting from target. The OSR system will call this method

when it performs OSR. Since the target is a compile-time

constant, the partial evaluator can convert executeOSR into

code executing a sequence of instructions starting from in-

dex target. The setMetadata and getMetadata methods

should simply proxy accesses to a field defined by the node.

The OSR system needs a place to store metadata related to

Lightweight On-Stack Replacement in Languages with Unstructured Loops VMIL ’21, October 19, 2021, Chicago, IL, USA

each dispatch node (e.g., a back-edge counter, a map of OSR

targets), so this is a natural place to store it.
3

Second, the node should detect back-edges during dis-

patch and notify the OSR system using the pollOSR helper.
This method returns true once the method is hot enough

to warrant OSR compilation. If it returns true, the inter-

preter should call tryOSR. This helper transparently han-

dles the entire OSR process for the user. It counts back-

edges, requests compilation, and transfers to compiled OSR

code (which calls executeOSR). If OSR succeeds, it returns

a non-null value.4 The main parameters to tryOSR are the
current execution state (parentFrame) and the destination

of the back-edge (target). There are two optional param-

eters: interpreterState can contain internal interpreter

state which gets passed to executeOSR (e.g., data pointers);
beforeOSR is a callback which can be invoked before calling

OSR code (e.g., to notify instrumentation hooks).

4.2 Example Integration
To illustrate the simplicity of integration, we modify the

interpreter from Listing 1 to use our API. Listing 5 contains

the changes necessary to support OSR.

First, we modify the DispatchLoop class to implement the

UnstructuredOSRNode interface. For code reuse, we extract
the dispatch loop into a helper (lines 10–27) which can be

called by both executeOSR and the existing executemethod

(lines 5 and 8). We also add a metadata field (line 3) and

proxy accesses to it through getMetadata and setMetadata
(omitted for brevity).

Then, we modify the dispatch loop to detect backward

jumps and call pollOSR (line 16). If the call returns true, we
try to perform OSR (line 17). If the result is non-null, then
OSR occurred, and we can return early with the result (lines

18–20). If the PE framework supports compiler directives to

test the current execution context (e.g., IN_INTERPRETER),
they can be used to ensure back-edge detection only runs in

the interpreter. Since IN_INTERPRETER is false in compiled

code, partial evaluation can constant-fold the condition on

line 16 to false, and hence lines 16–21 completely disappear

in the compiled code.

5 Truffle Implementation
The desire for a simple OSR interface is sometimes in conflict

with the complex performance and correctness constraints

of a system like Truffle. In this section, we discuss some of

the design challenges and tradeoffs of our Truffle implemen-

tation.

3
In a language like Java, interfaces cannot declare fields, so the accessors

define a “logical” field the implementing class must provide storage for.

4
In the Truffle framework, null is never a valid value; we could alternatively
define a marker object to indicate “no result”.

1 c l a s s Dispa tchLoop implements
UnstructuredOSRNode {

2 byte [] i n s t r u c t i o n s ;

3 Metadata metadata ;

4 Ob j e c t e x e cu t e (frame) {

5 return execu teF romIdx (frame , 0) ;

6 }

7 Ob j e c t executeOSR (osrFrame , t a r g e t , . . .) {

8 return execu teF romIdx (osrFrame , t a r g e t) ;

9 }

10 Ob j e c t execu teFromIdx (frame , i dx) {

11 while (true) {

12 switch (i n s t r u c t i o n s [i dx]) {

13 . . .

14 case JUMP_IF_NOT_ZERO :

15 i f (f rame . g e t (op1) != 0) {

16 i f (op2 < idx && IN_INTERPRETER &&

pol lOSR ()) {

17 r e s u l t = tryOSR (frame , op2 , . . .) ;

18 i f (r e s u l t != null) {

19 return r e s u l t ;

20 }

21 }

22 i dx = op2 ;

23 } e l se { . . . }

24 . . .

25 }

26 }

27 }

28 }

Listing 5.Modification of Listing 1 to support OSR.

5.1 Managing Metadata
The metadata for our implementation consists of a back-edge

counter, a map of OSR targets (indexed by starting index),

and info about the frame layout (for copying).

The vast majority of methods do not require OSR, so it

is wasteful to allocate all of these objects for each method.

