On the Security Blind Spots of Software Composition Analysis

Jens Dietrich
Victoria University of Wellington
Wellington, New Zealand
jens.dietrich@vuw.ac.nz

Alexander Jordan
Oracle Labs
Vienna, Austria
alexander.jordan@oracle.com

Abstract

Modern software heavily relies on the use of components. Those
components are usually published in central repositories, and man-
aged by build systems via dependencies. Due to issues around
vulnerabilities, licenses, and the propagation of bugs, the study of
those dependencies is of interest, and numerous software compo-
sition analysis (SCA) tools have emerged for this purpose. Most
existing tools are based on the analysis of the dependency graph
constructed from project metadata (declared dependencies). While
this is easy to implement and scales well, there are known issues
around the accuracy of the analysis. Recently, improvements have
been proposed to address the low precision of this approach.

We explore a different yet related problem: the recall of SCA,
i.e., whether existing methods miss dependencies on vulnerable
components. We demonstrate that for the Java / Maven ecosystem
this is indeed the case as (often somehow obfuscated — “shaded”)
clones of vulnerable components are deployed in Maven Central,
but not marked as vulnerable in vulnerability databases. This can be
exploited for subtle package typo-squatting and confusion attacks
evading detection by SCA tools.

We demonstrate that such vulnerable clones can be discovered
with some rather simple tooling. Our approach is lightweight in
that it does not require the creation and maintenance of a custom
index, but directly uses Maven Central, and precise by design as it
does not introduce new false positives.

We evaluate our approach on 29 vulnerabilities with assigned
CVEs. We retrieve over 53k potential vulnerable clones from Maven
Central. After running our analysis on this set, we detect 727 con-
firmed vulnerable clones (86 if versions are aggregated) and syn-
thesize proof-of-vulnerability tests for each of those. We demon-
strate that existing software composition analysis tools often miss
those exposures. At the time of submission those results have led to
changes to the entries for ten CVEs in the GitHub Security Advisory
Database (GHSA) via accepted pull requests.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SCORED °24, October 14-18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1240-1/24/10

https://doi.org/10.1145/3689944.3696165

Shawn Rasheed
UCOL | Te Pukenga
Palmerston North, New Zealand
unshorn@gmail.com

Tim White

Victoria University of Wellington
Wellington, New Zealand
tim.white@vuw.ac.nz

CCS Concepts

« Security and privacy — Software and application security;
Vulnerability management; - Software and its engineering
— Software libraries and repositories.

Keywords

vulnerability detection, clone detection, shading, software compo-
sition analysis, Java, Maven

ACM Reference Format:

Jens Dietrich, Shawn Rasheed, Alexander Jordan, and Tim White. 2024. On
the Security Blind Spots of Software Composition Analysis. In Proceedings of
the 2024 Workshop on Software Supply Chain Offensive Research and Ecosys-
tem Defenses (SCORED ’24), October 14—18, 2024, Salt Lake City, UT, USA.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3689944.3696165

1 Introduction and Background

Modern software systems often use components in order to achieve
economy of scale. The process is recursive — components also
use other components, resulting in deep and complex component
ecosystems [11, 26, 64]. This has in turn created new challenges.
The prime example is vulnerability propagation: infamous examples
include the equifax [31, 59] and log4shell [22, 60] incidents, with
vulnerable and outdated components now being acknowledged
as being a major security risk [39]. Other related issues include
license compliance [49], typo-squatting [58], and lifecycle issues of
components as demonstrated by the leftpad incident [7].

In response to those challenges, software composition analy-
sis (SCA) tools have emerged that scan the dependency networks,
and cross-reference them with known vulnerabilities catalogued in
databases such as the National Vulnerability Database (NVD) [36]
and the GitHub Advisory Database [19]. If a vulnerable dependency
is found, developers are notified and can upgrade dependencies
to a newer version. Examples of such tools include GitHub’s De-
pendabot [18], Snyk [53], OWASP Dependency-Check [38], tooling
integrated into IDEs such as Intelli] (backed by checkmarx), and
build plugins like npm audit (for JavaScript) and the OSS Index
Maven plugin [54]. At a high level, an SCA tool combines a scan-
ning component to find dependencies, and a vulnerability database
(vulnerability DB) to decide whether a dependency has a known
vulnerability or not.

To combine the two, some matching logic is required, which
provides a bridge between the low-level packages used by build
systems (e.g., Maven artifacts in the Java/Maven ecosystem) and a

https://orcid.org/0000-0001-9019-6550
https://orcid.org/0000-0001-7683-4296
https://orcid.org/0000-0003-0763-0307
https://orcid.org/0000-0002-1997-0176
https://doi.org/10.1145/3689944.3696165
https://doi.org/10.1145/3689944.3696165

SCORED °24, October 14-18, 2024, Salt Lake City, UT, USA

more coarse-grained software identifier at the product-level, like
the CPE (Common Platform Enumeration) ! standard used by NVD.
This matching is not always straightforward; it varies across tools,
and can introduce inaccuracies. Versions are another source of inac-
curacy for SCA tools, often due to the fact that it is hard to pinpoint
when a vulnerability was introduced, in which case (conservative)
assumptions have to be made.

With the exception of Eclipse Steady, which uses program analy-
sis to determine reachability of vulnerable code, SCA tools generally
do not assert whether a vulnerable dependency makes an applica-
tion unsafe (e.g., because it is exploitable by an attacker) or not (e.g.,
because the dependency is unused [55, 56]). Open source SCA tools
rely on public information for their vulnerability DBs and depend
on wider community efforts to update and correct this information.
Commercial tools (e.g., Snyk) may provide their own vulnerability
DB, which may refine or extend the information that is available
in public. Mismatch between information in vulnerability DBs is
possible, often due to timing issues where one DB is updated sooner
than another. It is however in the interest of commercial vendors to
eventually have their DBs aligned with public knowledge to avoid
confusion among customers.

