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Abstract

On-stack replacement (OSR) is a popular technique used by
just in time (JIT) compilers. A JIT can use OSR to transfer
from interpreted to compiled code in the middle of execution,
immediately reaping the performance benefits of compila-
tion. This technique typically relies on loop counters, so
it cannot be easily applied to languages with unstructured
control flow. It is possible to reconstruct the high-level loop
structures of an unstructured language using a control flow
analysis, but such an analysis can be complicated, expensive,
and language-specific. In this paper, we present a more light-
weight strategy for OSR in unstructured languages which
relies only on detecting backward jumps. We design a sim-
ple, language-agnostic API around this strategy for language
interpreters. We then discuss our implementation of the API
in the Truffle framework, and the design choices we made to
make it efficient and correct. In our evaluation, we integrate
the API with Truffle’s LLVM bitcode interpreter, and find
the technique is effective at improving start-up performance
without harming warmed-up performance.

CCS Concepts: « Software and its engineering — Just-
in-time compilers; Dynamic compilers; Interpreters; Run-
time environments.
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1 Introduction

In systems with a method-based just in time (JIT) compiler,
an application will not reach peak performance until its hot
code paths are compiled. If the application contains long-
running methods, it can take even longer to warm up: the
JIT can compile such methods, but any ongoing activations
cannot simply switch to the optimized code; the method is
doomed to run slowly until it finishes executing.

On-stack replacement (OSR) can alleviate this problem.
OSR is a general technique to transfer between different
versions of a method in the middle of execution. By using
OSR to switch from interpreted to optimized code, a runtime
system can improve the start-up performance for certain
classes of programs. Usually, the runtime system uses loop
counters to trigger OSR, but this is not easy in languages
with unstructured control flow (such as JVM bytecode [17]
or LLVM bitcode [16]), since they do not have explicit loops.
Mosaner et al. [19] address this problem by reconstructing
loops using a control flow analysis.

In this paper, we present a simpler approach to OSR for
unstructured languages written in an interpreter framework.
Our work relies on the insight that backward jumps in un-
structured code generally fulfil the same role as loops in the
implementation of an OSR system. Usually, back-edges are
trivial to detect, which enables a more lightweight strategy
for OSR in unstructured language interpreters (Section 3).
In fact, systems like HotSpot [20] and PyPy [3] already use
backward jumps for OSR. We present a simple API to bring
our strategy to interpreters written in a partially evaluating
language framework (Section 4). We implemented this API in
the Truffle framework [25] and discuss some relevant design
choices which make it perform well on Truffle (Section 5).
In our evaluation, we modified Truffle’s LLVM interpreter to
support our flavour of OSR, and find that the technique is ef-
fective at improving the start-up performance of applications
with long-running loops (Section 6).

Concretely, we make the following contributions:

e a summary of an existing technique for OSR using
backward jumps,

o asimple API for language implementation frameworks
to provide to interpreters,

e an implementation of the APIin the Truffle framework,

e an evaluation of the technique’s efficacy on Truffle’s
LLVM interpreter.
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2 Background

In this section, we provide background context for our work.
First, we discuss on-stack replacement (OSR) as it is used
for improving warm-up. Then, we briefly introduce unstruc-
tured languages. We then give a short overview of the Truffle
framework used to implement our technique. Finally, we dis-
cuss an existing technique for unstructured OSR on Truffle.

2.1 On-Stack Replacement (OSR)

On-stack replacement is a common technique used in sys-
tems with a JIT to transfer execution between different ver-
sions of code [10, 13]. Though OSR has a wide range of
applications [7, 15], in this paper we are concerned with
using OSR to speed up a program by transferring from in-
terpreted code to compiled code. In the case of transferring
execution from compiled code back to the interpreter, we
will use the term deoptimization.

At a high level, a system which uses OSR to improve
warm-up performance:

1. Detects when a method runs for a long time

2. Schedules the method for compilation

3. Transfers execution to the optimized code (when com-
pilation completes), where it finishes executing the
method

OSR is usually designed around loops. An OSR system can
identify long-running methods by counting loop iterations. If
aloop runs for enough iterations, it would likely benefit from
OBSR, so the system will schedule the method for compilation.
When compiling a method, there is the question of selecting a
transfer point: a location in the method where the interpreter
can transfer to the compiled code. Compilation is usually
performed asynchronously, so the transfer point should be a
point the interpreter is likely to reach again after compilation
completes (so that the transfer can actually occur). Since OSR
candidates are already running in long loops, loop headers
are commonly chosen as the transfer point.