Accordingly, our solution lazily initializes metadata. First, we

partially initialize the metadata object with a counter when

a back-edge is reported. Then, in the rare case that OSR is

requested, we fully initialize the OSR targets map and frame

layout metadata. Lazy initialization can be perilous in the

presence of multiple threads [21], so we take extra care to

ensure that fields are safely initialized with respect to Java’s

memory model [18].

5.2 Implementing pollOSR and tryOSR

In this section we discuss the design of our helper functions;

we provide pseudocode for the method in Listing 6.

The pollOSR method first reads the method’s OSR meta-

data and increments its counter (lines 2–3). It then inspects

the result, returning false if the OSR threshold has not been

reached (line 4). If the OSR threshold is reached, pollOSR

VMIL ’21, October 19, 2021, Chicago, IL, USA Matt D’Souza and Gilles Duboscq

1 boolean pol lOSR () {

2 metadata = g e t O r I n i t i a l i z eM e t a d a t a ()

3 count = ++metadata . count ;

4 return (count >= THRESHOLD) &&

5 (count % POLLING_INTERVAL == 0) ;

6 }

7

8 Ob j e c t tryOSR (parentFrame , t a r g e t ,

i n t e r p r e t e r S t a t e , beforeOSR) {

9 o s rT a r g e t = ge tMe tada t a () . g e tComp i l eTa rge t (

t a r g e t , i n t e r p r e t e r S t a t e) ;

10 i f (o s rT a r g e t . i sComp i l i ng ()) return null ;
11 beforeOSR (t a r g e t) ;

12 return o s rTa r g e t . c a l l (parentFrame) ;

13 }

Listing 6. Pseudocode for pollOSR and tryOSR.

returns true every POLLING_INTERVAL back-edges (line 5)
5
.

Since compilation will take much longer than a single loop

iteration, it would not be helpful to try OSR on every single

back-edge; we poll to avoid unnecessary work.

In tryOSR, we request compilation for the given target
or retrieve the call target if it already exists (line 9). If the

OSR target is still being compiled, we return null (line 10);
otherwise, we call the beforeOSR callback and then jump to

OSR code (lines 11–12). While many OSR implementations

use a tail call—replacing the interpreter activation with a

compiled OSR activation—Truffle does not have such low-

level control over the stack, so we push the OSR activation

on top of the interpreter activation.

A key goal in this design is tominimize the amount of work

done in the common case. An interpreter will call pollOSR
on every back-edge, but only rarely call tryOSR, because few
methods actually need OSR. Thus, we performminimal work

inside pollOSR, avoiding locking, allocation, and volatile

fields
6
. In the rare case that tryOSR is called, we take a slower

path: we use locking, allocate the interpreterState object
and beforeOSR callback, and use a thread-safe map so that

other threads may reuse the OSR compilation. We tolerate

the extra allocation and synchronization overhead since this

path occurs infrequently.

5.3 Transferring State
Transferring state is challenging in many OSR systems, since

the two code versions may use different frame layouts; the

need to reconstruct state after deoptimization further com-

plicates things. By calling the OSR target through Truffle’s

existing call mechanisms, all of these complications are han-

dled by the framework. We benefit greatly from Truffle here;

in another system, this process could be much more complex.

5
Our THRESHOLD is a multiple of our POLLING_INTERVAL (1024), so pollOSR
returns true when it first hits THRESHOLD.
6
This sacrifices counter consistency, but the tradeoff is acceptable to keep a

fast common path.

1 osrFrame = parentFrame

2 . . .

3 while (osrFrame . g e t (" n ") > 0) {

4 osrFrame . s e t (" r e s u l t " ,

5 osrFrame . g e t (" r e s u l t ") ∗ osrFrame . g e t (" n ")

6) ;

7 osrFrame . s e t (" n " , osrFrame . g e t (" n ") − 1) ;

8 }

9 return osrFrame . g e t (" r e s u l t ") ;

Listing 7. Pseudocode for OSR with parent frame reuse.

1 n = parentFrame . g e t (" n ")

2 r e s u l t = parentFrame . g e t (" r e s u l t ")

3 . . .