Like all program analyses, SCA tools suffer from false positives.
They may for instance detect dependencies to vulnerable code in
a library that is not actually reachable [33]. This could in princi-
ple be tackled by employing more fine-grained analyses like call
graph, data flow or taint analysis, although the price (in terms of
computational resources needed) could be significant, and those
analyses themselves have to deal with precision issues [57]. On
the other hand, SCA analyses are not sound either. In particular,
they miss component dependencies and therefore problems such
as vulnerabilities associated with those dependencies [9].

A first source of unsoundness is late binding, i.e., applications
that “discover” capabilities at runtime, leading to dependencies that
are not visible in the build configurations or code SCA tools analyse.
This is an interesting problem but outside the scope of our study.

Another cause of unsoundness is cloning. With cloning, code is
copied into the project, and these copies can carry vulnerabilities
which are then hidden by the process. This can take place when
an application directly clones code, or when cloning is used by li-
braries which are then used as dependencies by downstream clients.
Cloning can take place on multiple levels, from code snippets, func-
tions, and classes to entire components. Code sharing, discussion
and tutorial web sites like Stack Overflow [2, 46] and more lately
Al-based tools like Copilot promote or facilitate cloning [41]. With
cloning, basic engineering principles like DRY (don’t repeat your-
self) are violated, and in the long term the (lack of) maintenance
of cloned code is highly problematic. For vulnerability detection, a
particular problem is that many clones are not perfect, i.e., they are
often somehow transformed, and generally lack provenance.

However, there are also advantages to cloning, and cloning may
even be used in order to make code more secure and reliable. For
instance, if a dependency is only used for the purpose of using a
rather small and trivial piece of functionality from an otherwise
large component, then cloning can be a sensible strategy to reduce
the attack surface by removing now redundant dependencies.

Uhttps://nvd.nist.gov/products/cpe

Jens Dietrich, Shawn Rasheed, Alexander Jordan and Tim White

In the case of Java 2 there is an additional problem, a relative of
the infamous DLL hell problem [12]. Large dependency networks
may lead to conflicts between different versions of the same class
added via multiple dependency paths [62]. Often, the problems
resulting from this only manifest at runtime when classes are loaded
and linkage related errors caused by binary incompatibility occur.
API changes causing this problem are common [24, 45], poorly
understood by developers [13], and therefore expensive for projects.

A common solution for this problem is shading — a variant of
cloning where entire packages are cloned and renamed. Even the
Java standard library employs shading: for instance, the OpenJDK
version 16 contains shaded versions of sax (an XML parser library)
and asm (a bytecode engineering library) in packages with names
starting with jdk.internal.org.xml.sax and jdk.internal.-
org.objectweb.asm, respectively 3.

Maven supports this by providing the shade plugin *. With this
plugin, shading is automated and performed during the build. A
dependency to be shaded and the packages to be renamed are de-
clared in the build file (pom.xml), and therefore the dependency
metadata remain visible to SCA tools, and they can reason about it.
The shade plugin supports both cloning classes as well as “proper”
shading (where packages are renamed). However, it is still possible
to use copying and shading based on refactoring source code. There
are several reasons to do this: (1) lack of knowledge — engineers
may just not be familiar with the shade plugin; (2) technical limita-
tions — build-time shading does not work as expected for complex
dependencies as the shade plugin is in essence a static analysis tool,
and as such can at best be expected to be soundy [30] °; (3) mal-
ice — adversaries may use shading for package typo-squatting and
confusion [37, 61] attacks. This is particularly easy in Java/Maven
as this only requires a new group name while retaining the origi-
nal artifact id. For instance, org.apache.logging.log4j:log4j-core:2.14.1
(with CVE-2021-44228 “log4shell”) could be cloned and deployed
as apache-log4j:log4j-core:2.23.1 (the group name has been changed,
and the version number falsely suggests that the vulnerability has
been removed). Notably, this component would not be associated
with CVE-2021-4422 in vulnerability databases, and therefore SCA
tools may not be able to alert downstream projects to the presence
of the respective vulnerabilities °.

In this paper, we set out to study the prevalence of this problem,
and propose a lightweight solution to address it. For the rest of this
paper we refer to shading based on source code refactoring without
any declaration of a dependency to the artifact being shaded simply
as shading. This includes the special case where the original package
names are retained (cloning).

The rest of this paper is organised as follows. In Section 2 we
describe the analysis pipeline we have developed. The evaluation
is split into two parts — we first describe the methodology used

2We refer here to Java as the runtime and ecosystem, not the programming language.
Le., this also includes programs that may be written in other languages compiled into
Java bytecode, and deployed in the Maven ecosystem, such as Kotlin, Scala or Clojure.
3https://github.com/AdoptOpen]DK/openjdk-jdk16/tree/master/src/java.base/share/
classes/jdk/internal/org/

*https://maven.apache.org/plugins/maven-shade-plugin/

5The prevalence of dynamic language features in Java is a known challenge for static
analysis tools, and leads to a considerable amount of false negatives [28, 57].

®A similar malicious use of shading is to re-license artifacts in order to avoid license
restrictions.

https://nvd.nist.gov/products/cpe
https://github.com/AdoptOpenJDK/openjdk-jdk16/tree/master/src/java.base/share/classes/jdk/internal/org/
https://github.com/AdoptOpenJDK/openjdk-jdk16/tree/master/src/java.base/share/classes/jdk/internal/org/
https://maven.apache.org/plugins/maven-shade-plugin/

On the Security Blind Spots of Software Composition Analysis

(Section 3), followed by the results (Section 4). We then discuss the
limitations of our method (Section 5), the disclosure procedure we
followed (Section 6), related work (Section 7) and finish with a short
conclusion (Section 8). The details of the repositories containing the
source code of our tool and the data sets can be found in Section 5.

2 Vulnerability Detection
2.1 Overview

We describe the method we have developed and used to detect
clones and shaded artifacts with known vulnerabilities here. Our
method uses an artifact with a vulnerability and a proof-of-vulner-
ability (POV) project with tests as input, and produces a list of
artifacts and projects demonstrating the presence of the provided
vulnerability in those artifacts.