A particularly challenging aspect of OSR is transferring
state between versions. The optimized code may use a com-
pletely different frame layout, in which case the interpreter
frame must be transformed to the expected layout [6]. If the
compiled code has the potential to deoptimize (e.g., if the JIT
does speculative compilation), a related challenge is recon-
structing interpreter state from the compiled state [8, 12].

2.2 Unstructured Languages

For the purposes of this paper, an unstructured language is
a language without explicit looping abstractions. Instead of
while or for loops, such a language may use goto state-
ments to perform jumps to arbitrary program locations.
Unstructured control flow is generally seen in bytecode
or assembly languages with a low level of abstraction. An
interpreter for such a language can be implemented as a
dispatch loop, like the one seen in Listing 1. Dispatch loops
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1 class DispatchLoop {

2 byte[] instructions;

3 Object execute (frame) {

4 idx = 0;

5 while (true) {

6 switch(instructions [idx]) {

7 case INC:

8 frame.set (opl, frame.get(opl) + 1);
9 idx = idx + 2;

10 case JUMP_IF_NOT_ZERO:

11 if (frame.get(opl) != 0) {
12 idx = op2;

13 } else {

14 idx = idx + 3;

15 }

16 // more operators

17 }

18 }

19 }

20}

Listing 1. Dispatch loop pseudocode for a simple bytecode
language with unstructured control flow. The frame contains
program state.

1 class AddNode extends Node {

2 Node left;

3 Node right;

4 public int execute (Frame f) {

5 return left.execute(f) + right.execute(f)
6 }

7}

Listing 2. A simple AddNode in Truffle which executes its
two operands and returns their sum.

use an instruction index (idx) to iterate through a sequence
of instructions (instructions) and execute each instruction
sequentially. Special instructions manipulate the instruction
index to implement control flow (like JUMP_IF_NOT_ZERO,
which jumps to the index indicated by the second operand if
the first operand is nonzero).

2.3 The Truffle Framework

Truffle is a framework for building high-performance lan-
guage implementations [25]. A Truffle language implemen-
tation is written in Java, typically as an abstract syntax tree
(AST) interpreter. These interpreters define Nodes with meth-
ods defining how to execute them (like in Listing 2). Though
Truffle has historically been designed for ASTs, it also sup-
ports dispatch loop interpreters (such as [14, 22]), wherein
each method is implemented as a monolithic dispatch Node.

In the remainder of this section, we discuss two parts of
Truffle which are relevant to our work.
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2.3.1 Partial Evaluation. When running Truffle with the
Graal compiler [25], it uses partial evaluation (PE) to opti-
mize the interpretation of ASTs [11, 24]. In PE, the compiler
aggressively constant-folds interpreter code, treating the
AST being compiled as constant. For example, PE can re-
place a dispatch loop for a bytecode sequence BCy, ..., BC,
with code which sequentially executes BC; through BC,,
removing the loop dispatch overhead.

Partial evaluation enables several optimizations, including
escape analysis [5, 23], wherein the compiler detects when
an object does not escape its allocating context. If an object
does not escape, the compiler can avoid heap allocation,
elide synchronization, and use scalar replacement [4, 23] to
replace objects with the scalars they comprise.

Scalar replacement is especially important for optimizing
Truffle Frames, which contain the state of an interpreted pro-
gram. With scalar replacement, the interpreted program’s
local variables (normally accessed through the Frame’s getter
and setter methods) can be treated like regular Java variables
by the compiler. This effectively eliminates the overhead of
Frame accesses, and allows the compiler more flexibility to
optimize [25]. Our implementation includes a state trans-
fer mechanism designed to support scalar replacement of
Frames.

A key aspect of the Truffle framework is to allow lan-
guage implementers to take advantage of deoptimization.
One example is the @CompilationFinal annotation which
can be used to mark fields that PE should consider final
when constant folding. Changing these fields is permitted as
long as the implementer inserts deoptimization directives to
invalidate code compiled using old constants.

2.3.2 Loop-Based OSR. When a Truffle interpreter uses
the built-in LoopNode class to implement loops, it gets OSR
for free. The LoopNode executes a loop body node repeat-
edly until it indicates that the loop should exit. Internally,
the LoopNode tracks the number of loop iterations, and re-
quests compilation once an OSR threshold is exceeded. Once
a compiled version of the LoopNode is available, it will call
it, passing its Frame (the object containing all program state)
along as argument.