4 while (n > 0) {

5 r e s u l t = r e s u l t ∗ n ;

6 n = n − 1 ;

7 }

8 return r e s u l t ;

Listing 8. Pseudocode for OSR with parent frame copying.

However, the naïve approach of passing the parent Frame
object to the OSR code is not ideal. Recall that the compiler

uses scalar replacement to replace a Frame object with the

set of variables it comprises (see Section 2.3.1). This transfor-

mation is only safe when the Frame is allocated inside the

compiled method and does not become reachable outside

of it. If we simply pass the interpreter Frame to the OSR

code, the Frame escapes the OSR code and is not eligible for

scalar replacement. As a result, variable accesses get proxied

through the Frame object, which is slower and less amenable

to optimization (e.g., Listing 7). Instead, when possible, we

copy each variable from the parent Frame into a new OSR

Frame. Since this new Frame does not escape, the compiler

can successfully perform scalar replacement, removing all

Frame indirection entirely (e.g., Listing 8).

We add two hooks to the interface in Listing 4. The first

hook, copyIntoOSRFrame, copies state into the OSR Frame.
By default, it copies over each variable, but it may be over-

ridden for finer control over the copy. For example, some

implementations may wish to null out references in the

parent Frame so the garbage collector can reclaim objects

earlier. The second hook, restoreParentFrame, can be used
to restore state back into the parent Frame. By default, it does
nothing, since most languages likely do not need the Frame
after returning from OSR.

Copying introspects the Frame layout, but the layout can

change dynamically (e.g., if a new variable is introduced).

We use @CompilationFinal directives to tell the compiler

to treat the layout as a constant (and insert deoptimization

points in case it changes). We provide this copying code in a

helper to simplify integration.

Lightweight On-Stack Replacement in Languages with Unstructured Loops VMIL ’21, October 19, 2021, Chicago, IL, USA

5.4 Handling Frame Introspection
Because we copy the parent Frame contents into the OSR

Frame, once OSR begins executing, the two can get out of

sync. We must be careful when this happens, since Truffle

provides mechanisms to introspect Frames.
Truffle allows Frames to be materialized, which lets in-

terpreters pass and store them like regular objects. Because

of materialization, it is possible that when we perform OSR,

some code (e.g., a debugger) has a reference to the parent

Frame. If it inspects this Frame during OSR, the variables

may be stale and not reflect the actual state of the program.

To remedy this, we do not copy the parent Frame if it has

materialized. Instead, we reuse it.

Additionally, Truffle provides a stackwalking utility which

returns a stack trace containing the Frame for each ongoing

method. Since our OSR implementation pushes a new OSR

activation onto the stack (instead of replacing the interpreter

activation), we modify stack walking to return the newer

OSR Frame and ignore the parent Frame.

5.5 Compilation & Invalidation
Since Truffle compilation is speculative, compiled code can

be invalidated when an assumption turns out to be incorrect,

or when an unexpected code path is hit. Our implementation

must take this dynamic nature of compilation into account.

Truffle can dynamically modify an AST during execution,

for instance, to add instrumentation or to type-specialize

an operation. If an AST changes, any compiled code which

includes that AST must be invalidated. Our implementation

registers callbacks to detect changes in OSR nodes so that

we can invalidate any compiled OSR targets.

It is also common to lazily initialize the fields of an AST.

Since modifying a field can trigger invalidation (e.g., if it

is marked @CompilationFinal), we encountered scenarios

where compiled OSR code would try to initialize a field and

immediately invalidate itself, deoptimizing back to the in-

terpreter. We add another hook to Listing 4, prepareOSR,
which the OSR system calls before compilation. This hook

allows language implementations to eagerly initialize any

fields and avoid unnecessary invalidation inside OSR code.

6 Evaluation
In this section, we evaluate the efficacy of our technique.

Our primary concern is whether it improves start-up perfor-

mance for programs with long-running methods, but we also

assess its impact on warmed-up (steady state) performance.

We also briefly discuss our experience using the API.

6.1 Setup
We evaluate our technique using Sulong, Truffle’s LLVM

bitcode interpreter [22]. We compare our OSR strategy with

the loop reconstruction technique from [19].