The design of our method is driven by two objectives: (1) High
Precision (avoiding false positives) 7. Precision is known to be an
important factor to build analyses acceptable to engineers [4, 14,
51]. (2) Lightweight. We do not require the expensive acquisition,
construction and maintenance of a separate index. Instead, our
method can work with an existing index like Maven Central as long
as it makes the information required (source code, poms, artifacts
searchable by class names) available through an APL

Our aim is to demonstrate that with some fairly simple tooling
that goes beyond the metadata-centric approach used by most SCA
tools, more vulnerable artifacts can be detected. We do not aim
at detecting all those artifacts, and as with all program analyses,
precision, recall and performance have to be balanced, as perfect
non-trivial analyses are not feasible [16, 48].

Our method consists of three main steps: (1) given a vulnera-
ble component available in Maven Central identified by a GAV (a
combination of group id, artifact id and version, sufficient to locate
the component) and a CVE, we extract a simple fingerprint that we
can use to query Maven Central for similar components to create a
pool of clone candidates; (2) we use a custom type-2 clone analysis
to find clones amongst those candidates, also accounting for dif-
ferences in code caused by shading; (3) given a POV project with
witness tests for the vulnerability in the original project, we adapt
this project for each clone, and run the adapted tests in order to
prove the presence of the vulnerability in the clones. We describe
each step in more detail below.

2.2 Clone Candidate Acquisition

We use unqualified (i.e., the package name is not considered) class
names as fingerprints to identify potential clones. There are two rea-
sons for this: (1) the Maven REST API 8 supports artifact queries by
unqualified class names; (2) unqualified class names are not changed
when relocating classes into other packages during shading. When
working with a remote index, using all classes is not a good strategy
as common class names produce large result sets with poor preci-
sion, wasting network bandwidth. We have used a simple approach
to look for signature classes with names likely to be unique. For

"Precision here is defined with respect to the presence of vulnerable code, not taking
into account whether it is actually exploitable in the context of a particular application.
Le., we want to find clones which are as vulnerable as the original component for the
respective CVE.

8https://central sonatype.org/search/rest-api-guide/

SCORED 24, October 14-18, 2024, Salt Lake City, UT, USA

instance, a short name like Utils is likely to be used by many com-
ponents. However, something like JdbcDriverManagerFactory
(hypothetical) is more likely to be unique. The heuristic used is to
count camel case tokens in class names, and look for classes with a
high count. In the example above, the count for JdbcDriverMan-
agerFactory is 4 (Jdbc, Driver, Manager, Factory), whereas the
count for Utils is 1. The default strategy we use is to start with all
project classes, then sort class names by token length in descending
order, and to use the top 10 class names as fingerprint class.

For each fingerprint class name identified, an API query is used
to fetch artifacts containing classes with this name. The API uses
paging, and limits the number of results returned by each query to
200. We use 5 pages of 200 results each, i.e., a maximum of 1,000
artifacts per class is analysed. This results in 10 query result sets
with up to 1,000 artifacts in each. Le., we analyse up to 10,000
artifacts for a given vulnerability. A consolidation strategy identifies
the artifacts likely to represent clones. Strategies like intersection
or union of result sets are possible; the union is likely to contain
many accidental matches that contain only a single matching class.
The other extreme, the intersection, may exclude many artifacts
that only partially clone the original artifact, but could still contain
all classes necessary to exploit a vulnerability. The strategy we have
used is that an artifact must occur in at least two result sets, i.e., it
must contain at least two classes with names matching classes in
the original artifact selected for querying.

An additional sanitisation step is performed in order to remove
artifacts that declare a dependency to the original cloned artifact.
Those are less interesting and may even be considered as effective
false positives by engineers [51] as SCA tools usually detect vulner-
abilities propagated through such dependencies. For this purpose
we acquire and analyse the pom of the artifact. The pom analysis
looks for three patterns: (1) there is no reference in the dependency
section to the original artifact; (2) there is no reference to the origi-
nal artifact within the shade plugin; (3) the group id and artifact
id of the clone candidate are different from the group and artifact
ids of the original artifact. The last rule ensures that the tool does
not produce results representing different versions of the original
artifact. Our analysis also includes references in parent poms for
artifacts generated by multi-module projects.

2.3 Clone Analysis

The clone analysis used is AST-based. Le., candidate classes are
parsed and the ASTs of the original project class and the respective
clone candidate class are simultaneously traversed. This requires
the acquisition of source code. This is facilitated by a REST API
service to retrieve sources from Maven Central. Our method is
a type-2 clone detection [50], i.e., we are looking for isomorphic
structures but allow some variations in types and comments.

Nodes corresponding to comments are ignored as authors may
change comments (for instance, to alter copyright or authorship
notices, or to add comments about the origin of the code). For
nodes corresponding to type names, the scopes (package names)
are ignored.

https://central.sonatype.org/search/rest-api-guide/

R I

10
11
12
13

SCORED °24, October 14-18, 2024, Salt Lake City, UT, USA

Jens Dietrich, Shawn Rasheed, Alexander Jordan and Tim White

import org.yaml.snakeyaml.Yaml;
// more imports omitted
public class ConfirmVulnerabilitiesTests {
@Test public void confirmCVE202238751 () {
assertThrows (StackOverflowError. class ,
() -> parse("CVE-2022-38751.yml")
)i

}

static void parse (String input) throws IOException {
FileReader reader = new FileReader (new File (input));
new Yaml () .compose(reader);

® N o U A W =

©

11
12
13

{
"id": "CVE-2021-44228",
"artifact": "org.apache.logging.log4j:log4j-core",
"vulnerableVersions": [
"2.13.0","2.13.1","2.13.2","2.13.3","2.14.0","2.14.1"
1,
"fixVersion": "2.15.0",
"testSignalWhenVulnerable ":
"references": [
"https://nvd.nist.gov/vuln/detail /CVE-2021-44228",
"https:// github.com/advisories /GHSA-jfh8 -c2jp -5v3q"
1
}

"success ",

Listing 1: Testing CVE-2022-38751 (snakeyaml)

2.4 POV Test Adaptation

To avoid false positives, we rely on existing proof-of-vulnerability
(POV) tests embedded in specific POV projects. Consider for in-
stance the test used to demonstrate the presence of CVE-2022-38751,
a DOS vulnerability in snakeyaml, shown in Listing 1 °. The struc-
ture of the test is straightforward — parse a malicious payload
(CVE-2022-38751.yml), and verify that this leads to a stack overflow
error.