LoopNodes can be used when loops are reducible [9] and
the interpreter knows which code is contained in a loop.
This is often the case for structured languages, since they
use explicit loop syntax (e.g., while loops) and do not permit
jumps into the middle of a loop. Unstructured languages
generally cannot use LoopNodes because the loops are not
easy to determine (and control flow may be irreducible).

2.4 Unstructured OSR Using Loop Reconstruction

Performing OSR in an unstructured language is difficult be-
cause there are no explicit loops. Mosaner et al. [19] ad-
dress this problem by reconstructing loops from unstruc-
tured code.
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# inputs: x and y
SET result 0
outer:
SET temp y
inner :
INC result
DEC temp
JUMP_IF_NOT_ZERO temp inner
DEC x
JUMP_IF_NOT_ZERO x outer
11 RETURN result

O 0 N N R W N =

—_
(=1

Listing 3. A pseudocode method to multiply two numbers.
The language does not contain structured loops.

The technique consists of a few steps:

1. First, construct a control flow graph of the program.

2. Next, perform a depth-first traversal over the basic
blocks to detect loops.

3. Then, traverse the basic blocks inside each loop to
determine nesting and successor relations (these are
necessary for technical reasons).

4. During execution, whenever the interpreter dispatches
to an instruction marked as a loop header, collect loop
counts and perform loop-based OSR as usual.!

This technique is complex, using a control flow analysis
with multiple traversals. The need to detect irreducible con-
trol flow (i.e., multiple entry points to a loop body) further
increases the complexity of the implementation [9, 19]. Since
loop reconstruction must happen before the code runs, this
requires extra start-up time when loading a new application.
In this work, we present a simpler solution which does not
require a control flow analysis.

3 Using Back-Edges for OSR

In this section we discuss the high-level technique. We use
Listing 3 as a running example; this method computes the
product of inputs x and y using repeated addition.

The key idea behind the approach is to use backward
jumps (or back-edges) instead of loops for OSR. Conceptually,
back-edges fulfil a similar role to loops in structured OSR.
This approach is already used by the Java HotSpot virtual
machine [20], and is similar to how PyPy performs meta-
tracing [3]. To our knowledge, we are the first to apply this
technique to a partially-evaluating method-based framework
like Truffle.

3.1 Selecting OSR Targets

First, an OSR system should detect methods which run for a
long time in the interpreter. We count backward jumps for
this purpose. In Listing 3, there are back-edges on lines 8 and
10. When these back-edges are taken, we increment a counter

In Truffle, loops are reified as LoopNodes, so OSR is handled transparently.
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for the method. If the counter exceeds a pre-defined thresh-
old, the method is “hot” and we select it for OSR compilation.
Dispatch loop interpreters (see Section 2.2) can easily detect
back-edges by comparing the current and next instruction
indices, so this technique can often be implemented with
little effort.”

For the purposes of triggering OSR, all backward jumps
in a method use the same counter. Intuitively, the counter
is important for detecting a method’s hotness, but detecting
the hotness of individual loops is not as important. A single
counter is also simpler to implement and introduces less
overhead for the interpreter than a per-target counter.

3.2 Compiling OSR Targets

When compiling a method for OSR, the system should select
a point (or points) in the code where it can transfer control
to the OSR target. The location should be somewhere the
interpreter is likely to hit again, so that it can perform the
transfer. We use the targets of back-edges for this purpose.
The runtime system optimizes and compiles the method
starting at the given code location.

For example, in Listing 3, if a jump on line 8 triggers
OSR compilation, we will compile an OSR target starting
from inner. Once compilation succeeds, the next time the
interpreter jumps back to inner it can transfer execution to
the compiled code.

In some situations, using just a single transfer point is
insufficient. Consider if we instead compile an OSR target
starting from outer: the interpreter will not be able to trans-
fer execution until outer is hit again, even if the inner loop
runs for a long time. To account for cases like this, we permit
multiple transfer points. Once the back-edge threshold is
exceeded, we request compilation for each unique back-edge
target we encounter (as is done in [20]). Thus, in Listing 3,
we would only be “stuck” in the inner loop until the OSR
system can compile an OSR target starting from inner.

A performance concern with OSR is the additional pres-
sure it puts on the compilation system. Compiling a target for
each back-edge is, inevitably, a wasted effort since only one
target will ever actually be used. Also, since unstructured
languages do not require back-edges to correspond to loops,
we could waste effort compiling OSR targets for locations the
interpreter is unlikely to hit again. We can avoid this issue
by maintaining separate counters for each target. However,
since the languages we evaluated do not contain such back-
edges, our implementation uses a single counter. One way
our implementation minimizes wasted compilations is with
polling: once the threshold is reached, instead of potentially
requesting compilation at every back-edge, we only request
compilation periodically. This reduces the likelihood that
compilation would be requested for an infrequent back-edge.