We reuse benchmarks from [19]: several microbenchmarks

from the Computer Language Benchmarks Game7 (mandel-

brot, nbody, fannkuchredux, revcomp, binarytrees, and pidig-

its) as well as the gzip
8
and whetstone

9
benchmarks. We

include benchmarks which enjoyed a performance improve-

ment from loop reconstruction, but also a couple of bench-

marks which did not; it is desirable for our technique to have

minimal performance impact on these benchmarks.

For each benchmark, we perform 10 runs in each of the

following configurations:

• Back-Edge: OSR using back-edges (our technique)

• Loop: OSR using loop reconstruction (from [19])

• None: No OSR

Each run executes the benchmark for at least 50 consecutive

iterations to give the system time to warm up.

We perform all benchmarks on a system with an Intel

Core i7-10700 processor with 16 virtual cores at 2.90GHz. It

has 32GB of memory and runs Ubuntu 20.04. We run Sulong

on GraalVM Enterprise Edition 21.2.0 in a native image.

6.2 Start-up Performance
To evaluate the start-up performance of our technique, we

consider the execution time of the first 10 iterations of each

benchmark. In Figure 1 we plot the warm-up curves for each

of the benchmarks which saw a performance improvement

from OSR in [19]. We omit the other benchmarks, since they

do not exhibit interesting start-up behaviour. We also omit

None from the whetstone plot to keep the scale readable; its

first two iterations take 99 seconds on average, and its later

iterations converge to roughly the same times as Back-Edge

and Loop.

We find that our technique is at least as effective as loop re-

construction for improving start-up times. The first iteration

of each benchmark using Back-Edge is anywhere from 3×
(fannkuchredux) to 35× (whetstone) faster than None due

to OSR. Later iterations for either OSR technique improve

marginally as regular whole-method compilation kicks in.

Occasionally, due to issues with deoptimization, the OSR

techniques briefly slow down (e.g., iteration 3 of nbody) be-

fore re-optimizing.

In 4 of the 8 benchmarks, the early iterations of Back-

Edge are slightly faster than Loop. For example, the first

iteration of whetstone takes almost 50%more time with Loop

than Back-Edge (4.3s versus 2.9s). There are many confound-

ing factors in Truffle compilations which make it difficult to

confidently state a root cause. We suspect that Back-Edge

benefits from not having to perform a control flow analy-

sis at start-up. Another possible reason is that Back-Edge

can compile beyond the end of a loop—even through other

loops—whereas Loop may need to compile multiple loops

7
https://benchmarksgame-team.pages.debian.net/benchmarksgame

8
http://people.csail.mit.edu/smcc/projects/single-file-programs/

9
http://www.netlib.org/benchmark/whetstone.c

VMIL ’21, October 19, 2021, Chicago, IL, USA Matt D’Souza and Gilles Duboscq

Figure 1.Warm-up curves for benchmarks where OSR affects start-up performance. We plot the mean (of 10 iterations) and

depict the standard deviation using error bars. The binarytrees and pigidits benchmarks do not trigger OSR, so we omit their

curves.

separately. In the gzip benchmark, Loop outperforms Back-

Edge. We see Back-Edge spends twice as long compiling

OSR targets, which may explain the discrepancy.

6.3 Warmed-up Performance
Though OSR is a technique to help warm-up time, it should

not negatively affect performance after warm-up, either. To

assess the impact of our technique on warmed-up perfor-

mance, we compare warmed-up times across configurations.

We measure warmed-up time as the mean execution time

over the last 10 iterations. To ensure the program is warmed

up, we manually check the warm-up curves and verify that

execution time does not change significantly across these

iterations.

We present mean warmed-up times in Table 1. Across

all benchmarks, including ones which do not benefit from

OSR, Back-Edge has comparable (and sometimes better)

warmed-up performance compared to None. We suspect

this is because PE can completely eliminate back-edge de-

tection code from compiled code (as discussed in Section

4), resulting in code which looks practically the same as

None. In contrast, Loop sometimes lowers the warmed-up

performance relative to None (the difference is significant

in 3 of 8 benchmarks). As mentioned in [19], this is likely

because Loop changes the Truffle AST structure, which can

cause compiler optimizations to behave differently. Our solu-

tion can thus be seen as a less intrusive OSR technique with

respect to warmed-up performance.