Such tests can be sourced from code snippets or databases (like
ysoserial 1%) showing how to exploit vulnerabilities, or existing tests
in vulnerability patches. We found it generally easy to locate such
tests for all vulnerabilities we studied, however, this might be more
challenging for new vulnerabilities where patches or independent
POV projects are not yet available. Often some additional work was
required to get existing tests to compile and run as they required
additional helper classes. This was usually a straight-forward it-
erative process consisting of inspecting compiler error logs, and
locating missing classes. We also invested some time to review
the acquired POVs, and integrate them into our framework. While
there is some moderate manual effort required to create (acquire and
check) POVs, there is emerging work to synthesise them [6, 23, 25],
which could eventually lead to a fully automated detection pipeline.
Those approaches are discussed in more detail in Section 7.

The purpose of such a POV test is not to demonstrate the cor-
rectness of the program but to prove the presence of a vulnerability.
This can be achieved by demonstrating the effects of an exploited
vulnerability, such as running a command to create an observable
effect like creating a file (for an RCE vulnerability) or triggering a
stack overflow, out-of-memory or timeout error (for a DOS vulner-
ability). Using such exploitability witness tests where these effects
are used in oracles facilitates automation. For instance, running
such witness tests can be standardised (e.g., run "mvn test"). Such
POV tests are embedded in a project (which we from now on simply
refer to as the POV) that has a minimal setup — a Maven project with
a dependency on the project under test declared in pom.xml, the
actual test, and an additional dependency on JUnit5. We found that
POV projects are particularly useful to communicate with projects
when reporting vulnerabilities as engineers are used to this setup,
and can directly use it for diagnosing vulnerable components.

The weak coupling of the test(s) with the project under test
achieved by creating a separate POV project (as opposed to adding
a test to the actual project via a pull request) has two advantages.

The code listings are shortened for brevity.
1Ohttps://github.com/frohoff/ysoserial

Listing 2: CVE-2022-38751 POV Metadata

Firstly, it means that tests have to rely on public APIs of the pro-
gram under test, which better reflects real-world usage scenarios
than tests that are part of the project and have access to non-public
APIs. This is similar to the use or synthesis of tests in client projects
[6, 25]. Secondly, this facilitates test adaptation for other projects.
Le., assuming we have constructed a POV ¢ty to demonstrate that
some vulnerability is present in some component ¢y, we can adapt
1o to t; in order to demonstrate that the vulnerability is also present
in some similar project c1. Note that the test adaptation here is not
just about adapting the actual test code, but also about the adap-
tation of the entire test project, as the dependency on ¢ has to be
replaced by a dependency on c; (in pom.xml). The actual test may
also need adaptation, as the APIs in ¢p and ¢; might be similar, but
not identical. In our case, this adaptation is about changing package
names, by replacing the imports in the AST-representation of the
test sources to account for the package renaming that may have
been performed during shading. The information about which pack-
age names to change is recorded during the clone analysis, when
ASTs are compared and different package references in otherwise
isomorphic ASTs are encountered.

A POV test may be (almost) mechanically constructed from
existing project regression tests, in which case success indicates
absence of the vulnerability; alternatively, it may be designed to
succeed when the vulnerability is present, as in Listing 1. In order to
support both approaches, we add a pov-project. json file to each
POV project that indicates the vulnerable artifact versions, along
with CVE details and the testSignalWhenVulnerable property
specifying the expected test outcome (pass, fail or error). Note
that this format aligns closely with the format used in the GHSA
database. An example of this specification for CVE-2022-38751 is
shown in Listing 2.

To verify the presence of the vulnerability in a clone, we adapt
the POV project for the clone as described above, run mon test,
and check whether test signals recorded are identical with the
expected signal defined in pov-project. json. If this is the case,
the presence of the vulnerability is confirmed. This can be done by
(mechanically) analysing the Surefire reports generated by Maven.

3 Evaluation Methodology
3.1 Dataset

The selection of the set of CVEs used for evaluation was driven by
the desire to include:
(1) widely used artifacts, as determined by the number of down-
stream clients reported by Maven

https://github.com/frohoff/ysoserial

On the Security Blind Spots of Software Composition Analysis

(2) CVEs of different types, namely vulnerabilities exploitable
for remote code execution (RCE) and denial of service (DOS)
attacks

(3) some high-impact vulnerabilities that have been exploited
in the wild such as log4shell

(4) libraries from different domains

(5) CVEs in libraries we considered good candidates for cloning.

We argue that single-purpose libraries that do not have sig-
nificant further upstream dependencies and do not use dynamic
binding features are better candidates for shading as this makes
integration easier. In particular, we expect that complex applica-
tion frameworks such as Spring and Struts are not good candidates
for shading. Since our aim was to make CVEs testable in order to
design a precise analysis, we furthermore gave preference to CVEs
with available proof-of-vulnerability projects we could then reuse
(usually with some modifications). In particular for vulnerabili-
ties that have a high severity, such projects often exist. Sometimes
projects covering entire classes of vulnerabilities can be used for
this purpose: a good example is ysoserial !, which contains a POV
for CVE-2015-6420 that we were able to use in a slightly modified,
testable form.