2This approach assumes that there exists a total ordering for instructions
(e.g., by bytecode index or line number).
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1 interface UnstructuredOSRNode {

2 Object executeOSR (osrFrame, target,
interpreterState);

3 void setMetadata (metadata);

4 Metadata getMetadata () ;

5}

6 boolean pollOSR() {...}

7 Object tryOSR(parentFrame b target,

interpreterState , beforeOSR) {...}
Listing 4. Our API for unstructured OSR.

3.3 Transferring Control to an OSR Target

Finally, once a compiled OSR target is available, we can
transfer execution to it. Since the interpreter already detects
back-edges, and the OSR targets start from back-edge targets,
it is convenient to transfer control when taking a back-edge.

For example, in Listing 3, suppose we compile an OSR
target starting from inner. When we detect a back-edge to
inner, we can check if an OSR target exists; if it does, we
can transfer control to the OSR target. All of the current
method’s state (i.e., X, y, result, and temp) should be copied
over during this step. We cannot simply reuse the interpreter
activation, because the generic interpreter and dedicated
OSR target usually represent the method’s state differently.
While it is logically the same representation, in the OSR
target, the partial evaluator has specialized it to the specific
method and entry-point.

4 An API for Language Interpreters

In this section, we provide an overview of the high-level
API we designed to be used in interpreters for unstructured
languages, and provide an example integration. We also com-
ment on how this API interacts with a system which uses
partial evaluation.

4.1 The API

The API consists of the UnstructuredOSRNode interface and
the helper functions in Listing 4. A dispatch loop node must
do a few things to integrate with this APL

First, it must implement the UnstructuredOSRNode inter-
face. The executeOSR method should define how to resume
execution of the node, typically by running the dispatch loop
starting from target. The OSR system will call this method
when it performs OSR. Since the target is a compile-time
constant, the partial evaluator can convert executeOSR into
code executing a sequence of instructions starting from in-
dex target. The setMetadata and getMetadata methods
should simply proxy accesses to a field defined by the node.
The OSR system needs a place to store metadata related to
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each dispatch node (e.g., a back-edge counter, a map of OSR
targets), so this is a natural place to store it.®

Second, the node should detect back-edges during dis-
patch and notify the OSR system using the pol10SR helper.
This method returns true once the method is hot enough
to warrant OSR compilation. If it returns true, the inter-
preter should call tryOSR. This helper transparently han-
dles the entire OSR process for the user. It counts back-
edges, requests compilation, and transfers to compiled OSR
code (which calls executeOSR). If OSR succeeds, it returns
anon-null value.? The main parameters to tryOSR are the
current execution state (parentFrame) and the destination
of the back-edge (target). There are two optional param-
eters: interpreterState can contain internal interpreter
state which gets passed to executeOSR (e.g., data pointers);
beforeOSR is a callback which can be invoked before calling
OSR code (e.g., to notify instrumentation hooks).

4.2 Example Integration

To illustrate the simplicity of integration, we modify the
interpreter from Listing 1 to use our API Listing 5 contains
the changes necessary to support OSR.

First, we modify the DispatchlLoop class to implement the
UnstructuredOSRNode interface. For code reuse, we extract
the dispatch loop into a helper (lines 10-27) which can be
called by both executeOSR and the existing execute method
(lines 5 and 8). We also add a metadata field (line 3) and
proxy accesses to it through getMetadata and setMetadata
(omitted for brevity).

Then, we modify the dispatch loop to detect backward
jumps and call pol10SR (line 16). If the call returns true, we
try to perform OSR (line 17). If the result is non-null, then
OSR occurred, and we can return early with the result (lines
18-20). If the PE framework supports compiler directives to
test the current execution context (e.g., IN_INTERPRETER),
they can be used to ensure back-edge detection only runs in
the interpreter. Since IN_INTERPRETER is false in compiled
code, partial evaluation can constant-fold the condition on
line 16 to false, and hence lines 16-21 completely disappear
in the compiled code.

5 Truffle Implementation

The desire for a simple OSR interface is sometimes in conflict
with the complex performance and correctness constraints
of a system like Truffle. In this section, we discuss some of
the design challenges and tradeoffs of our Truffle implemen-
tation.