Lightweight On-Stack Replacement in Languages with Unstructured Loops VMIL ’21, October 19, 2021, Chicago, IL, USA

Table 1.Warmed-up performance. For each configuration, we present the mean warmed-up time (with standard deviation)

and the warmed-up time relative to None (lower is better).

None Loop Back-Edge

mean (s) SD rel mean (s) SD rel mean (s) SD rel

mandelbrot 0.047 0.001 - 0.060 0.001 1.268 0.047 0.000 0.999

nbody 0.510 0.002 - 0.509 0.002 0.999 0.510 0.002 1.000

fannkuchredux 1.391 0.002 - 1.423 0.001 1.023 1.391 0.002 1.000

gzip 0.701 0.009 - 0.713 0.015 1.018 0.698 0.014 0.996

revcomp 1.690 0.013 - 1.683 0.007 0.996 1.688 0.011 0.999

whetstone 2.485 0.012 - 2.494 0.014 1.003 2.486 0.012 1.000

binarytrees 1.965 0.038 - 1.971 0.080 1.003 1.950 0.030 0.992

pidigits 1.378 0.019 - 1.382 0.032 1.004 1.378 0.015 1.001

6.4 Usability
From our experience, our Truffle API does not require much

effort to integrate, and hides much of the complexity that

OSR entails. Our integration with Sulong [22] is less than

60 lines of code, whereas the existing loop reconstruction

OSR of [19] is over 300 lines. The author who wrote the

integration had no prior experience with the Sulong system,

but found it straightforward to integrate with the Back-Edge

API. We also implemented our technique for Java-on-Truffle

[14], which does not have an existing OSR mechanism. The

integration is less than 150 lines and enjoys comparable

performance benefits.

7 Related Work
Our work is closely related to a few different lines of research.

We briefly discuss them here.

OSR was popularized by the SELF VM [13], where it was

used to debug optimized code using deoptimization [12].

OSR is also commonly used in Java virtual machines (JVMs).

The HotSpot VM [20] uses back-edges in JVM bytecode to

perform OSR. Our work uses HotSpot’s technique, pack-

aging it in an API for language implementers. Jikes RVM

(another JVM) also implements OSR [10]; the authors cite

the engineering complexity of OSR as a reason it is not more

widely used. Later works attempt to tame this complexity

through formalization [15] or by providing OSR in language-

independent frameworks [6, 15]. Truffle [25] falls into the

latter category, giving structured languages OSR for free

through its LoopNode interface. Truffle’s LLVM interpreter

supports unstructured OSR by reconstructing loops [19]; our

technique adds a more general, lightweight API for unstruc-

tured languages.

Tracing JITs such as Dynamo [1] are also designed around

improving the performance of loops. When they detect a

hot loop, they collect a trace from one iteration and use the

trace to compile an optimized version of the loop. RPython,

another language implementation framework, supports a

modified form of tracing called meta-tracing which traces

bytecode dispatch loops [3]. Much like our technique, they

use back-edges to detect, compile, and optimize hot loops

in the interpreted language. They perform constant folding

over the instruction stream and index, which can be seen

as a limited form of the partial evaluation used in our tech-

nique. Pycket is an interesting application of the RPython

framework to functional languages [2]. Since looping in func-

tional languages is commonly implemented using function

calls (i.e., recursion), detecting loops for functional languages

requires a different strategy altogether.

8 Conclusion
On-stack replacement can be an effective way to improve

start-up speeds, but its myriad technical challenges are a

barrier to its adoption. For unstructured languages, the lack

of explicit loops is one such challenge. In this paper, we

presented a technique for OSR which uses backward jumps.

We argue that back-edges fit the design goals of an OSR

system just as well as loops do, and design a simple API

around the technique. We implement the API in the Truffle

framework, and discuss some of the design challenges we

faced. In our evaluation, we compare our technique with a

loop reconstruction approach to OSR, and find the technique

is as good (if not better) at improving start-up performance

without harming warmed-up performance.