We selected 10 CVEs manually to fit those criteria. We then
complemented this dataset with CVEs from vul4j [5], an indepen-
dent dataset consisting of vulnerabilities, artifacts and vulnerability
patches including regression tests. Vul4j consists of 79 CVEs. We
found that most are not suitable for our purpose for different rea-
sons: many CVEs in vul4j are related to application frameworks,
27 alone are from 3 frameworks (Spring, Struts and Jenkins). Some
do not have tests (e.g., CVE-2016-3720 and CVE-2017-5662), the
vulnerability cannot be reproduced with the provided test(s) (e.g.,
CVE-2019-10173, CVE-2018-1000850) or the component flagged as
vulnerable is not in Maven Central (e.g., CVE-2018-17202, CVE-
2018-17201). In the end we added 19 additional CVEs from vul4j.
The total dataset of 29 can be found in Table 1. The table shows the
wide coverage of our dataset with respect to vulnerability types,
years when the CVE was assigned, and vulnerable components.
The NVD base scores are extracted from the NVD entry for the
respective CVE 12,

3.2 SCA Tool Selection

We used a curated set of SCA tools to confirm that: (1) All tool(s)
can detect the vulnerability in the original artifacts. (2) Some / all
tools fail to detect the vulnerability in some / all clones.

The SCA tools used are listed in Table 2. We selected them in
order to provide a variety of detection implementations, aiming to
increase the coverage of vulnerability DBs while keeping the effort
of running multiple tools manageable. Some tools have the option
of either invoking them from the command line (cli) or integrating
scanning with the build process (plugin), thus we perform evalua-
tion with tools in both categories. We expect both the functionality
of these SCA tools and the contents of their DBs to overlap, but not
to be equivalent. Reasons for this are discussed in Section 1. As an
example, adding GitHub’s Dependabot would not have increased

Hhttps://github.com/frohoff/ysoserial
2https://mvd.nist.gov/vuln/detail/< cve>

SCORED 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 1: Dataset used in the evaluation, organised by severity
(NVD base score as of 10 April 2024) and type. c- stands for
“apache commons”. Vulnerabilities not sourced from the vul4j
dataset are highlighted bold.

cve project type NVD base score
CVE-2022-25845 fastjon RCE/XSS 9.8 CRITICAL
CVE-2022-42889 c-text RCE/XSS 9.8 CRITICAL
CVE-2021-44228 log4j RCE/XSS 10.0 CRITICAL
CVE-2015-6420 c-collections RCE/XSS N/A
CVE-2020-1953 c-config RCE/XSS 10.0 CRITICAL
CVE-2017-18349 fastjson RCE/XSS 9.8 CRITICAL

CVE-2016-0779 tomee RCE/XSS 9.8 CRITICAL
CVE-2015-7501 c-collections RCE/XSS 9.8 CRITICAL
CVE-2016-6798 sling other 9.8 CRITICAL
CVE-2016-2510 beanshell RCE/XSS 8.1 HIGH
CVE-2022-45688 json.org DOS 7.5 HIGH
CVE-2019-12402 c-compress other 7.5 HIGH
CVE-2019-0225 jspwiki other 7.5 HIGH
CVE-2016-6802 shiro other 7.5 HIGH
CVE-2016-7051 jackson other 8.6 HIGH
CVE-2017-15717 sling RCE/XSS 6.1 MEDIUM
CVE-2016-5394 sling RCE/XSS 6.1 MEDIUM
CVE-2015-6748 jsoup RCE/XSS 6.1 MEDIUM
CVE-2022-38749 snakeyaml DOS 6.5 MEDIUM
CVE-2022-38751 snakeyaml DOS 6.5 MEDIUM
CVE-2018-10237 guava DOS 5.9 MEDIUM
CVE-2018-11771 c-compress DOS 5.5 MEDIUM
CVE-2018-1324 c-compress DOS 5.5 MEDIUM
CVE-2018-8017 tika DOS 5.5 MEDIUM
CVE-2021-29425 c-io DOS 4.8 MEDIUM
CVE-2018-1002201 zt-zip DOS 5.5 MEDIUM
CVE-2014-0050 c-fileupload ~ DOS N/A
CVE-2013-2186 c-fileupload other N/A
CVE-2013-5960 esapi other N/A

DB coverage of our evaluation because its vulnerability DB, GHSA,
is already covered by our selection.

Table 2: SCA Tools used

tool mode databases (java)
OWASP Dependency-Check (owasp) plugin ~ NVD, OSS Index
Snyk cli proprietary
Grype cli NVD, GHSA
Eclipse Steady (steady) plugin Project KB

4 Evaluation Results

4.1 Pipeline Performance

We implemented a tool pipeline for the method described in Sec-
tion 2. Using this pipeline, we start with fetching 1,000 potentially
matching artifacts for each of up to 10 class names. We record
the number of artifacts after each step of processing and filtering.
We report a summary of the results in Table 3, both for artifacts,
and for artifacts aggregated across versions. This indicates that
we find vulnerable clones for 18 / 29 components (column 10 of
Table 3). Interestingly, there is one vulnerability where we do not
find any matching artifact using any of the initial queries. This is
for CVE-2016-6802, a vulnerability in org.apache.shiro:shiro-all:1.3.1.
This artifact does not define classes itself, but bundles other shiro
components, acting as a virtual meta component. Our algorithm is
currently not able to extract classes to be used as queries here. The

https://github.com/frohoff/ysoserial
https://nvd.nist.gov/vuln/detail/<cve>

SCORED °24, October 14-18, 2024, Salt Lake City, UT, USA

last column shows the number of vulnerable clones where shading
was applied and packages have been renamed.

The clones detected sets may contain false positives, while the vul-
nerability confirmed sets do not. The ratio between them (727/4,980
= 0.1460) suggests that without the testing synthesis and evaluation
steps the analysis might have been too imprecise to be useful.