3In a language like Java, interfaces cannot declare fields, so the accessors
define a “logical” field the implementing class must provide storage for.
41n the Truffle framework, null is never a valid value; we could alternatively
define a marker object to indicate “no result”.
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1 class DispatchLoop implements
UnstructuredOSRNode {

2 byte[] instructions;

3 Metadata metadata;

4 Object execute (frame) {

5 return executeFromldx (frame, 0);

6 }

7 Object executeOSR(osrFrame, target, ...) {

8 return executeFromlIdx (osrFrame, target);

9 }

10 Object executeFromldx (frame, idx) {

11 while (true) {

12 switch(instructions [idx]) {

13

14 case JUMP_IF_NOT_ZERO:

15 if (frame.get(opl) != 0) {

16 if (op2 < idx && IN_INTERPRETER &&
pollOSR () ) {

17 result = tryOSR(frame, op2,...);

18 if (result != null) {

19 return result;

20 }

21 }

22 idx = op2;

23 } else { ... }

24

25 }

26 }

27 }

28}

Listing 5. Modification of Listing 1 to support OSR.

5.1 Managing Metadata

The metadata for our implementation consists of a back-edge
counter, a map of OSR targets (indexed by starting index),
and info about the frame layout (for copying).

The vast majority of methods do not require OSR, so it
is wasteful to allocate all of these objects for each method.
Accordingly, our solution lazily initializes metadata. First, we
partially initialize the metadata object with a counter when
a back-edge is reported. Then, in the rare case that OSR is
requested, we fully initialize the OSR targets map and frame
layout metadata. Lazy initialization can be perilous in the
presence of multiple threads [21], so we take extra care to
ensure that fields are safely initialized with respect to Java’s
memory model [18].

5.2 Implementing poll0SR and tryOSR

In this section we discuss the design of our helper functions;
we provide pseudocode for the method in Listing 6.

The pol10SR method first reads the method’s OSR meta-
data and increments its counter (lines 2-3). It then inspects
the result, returning false if the OSR threshold has not been
reached (line 4). If the OSR threshold is reached, pol10SR
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boolean pollOSR() {
metadata = getOrlnitializeMetadata ()
count = ++metadata.count;
return (count >= THRESHOLD) &&
(count % POLLING_INTERVAL == 0);

}

0 N U e W N =

Object tryOSR(parentFrame, target,
interpreterState , beforeOSR) {

9 osrTarget = getMetadata().getCompileTarget(

target , interpreterState);

10 if (osrTarget.isCompiling()) return null;
11 beforeOSR(target);

12 return osrTarget.call (parentFrame);

13}

Listing 6. Pseudocode for po110SR and tryOSR.

returns true every POLLING_INTERVAL back-edges (line 5)°.
Since compilation will take much longer than a single loop
iteration, it would not be helpful to try OSR on every single
back-edge; we poll to avoid unnecessary work.

In tryOSR, we request compilation for the given target
or retrieve the call target if it already exists (line 9). If the
OSR target is still being compiled, we return null (line 10);
otherwise, we call the before0SR callback and then jump to
OSR code (lines 11-12). While many OSR implementations
use a tail call—replacing the interpreter activation with a
compiled OSR activation—Truffle does not have such low-
level control over the stack, so we push the OSR activation
on top of the interpreter activation.

Akey goal in this design is to minimize the amount of work
done in the common case. An interpreter will call po110SR
on every back-edge, but only rarely call tryOSR, because few
methods actually need OSR. Thus, we perform minimal work
inside pol1l0SR, avoiding locking, allocation, and volatile
fields®. In the rare case that tryOSR is called, we take a slower
path: we use locking, allocate the interpreterState object
and beforeOSR callback, and use a thread-safe map so that
other threads may reuse the OSR compilation. We tolerate
the extra allocation and synchronization overhead since this
path occurs infrequently.

5.3 Transferring State

Transferring state is challenging in many OSR systems, since
the two code versions may use different frame layouts; the
need to reconstruct state after deoptimization further com-
plicates things. By calling the OSR target through Truffle’s
existing call mechanisms, all of these complications are han-
dled by the framework. We benefit greatly from Truffle here;
in another system, this process could be much more complex.

>Our THRESHOLD is a multiple of our POLLING_INTERVAL (1024), so pol10SR
returns true when it first hits THRESHOLD.