There are many aspects of our design which could be ex-

plored further. For example, though our metadata storage

scheme attempts to minimize memory usage, it still incurs

a small overhead for each dispatch node. We would like to

evaluate the extent of this overhead, and potentially explore

other storage strategies. Additionally, we would like to ex-

periment with different compilation settings. Our evaluation

uses second-tier compilation, but it would be interesting to

evaluate other schemes (e.g., multi-tier). Graal’s compila-

tion queue currently does not treat OSR compilations any

differently; we suspect that we can further improve start-

up performance by using a scheme which prioritizes OSR

compilations. We leave these topics for future work.

VMIL ’21, October 19, 2021, Chicago, IL, USA Matt D’Souza and Gilles Duboscq

Acknowledgments
This research was supported by the GraalVM team at Oracle

Labs. We would like to especially thank Christian Humer

and Roland Schatz for their invaluable feedback throughout

the design and development of this project.

References
[1] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dy-

namo: A transparent dynamic optimization system. In Proceedings of
the ACM SIGPLAN 2000 Conference on Programming Language Design
and Implementation. 1–12. https://doi.org/10.1145/349299.349303

[2] Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kir-

ilichev, Tobias Pape, Jeremy G Siek, and Sam Tobin-Hochstadt. 2015.

Pycket: a tracing JIT for a functional language. In Proceedings of the
20th ACM SIGPLAN International Conference on Functional Program-
ming. 22–34. https://doi.org/10.1145/2784731.2784740

[3] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin

Rigo. 2009. Tracing the meta-level: PyPy’s tracing JIT compiler. In

Proceedings of the 4th workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems.
18–25. https://doi.org/10.1145/1565824.1565827

[4] Steve Carr and Ken Kennedy. 1994. Scalar replacement in the presence

of conditional control flow. Software: Practice and Experience 24, 1
(1994), 51–77. https://doi.org/10.1002/spe.4380240104

[5] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C Sreed-

har, and Sam Midkiff. 1999. Escape Analysis for Java. ACM SIGPLAN
Notices 34, 10 (1999), 1–19. https://doi.org/10.1145/320385.320386

[6] Daniele Cono D’Elia and Camil Demetrescu. 2016. Flexible on-

stack replacement in LLVM. In Proceedings of the 2016 International
Symposium on Code Generation and Optimization. 250–260. https:
//doi.org/10.1145/2854038.2854061

[7] Daniele Cono D’Elia and Camil Demetrescu. 2018. On-stack re-

placement, distilled. In Proceedings of the 39th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. 166–180.
https://doi.org/10.1145/3192366.3192396

[8] Gilles Duboscq, ThomasWürthinger, andHanspeterMössenböck. 2014.

Speculation without regret: reducing deoptimization meta-data in the

Graal compiler. In Proceedings of the 2014 International Conference on
Principles and Practices of Programming on the Java platform: Virtual
machines, Languages, and Tools. 187–193. https://doi.org/10.1145/
2647508.2647521

[9] Ana M Erosa and Laurie J Hendren. 1994. Taming control flow: A

structured approach to eliminating goto statements. In Proceedings of
1994 IEEE International Conference on Computer Languages (ICCL’94).
IEEE, 229–240. https://doi.org/10.1109/ICCL.1994.288377

[10] Stephen J Fink and Feng Qian. 2003. Design, implementation and

evaluation of adaptive recompilation with on-stack replacement. In

International Symposium on Code Generation and Optimization, 2003.
CGO 2003. IEEE, 241–252. https://doi.org/10.1109/CGO.2003.1191549

[11] Yoshihiko Futamura. 1999. Partial Evaluation of Computation Process–

An Approach to a Compiler-Compiler. Higher-Order and Sym-
bolic Computation 12, 4 (1999), 381–391. https://doi.org/10.1023/A:
1010095604496

[12] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging

optimized code with dynamic deoptimization. In Proceedings of the
ACM SIGPLAN 1992 conference on Programming language design and
implementation. 32–43. https://doi.org/10.1145/143103.143114

[13] Urs Hölzle and David Ungar. 1994. A third-generation Self implemen-

tation: Reconciling responsiveness with performance. In Proceedings
of the ninth annual conference on Object-oriented programming systems,
language, and applications. 229–243. https://doi.org/10.1145/191080.
191116

[14] Oracle Labs. 2021. Java on Truffle: Introducing a New Way to Run Java.
Retrieved July 31, 2021 from https://www.graalvm.org/java-on-truffle/

[15] Nurudeen A Lameed and Laurie J Hendren. 2013. A modular approach

to on-stack replacement in LLVM. ACM SIGPLAN Notices 48, 7 (2013),
143–154. https://doi.org/10.1145/2451512.2451541

[16] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong ProgramAnalysis & Transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004. IEEE,
75–86. https://doi.org/10.5555/977395.977673

[17] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2014. The
Java Virtual Machine Specification. Pearson Education.