Figure 1 depicts, for each CVE, the pipeline throughput for each
stage of processing as a fraction of the initial set of artifacts ac-
quired via the Maven API For almost all consolidated artifacts (i.e.,
artifacts appearing in the result set of more than one query), poms
can be acquired. At the no dependency stage, artifacts with a depen-
dency on the original vulnerable artifacts are filtered out as they
are likely to represent effective false positives. Our mechanism to
acquire sources generally works well, but there are cases where
sources cannot be located using the REST API, and may just be
missing. We also observed a very few cases where we were able to
acquire sources, but unable to unpack the downloaded (potentially
corrupted) archives. In the actual clone detection step, a significant
number of artifacts is removed. Note that that this step is a simple,
very fast static analysis. The last stages to establish whether the
instantiated POV project can be built and tested successfully (i.e.,
the POV signal being confirmed) is a significantly more expensive
analysis as this requires a build and multiple interactions with the
Maven repository to resolve and fetch the dependencies of the
instantiated POV project.

4.2 Vulnerable Artifacts Found

We find vulnerable clones for 18 of the 29 CVEs studied; details are
shown in Table 3. The total number of vulnerable artifacts found
is 727 across all CVEs. Often those are different versions of the
same artifact: after ignoring versions and deduplicating (“aggre-
gated”), the number drops to 86. The highest number of vulnerable
components is detected for CVE-2022-45688, a DOS vulnerability
in org.json:json:20230227, with 419 vulnerable clones detected (26
aggregated). JSON parsing and encoding is a popular requirement
for data persistence and exchange, and the compact, self-contained
nature of json.org makes it a good candidate for shading. This is
also a library suitable to make data collected by agents persistent,
i.e., it is a likely candidate to cause classpath conflicts that can be
avoided with shading.

The last column in Table 3 reports the vulnerable clones where
shading with renaming of packages has been applied. This is the
case for 45.35% of the detected artifacts. This number is high and
particularly significant as the embedded code is now less likely to
be spotted by developers or tools.

We detected 15 clones for the infamous CVE-2021-44228 log4;j
vulnerability (3 aggregated across versions); none rename packages.

4.3 SCA Results

We have set out to investigate whether existing SCA tools and anal-
yses find vulnerabilities in clones. To set a baseline, we first had to
establish whether the selected SCA tools (see Section 3.2) can de-
tect the vulnerability in the original artifact 13. Table 4 summarises

130ften, vulnerabilities are reported for entire version ranges. The artifact we consider
in this case is the latest within the range. The precise coordinates can be found in
the POV repository, in the pom.xml dependency settings in the POV project for the
respective CVE.

Jens Dietrich, Shawn Rasheed, Alexander Jordan and Tim White

these results 4. Note that for Steady there are vulnerabilities not
included in its custom database. We marked those vulnerabilities as
n/a in Tables 4 and 5 '°. We performed a similar check for Snyk as
it also uses a custom database 1°; it appears that the Snyk database
contains all CVEs we have studied.

This shows that the SCA tools considered can detect most vul-
nerabilities, with minor variations between them.

We then used the same tools to check the clones detected by
our analysis. The results are shown in Table 5. Since we detect
vulnerable clones for only 18 of 29 vulnerabilities, this table has
only 18 rows. The any column indicates the number of clones that
are detected by at least one of these four existing tools: only 20.50%
(149/727). However, this is still a very conservative estimate, and
the effective detection rate from a practical point of view is lower
as projects would typically only use one of these SCA tools.

8 CVEs have at least one clone that no standard SCA tool detects.

4.4 Scalability

Experiments were conducted on a server running Linux 6.3.8-arch1-
1 with 8 Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz CPUs, and
64GB RAM. The serial run of the analyses for all 29 CVEs took 12
hours 15 minutes. We have invested significant effort in caching
of both REST query results and build results, resulting in re-runs
being faster by an order of magnitude (50 minutes when running
the experiments using 4 parallel tasks).

5 Limitations, Threats to Validity and
Reproducibility

5.1 Precision

Our analysis is designed to be precise. This is ensured by making vul-
nerabilities testable through POVs. However, there is a possibility
that those tests do not correctly reflect the vulnerability. Sometimes
vulnerabilities are reported in great detail. An example is parser
vulnerabilities discovered by fuzzers like OSS-Fuzz [52], which dis-
covers and reports payloads 1. Sometimes, reports are vague (and
sometimes this is on purpose as part of the disclosure process),
and POVs are constructed from the understanding of an individual
programmer of the vulnerability. Sometimes, those tests may miss
some additional security measures that clones may introduce - for
instance, the tests for CVE-2022-42889 in commons-text:1.9 check
whether interpolator lookup provides entries for the script, dns and
url prefixes, and test the execution of an OS command using the
script prefix. But the tests do not check whether actual network
lookups happen for those prefixes. This is an engineering compro-
mise — additional network connectivity makes tests flaky and slows
down the pipeline, and we deem the overall risk that this introduces
false positives very low.

4The SCA tool reports used for Tables 4 and 5, including timestamps of when the
evaluations were performed, can be found in the POV repository.

15The test used for this purpose was whether https://github.com/SAP/project-kb/tree/
vulnerability-data/statements/<cve> returned a 404 status code or not, the checks
were performed on commit 46b6932

16We checked the Snyk database through its web interface, using the following URL
pattern: https://security.snyk.io/vuln/maven?search=<cve>

For instance, see https://www.cvedetails.com/cve/CVE-2022-38750/, https://
bitbucket.org/snakeyaml/snakeyaml/issues/526/stackoverflow-oss-fuzz-47027 for a
CVE reported by OSS-Fuzz.

https://github.com/SAP/project-kb/tree/vulnerability-data/statements/<cve>
https://github.com/SAP/project-kb/tree/vulnerability-data/statements/<cve>
https://security.snyk.io/vuln/maven?search=<cve>
https://www.cvedetails.com/cve/CVE-2022-38750/
https://bitbucket.org/snakeyaml/snakeyaml/issues/526/stackoverflow-oss-fuzz-47027
https://bitbucket.org/snakeyaml/snakeyaml/issues/526/stackoverflow-oss-fuzz-47027