SThis sacrifices counter consistency, but the tradeoff is acceptable to keep a
fast common path.
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osrFrame = parentFrame

while (osrFrame . get("n") > 0) {
osrFrame.set("result",

)5
osrFrame.set("n", osrFrame.get("n") - 1);

}

1
2
3
4
5 osrFrame. get("result") « osrFrame.get("n")
6
7
8
9 return osrFrame.get("result");

Listing 7. Pseudocode for OSR with parent frame reuse.

n = parentFrame.get("n")
result = parentFrame.get("result")

while (n > 0) {
result = result =« n;
n=n- 1;

}

return result;

X N NG W N =

Listing 8. Pseudocode for OSR with parent frame copying.

However, the naive approach of passing the parent Frame
object to the OSR code is not ideal. Recall that the compiler
uses scalar replacement to replace a Frame object with the
set of variables it comprises (see Section 2.3.1). This transfor-
mation is only safe when the Frame is allocated inside the
compiled method and does not become reachable outside
of it. If we simply pass the interpreter Frame to the OSR
code, the Frame escapes the OSR code and is not eligible for
scalar replacement. As a result, variable accesses get proxied
through the Frame object, which is slower and less amenable
to optimization (e.g., Listing 7). Instead, when possible, we
copy each variable from the parent Frame into a new OSR
Frame. Since this new Frame does not escape, the compiler
can successfully perform scalar replacement, removing all
Frame indirection entirely (e.g., Listing 8).

We add two hooks to the interface in Listing 4. The first
hook, copyIntoOSRFrame, copies state into the OSR Frame.
By default, it copies over each variable, but it may be over-
ridden for finer control over the copy. For example, some
implementations may wish to null out references in the
parent Frame so the garbage collector can reclaim objects
earlier. The second hook, restoreParentFrame, can be used
to restore state back into the parent Frame. By default, it does
nothing, since most languages likely do not need the Frame
after returning from OSR.

Copying introspects the Frame layout, but the layout can
change dynamically (e.g., if a new variable is introduced).
We use @CompilationFinal directives to tell the compiler
to treat the layout as a constant (and insert deoptimization
points in case it changes). We provide this copying code in a
helper to simplify integration.
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5.4 Handling Frame Introspection

Because we copy the parent Frame contents into the OSR
Frame, once OSR begins executing, the two can get out of
sync. We must be careful when this happens, since Truffle
provides mechanisms to introspect Frames.

Truffle allows Frames to be materialized, which lets in-
terpreters pass and store them like regular objects. Because
of materialization, it is possible that when we perform OSR,
some code (e.g., a debugger) has a reference to the parent
Frame. If it inspects this Frame during OSR, the variables
may be stale and not reflect the actual state of the program.
To remedy this, we do not copy the parent Frame if it has
materialized. Instead, we reuse it.

Additionally, Truffle provides a stack walking utility which
returns a stack trace containing the Frame for each ongoing
method. Since our OSR implementation pushes a new OSR
activation onto the stack (instead of replacing the interpreter
activation), we modify stack walking to return the newer
OSR Frame and ignore the parent Frame.

5.5 Compilation & Invalidation

Since Truffle compilation is speculative, compiled code can
be invalidated when an assumption turns out to be incorrect,
or when an unexpected code path is hit. Our implementation
must take this dynamic nature of compilation into account.

Truffle can dynamically modify an AST during execution,
for instance, to add instrumentation or to type-specialize
an operation. If an AST changes, any compiled code which
includes that AST must be invalidated. Our implementation
registers callbacks to detect changes in OSR nodes so that
we can invalidate any compiled OSR targets.

It is also common to lazily initialize the fields of an AST.
Since modifying a field can trigger invalidation (e.g., if it
is marked @CompilationFinal), we encountered scenarios
where compiled OSR code would try to initialize a field and
immediately invalidate itself, deoptimizing back to the in-
terpreter. We add another hook to Listing 4, prepareOSR,
which the OSR system calls before compilation. This hook
allows language implementations to eagerly initialize any
fields and avoid unnecessary invalidation inside OSR code.

6 Evaluation

In this section, we evaluate the efficacy of our technique.
Our primary concern is whether it improves start-up perfor-
mance for programs with long-running methods, but we also
assess its impact on warmed-up (steady state) performance.
We also briefly discuss our experience using the APL

6.1 Setup

We evaluate our technique using Sulong, Truffle’s LLVM
bitcode interpreter [22]. We compare our OSR strategy with
the loop reconstruction technique from [19].
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We reuse benchmarks from [19]: several microbenchmarks
from the Computer Language Benchmarks Game’ (mandel-
brot, nbody, fannkuchredux, revcomp, binarytrees, and pidig-
its) as well as the gzip® and whetstone’ benchmarks. We
include benchmarks which enjoyed a performance improve-
ment from loop reconstruction, but also a couple of bench-
marks which did not; it is desirable for our technique to have
minimal performance impact on these benchmarks.