[18] Jeremy Manson, William Pugh, and Sarita V Adve. 2005. The Java

Memory Model. ACM SIGPLAN Notices 40, 1 (2005), 378–391. https:
//doi.org/10.1145/1047659.1040336

[19] Raphael Mosaner, David Leopoldseder, Manuel Rigger, Roland Schatz,

and Hanspeter Mössenböck. 2019. Supporting On-Stack Replacement

in Unstructured Languages by Loop Reconstruction and Extraction.

In Proceedings of the 16th ACM SIGPLAN International Conference
on Managed Programming Languages and Runtimes. 1–13. https:
//doi.org/10.1145/3357390.3361030

[20] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java

HotSpot™ Server Compiler. In Proceedings of the Java Virtual Machine
Research and Technology Symposium, Vol. 1. 1–12.

[21] Bill Pugh et al. 2008. The "Double-Checked Locking is Broken" Decla-
ration. Retrieved July 27, 2021 from https://www.cs.umd.edu/~pugh/
java/memoryModel/DoubleCheckedLocking.html

[22] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas

Würthinger, and Hanspeter Mössenböck. 2016. Bringing low-level

languages to the JVM: Efficient execution of LLVM IR on Truffle. In

Proceedings of the 8th International Workshop on Virtual Machines and
Intermediate Languages. 6–15. https://doi.org/10.1145/2998415.2998416

[23] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014.

Partial Escape Analysis and Scalar Replacement for Java. In Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and
Optimization. 165–174. https://doi.org/10.1145/2544137.2544157

[24] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas

Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,

and Matthias Grimmer. 2017. Practical partial evaluation for high-

performance dynamic language runtimes. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. 662–676. https://doi.org/10.1145/3062341.3062381

[25] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,

Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and

Mario Wolczko. 2013. One VM to rule them all. In Proceedings of the
2013 ACM international symposium on New ideas, new paradigms, and
reflections on programming & software. 187–204. https://doi.org/10.
1145/2509578.2509581

https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/2784731.2784740
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1002/spe.4380240104
https://doi.org/10.1145/320385.320386
https://doi.org/10.1145/2854038.2854061
https://doi.org/10.1145/2854038.2854061
https://doi.org/10.1145/3192366.3192396
https://doi.org/10.1145/2647508.2647521
https://doi.org/10.1145/2647508.2647521
https://doi.org/10.1109/ICCL.1994.288377
https://doi.org/10.1109/CGO.2003.1191549
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1145/143103.143114
https://doi.org/10.1145/191080.191116
https://doi.org/10.1145/191080.191116
https://www.graalvm.org/java-on-truffle/
https://doi.org/10.1145/2451512.2451541
https://doi.org/10.5555/977395.977673
https://doi.org/10.1145/1047659.1040336
https://doi.org/10.1145/1047659.1040336
https://doi.org/10.1145/3357390.3361030
https://doi.org/10.1145/3357390.3361030
https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Background
	2.1 On-Stack Replacement (OSR)
	2.2 Unstructured Languages
	2.3 The Truffle Framework
	2.4 Unstructured OSR Using Loop Reconstruction

	3 Using Back-Edges for OSR
	3.1 Selecting OSR Targets
	3.2 Compiling OSR Targets
	3.3 Transferring Control to an OSR Target

	4 An API for Language Interpreters
	4.1 The API
	4.2 Example Integration

	5 Truffle Implementation
	5.1 Managing Metadata
	5.2 Implementing pollOSR and tryOSR
	5.3 Transferring State
	5.4 Handling Frame Introspection
	5.5 Compilation & Invalidation

	6 Evaluation
	6.1 Setup
	6.2 Start-up Performance
	6.3 Warmed-up Performance
	6.4 Usability

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