On the Security Blind Spots of Software Composition Analysis

SCORED ’24, October 14-18, 2024, Salt Lake City, UT, USA

Table 3: Pipeline throughput statistics — counts after each stage of processing

query consol- valid no depend- sources clones pov pov vulnerability shaded
results idated pom ency acquired detected compilable testable confirmed
artifacts (GAV)
min 0 0 0 0 0 0 0 0 0
max 4,675 2,666 2,664 1,367 1,267 669 574 483 419 190
>0 28 27 27 27 27 24 23 23 18 8
avg 1,840.34 1,029.10 1,025.83 548.14 527.97 171.72 163.07 61.07 25.07 12.72
sum 53,370 29,844 29,749 15,896 15,311 4,980 4,729 1,771 727 369
different versions aggregated (GA)
max 410 294 293 171 165 44 34 26 26 13
avg 153.86 81.62 81.03 53.24 50.41 11.10 10.17 6.38 2.97 1.00
sum 4,462 2,367 2,350 1,544 1,462 322 295 185 86 29
120.00%
—=— CVE-2013-2186 —4— CVE-2013-5960
100.00% CVE-2014-0050 —a— CVE-2015-6420

80.00%

60.00%

40.00%

20.00%

o
&
- » -

valid
pom

0.00%
query

results

consolidated clones

detected

no dependency sources
acquired

v

compilable

—»— CVE-2015-6748
—44— CVE-2016-0779
—&— CVE-2016-5394
—— CVE-2016-6802
—se— CVE-2017-15717

CVE-2018-1002201
—e— CVE-2018-11771
—&— CVE-2018-8017
—— CVE-2019-12402
—¥— CVE-2021-29425
—+— CVE-2022-25845

CVE-2022-38751
pov vulnerability ——— CVE-2022-45688
testable confirmed

CVE-2015-7501
CVE-2016-2510
CVE-2016-6798
—+— CVE-2016-7051
—— CVE-2017-18349
—m®— CVE-2018-10237
CVE-2018-1324
CVE-2019-0225
CVE-2020-1953
—o— CVE-2021-44228
—— CVE-2022-38749
—#— CVE-2022-42889

Figure 1: Pipeline throughput relative to the number of artifacts initially fetched

40

36
35
= 30
A
2 25 23
£8
53 20
53
50
25 15
£5 12
28 ., 10
H
& 5
: .
0
0-200

201-400 401-600 601-800 801-1000

batches

Figure 2: New vulnerable clones retrieved by batch, aggre-
gated (versions ignored)

5.2 Soundness

Our analysis is unsound in the sense that it does not find all vul-
nerable components that are clones of already known vulnerable
components. As with all program analysis, we must strike a bal-
ance between precision, scalability and recall, with theoretical and
practical limitations implying that a non-trivial analysis that is
precise, sound and fast is not possible. Priority was given to pre-
cision in line with industry best practices, driven by developer
acceptance [4, 14, 51]. Scalability considerations had to be taken
into account as repositories are very large and evolving, and main-
taining a copy is not feasible for economic reasons. Therefore, we
decided to limit interactions with Maven repositories via the REST
API by limiting the number of queries. While some of this can be

Table 4: CVEs detected by various SCA tools in the original

artifact associated with the CVE

CVE-2016-6802
CVE-2016-7051
CVE-2017-15717
CVE-2017-18349
CVE-2018-1002201
CVE-2018-10237
CVE-2018-11771
CVE-2018-1324
CVE-2018-8017
CVE-2019-0225
CVE-2019-12402
CVE-2020-1953
CVE-2021-29425
CVE-2021-44228
CVE-2022-25845
CVE-2022-38749
CVE-2022-38751

N AN NN NN NN NN
RS N

CVE grype owasp snyk steady any
CVE-2013-2186 n/a
CVE-2013-5960 X
CVE-2014-0050 X
CVE-2015-6420 n/a
CVE-2015-6748 v
CVE-2015-7501 n/a
CVE-2016-0779 v
CVE-2016-2510 v
CVE-2016-5394 n/a
CVE-2016-6798 n/a

S N N N N N N N N NN
N RN N N N N N N N N R N N NN S RN NENEN

S N N N N N N N N N N NN NN

CVE-2022-42889 X
CVE-2022-45688 n/a
sum 16

S BN N N N N N N N N N N NN NN NN NN

SIXX XXX CCCAUX X CCUCNNAX CUX X UX X OX XX X|R

achieved by engineering (in particular, our tool caches extensively),
sometimes those restrictions (number of classes used to detect clone

SCORED °24, October 14-18, 2024, Salt Lake City, UT, USA

Table 5: CVEs detected by various SCA tools in clones found
by our approach

CVE total grype owasp snyk steady any
CVE-2015-6420 3 0 0 0 n/a 0
CVE-2015-7501 3 0 0 0 n/a 0
CVE-2016-2510 3 0 1 1 3 3
CVE-2016-5394 1 1 1 0 n/a 1
CVE-2016-6798 1 1 0 0 n/a 1
CVE-2016-7051 7 0 7 0 1 7
CVE-2018-10237 31 8 21 0 17 26
CVE-2018-11771 92 0 3 0 1 3
CVE-2018-1324 2 0 2 0 0 2
CVE-2018-8017 17 0 0 0 3 3
CVE-2019-12402 1 0 1 0 0 1
CVE-2021-29425 56 0 5 1 1 5
CVE-2021-44228 15 0 14 0 15 15
CVE-2022-25845 30 0 2 0 n/a 2
CVE-2022-38749 21 0 21 1 n/a 21
CVE-2022-38751 21 0 21 1 n/a 21
CVE-2022-42889 4 0 4 0 0 4
CVE-2022-45688 419 0 34 1 n/a 34
all 727 10 137 5 41 149

candidates, number of results and pages fetched for each query)
imply that results are missed.