For each benchmark, we perform 10 runs in each of the
following configurations:

e BAck-EpGe: OSR using back-edges (our technique)
e Loor: OSR using loop reconstruction (from [19])
e NoNE: No OSR

Each run executes the benchmark for at least 50 consecutive
iterations to give the system time to warm up.

We perform all benchmarks on a system with an Intel
Core i7-10700 processor with 16 virtual cores at 2.90GHz. It
has 32GB of memory and runs Ubuntu 20.04. We run Sulong
on GraalVM Enterprise Edition 21.2.0 in a native image.

6.2 Start-up Performance

To evaluate the start-up performance of our technique, we
consider the execution time of the first 10 iterations of each
benchmark. In Figure 1 we plot the warm-up curves for each
of the benchmarks which saw a performance improvement
from OSR in [19]. We omit the other benchmarks, since they
do not exhibit interesting start-up behaviour. We also omit
NonE from the whetstone plot to keep the scale readable; its
first two iterations take 99 seconds on average, and its later
iterations converge to roughly the same times as BACK-EDGE
and Loor.

We find that our technique is at least as effective as loop re-
construction for improving start-up times. The first iteration
of each benchmark using BACK-EDGE is anywhere from 3x
(fannkuchredux) to 35X (whetstone) faster than NoNE due
to OSR. Later iterations for either OSR technique improve
marginally as regular whole-method compilation kicks in.
Occasionally, due to issues with deoptimization, the OSR
techniques briefly slow down (e.g., iteration 3 of nbody) be-
fore re-optimizing.

In 4 of the 8 benchmarks, the early iterations of Back-
EDGE are slightly faster than Loop. For example, the first
iteration of whetstone takes almost 50% more time with Loop
than BACK-EDGE (4.3s versus 2.9s). There are many confound-
ing factors in Truffle compilations which make it difficult to
confidently state a root cause. We suspect that BACK-EDGE
benefits from not having to perform a control flow analy-
sis at start-up. Another possible reason is that BACK-EDGE
can compile beyond the end of a loop—even through other
loops—whereas Loop may need to compile multiple loops

"https://benchmarksgame-team.pages.debian.net/benchmarksgame
8http://people.csail. mit.edu/smec/projects/single-file-programs/
“http://www.netlib.org/benchmark/whetstone.c



VMIL ’21, October 19, 2021, Chicago, IL, USA

Matt D’Souza and Gilles Duboscq

1.5 1
1.0
054 .
0.0 -— . . .

mandelbrot

None
Loop
Back-Edge

F A

1.5+
1.0 A
0.5 1
0.0 T . T T

nbody

fannkuchredux

time (seconds)

gzip

30 A
20 A
10 ~

revcomp

o

whetstone

T

. 5 .
iteration

10

Figure 1. Warm-up curves for benchmarks where OSR affects start-up performance. We plot the mean (of 10 iterations) and
depict the standard deviation using error bars. The binarytrees and pigidits benchmarks do not trigger OSR, so we omit their

curves.

separately. In the gzip benchmark, Loop outperforms BAck-
EDGE. We see BAck-EDGE spends twice as long compiling
OSR targets, which may explain the discrepancy.

6.3 Warmed-up Performance

Though OSR is a technique to help warm-up time, it should
not negatively affect performance after warm-up, either. To
assess the impact of our technique on warmed-up perfor-
mance, we compare warmed-up times across configurations.
We measure warmed-up time as the mean execution time
over the last 10 iterations. To ensure the program is warmed
up, we manually check the warm-up curves and verify that
execution time does not change significantly across these
iterations.

We present mean warmed-up times in Table 1. Across
all benchmarks, including ones which do not benefit from
OSR, BAck-EDGE has comparable (and sometimes better)
warmed-up performance compared to NoNE. We suspect
this is because PE can completely eliminate back-edge de-
tection code from compiled code (as discussed in Section
4), resulting in code which looks practically the same as
NoNE. In contrast, Loor sometimes lowers the warmed-up
performance relative to NoNE (the difference is significant
in 3 of 8 benchmarks). As mentioned in [19], this is likely
because Loop changes the Truffle AST structure, which can
cause compiler optimizations to behave differently. Our solu-
tion can thus be seen as a less intrusive OSR technique with
respect to warmed-up performance.
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Table 1. Warmed-up performance. For each configuration, we present the mean warmed-up time (with standard deviation)

and the warmed-up time relative to NoNE (lower is better).

NoONE Loor Back-EDGE

mean (s) SD rel | mean (s) SD rel | mean (s) SD rel
mandelbrot 0.047 0.001 - 0.060 0.001 1.268 0.047 0.000 0.999
nbody 0.510 0.002 - 0.509 0.002 0.999 0.510 0.002 1.000
fannkuchredux 1.391 0.002 - 1.423 0.001 1.023 1.391 0.002 1.000
gzip 0.701 0.009 - 0.713 0.015 1.018 0.698 0.014 0.996
revcomp 1.690 0.013 - 1.683 0.007 0.996 1.688 0.011 0.999
whetstone 2.485 0.012 - 2.494 0.014 1.003 2.486 0.012 1.000
binarytrees 1.965 0.038 - 1.971 0.080 1.003 1.950 0.030 0.992
pidigits 1.378 0.019 - 1.382 0.032 1.004 1.378 0.015 1.001

6.4 Usability

From our experience, our Truffle API does not require much
effort to integrate, and hides much of the complexity that
OSR entails. Our integration with Sulong [22] is less than
60 lines of code, whereas the existing loop reconstruction
OSR of [19] is over 300 lines. The author who wrote the
integration had no prior experience with the Sulong system,
but found it straightforward to integrate with the BACK-EDGE
API We also implemented our technique for Java-on-Truffle
[14], which does not have an existing OSR mechanism. The
integration is less than 150 lines and enjoys comparable
performance benefits.

7 Related Work

Our work is closely related to a few different lines of research.
We briefly discuss them here.

OSR was popularized by the SELF VM [13], where it was
used to debug optimized code using deoptimization [12].
OSR is also commonly used in Java virtual machines (JVMs).
The HotSpot VM [20] uses back-edges in JVM bytecode to
perform OSR. Our work uses HotSpot’s technique, pack-
aging it in an API for language implementers. Jikes RVM
(another JVM) also implements OSR [10]; the authors cite
the engineering complexity of OSR as a reason it is not more
widely used. Later works attempt to tame this complexity
through formalization [15] or by providing OSR in language-
independent frameworks [6, 15]. Truffle [25] falls into the
latter category, giving structured languages OSR for free
through its LoopNode interface. Truffle’s LLVM interpreter
supports unstructured OSR by reconstructing loops [19]; our
technique adds a more general, lightweight API for unstruc-
tured languages.

Tracing JITs such as Dynamo [1] are also designed around
improving the performance of loops. When they detect a
hot loop, they collect a trace from one iteration and use the
trace to compile an optimized version of the loop. RPython,
another language implementation framework, supports a
modified form of tracing called meta-tracing which traces
bytecode dispatch loops [3]. Much like our technique, they

use back-edges to detect, compile, and optimize hot loops
in the interpreted language. They perform constant folding
over the instruction stream and index, which can be seen
as a limited form of the partial evaluation used in our tech-
nique. Pycket is an interesting application of the RPython
framework to functional languages [2]. Since looping in func-
tional languages is commonly implemented using function
calls (i.e., recursion), detecting loops for functional languages
requires a different strategy altogether.

8 Conclusion

On-stack replacement can be an effective way to improve
start-up speeds, but its myriad technical challenges are a
barrier to its adoption. For unstructured languages, the lack
of explicit loops is one such challenge. In this paper, we
presented a technique for OSR which uses backward jumps.
We argue that back-edges fit the design goals of an OSR
system just as well as loops do, and design a simple API
around the technique. We implement the API in the Truffle
framework, and discuss some of the design challenges we
faced. In our evaluation, we compare our technique with a
loop reconstruction approach to OSR, and find the technique
is as good (if not better) at improving start-up performance
without harming warmed-up performance.

There are many aspects of our design which could be ex-
plored further. For example, though our metadata storage
scheme attempts to minimize memory usage, it still incurs
a small overhead for each dispatch node. We would like to
evaluate the extent of this overhead, and potentially explore
other storage strategies. Additionally, we would like to ex-
periment with different compilation settings. Our evaluation
uses second-tier compilation, but it would be interesting to
evaluate other schemes (e.g., multi-tier). Graal’s compila-
tion queue currently does not treat OSR compilations any
differently; we suspect that we can further improve start-
up performance by using a scheme which prioritizes OSR
compilations. We leave these topics for future work.
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