Our analysis will also miss clones that are on the subclass level
(e.g., single functions), or clones that have custom source code
modifications beyond package renaming and altering or removing
comments. Whether lowering the clone detection threshold would
detect more vulnerable artifacts is an interesting topic for future
research. We expect that the law of diminishing returns will apply.

We think that the proposed simple analysis is still useful as its
purpose is not to measure the number of artifacts associated with
vulnerabilities, but to demonstrate that this is a significant problem
that deserves attention.

Another limitation of our analysis is that it relies on source
code for the clone detection step when language-specific ASTs are
constructed. Components written in other JVM-targeting languages
are thus not covered, decreasing the detection rate of our tool. While
the pipeline analysis (Table 3) suggests that this is not a big problem,
future work can address it by writing source-code based clone
analyses for alternative languages like Kotlin, or by switching to a
bytecode-based method that can abstract from compiler specifics 8]
and deal with the effects of non-deterministic compilation [66].

We make no claim that the parameters used in our analysis are
optimal. Clearly, fetching more pages of query result data would
improve recall, though, as Figure 2 shows, there is some evidence
of diminishing returns. The initial query size of 1,000 was chosen
as a good trade-off between performance and recall.

5.3 Reproducibility

Both the repository and the vulnerability database constantly evolve,
inherently limiting reproducibility. We expect that, as we release re-
sults as described in Section 6 and the GHSA database gets updated
and synchronised with other databases, many of the vulnerable
clones we detect will be reported by other SCA tools, which use
those databases. This will affect the results reported in Table 5.
The source code of the tool, the input dataset (POV for the
various CVEs) and the release repository are available here:

(1) https://github.com/jensdietrich/shadedetector/ — tool source

Jens Dietrich, Shawn Rasheed, Alexander Jordan and Tim White

(2) https://github.com/jensdietrich/xshady/ - POVs for original
vulnerable projects (see Section 3.1), including the reports
generated by SCA tools (in <project>/scan-results)

(3) https://github.com/jensdietrich/xshady-release- released POVs
for shaded components found (see Section 6.1), including the
reports generated by SCA tools (in <project>/scan-results)

6 Disclosure

6.1 Disclosure Process

We describe the process we are using to disclose our findings. This
is not straightforward as we are not finding new vulnerabilities, so
the standard vulnerability disclosure process does not necessarily
apply. Instead, we detect new propagation pathways along which
vulnerabilities spread, i.e., hidden dependencies not being detected
by existing SCA tools due to their current limitations.

However, there is a grey zone between cloning or shading a
library, and inlining some code that becomes part of a unique new
product, with its own unique vulnerabilities. To decide how to dis-
close the presence of a detected vulnerability, we took the following
criteria into account: (1) Whether the project is designed to be a full
clone of the original artifact. This is determined by the artifact name
being the same or very similar to the name of the original artifact.
This can still be the case if the artifact uses shading. (2) Whether
the project is critical. This is defined as having a high number of
contributors to the associated repository, or external dependents
on Maven Central outside the group of the artifact. (3) Whether the
project has been remediated, interpreted as whether there was a
newer version available in the repository at the time of the analysis,
and the analysis did not detect the vulnerability in this version.

For projects that are full clones, not critical or remediated, we
performed database disclosure: We released the instantiated POV
projects into a GitHub repository, and published results by modify-
ing the entries in the GitHub advisory database via pull requests.
We disclosed all other projects to the vendor.

6.2 Accepted Disclosures

At the time of submission, our work had resulted in 10 changes to
the GitHub security advisory via accepted pull requests 1 (note that
some pull requests were manually merged in — these are marked
with an asterisk): CVE-2022-38749 (PR: 2258*), CVE-2022-42889
(PR: 2273%), CVE-2015-6420 (PR: 2326), CVE-2018-10237 (PR: 2444%),
CVE-2021-44228 (PR: 2445*), CVE-2019-12402 (PR: 2823*), CVE-
2016-5394 (PR: 2826), CVE-2016-6798 (PR: 2827), CVE-2015-7501
(PR: 2841), CVE-2018-1324 (PR: 2855).

We found CVE-2022-45688 in a shaded version of json.org in
several components in the org.graalvm.tools group. Those were
disclosed to the vendor, and a patch was announced in the Oracle
Critical Patch Update Advisory July 2023 1°. Those vulnerabilities
were classified as non-exploitable.

7 Related Work

A study by Contrast Security investigated vulnerabilities in Java
applications and found that “custom Java applications contain from

18The URL pattern for the respective pull request is https://github.com/github/advisory-
database/pull/<PR>
Yhttps://www.oracle.com/security-alerts/cpujul2023.html

https://github.com/jensdietrich/shadedetector/
https://github.com/jensdietrich/xshady/
https://github.com/jensdietrich/xshady-release
https://github.com/github/advisory-database/pull/<PR>
https://github.com/github/advisory-database/pull/<PR>
https://www.oracle.com/security-alerts/cpujul2023.html

On the Security Blind Spots of Software Composition Analysis

5 to 10 security vulnerabilities per 10,000 lines of code” [63]. They
point out that it generally has to be assumed that vulnerabilities are
present in all applications, but on the other hand, that this does not
always render applications unsafe. Mir et al. [33] point out that “less
than 1% of packages have a reachable call path to vulnerable code in
their dependencies”, alerting to precision problems of dependency-
based SCA. However, those results have to be interpreted with
caution. The underlying call graph analysis is based on Opal [15],
configured to run the rather inaccurate (but fast) class hierarchy
analysis (CHA, [20]). This is likely to miss many dynamic call graph
edges [57] which are exploited in vulnerabilities. As an example,
consider CVE-2015-6420. This vulnerability can be exploited by
deserializing objects from an incoming stream, and therefore the
call graph path from application classes to vulnerable classes in
this library is highly obfuscated, and unlikely to be detected by
CHA-based (or any other scalable) call graph construction method.
The work by Wu et al. [65] is related, with similar limitations. Kula
et al. [27] studied how developers respond to vulnerabilities being
detected in dependencies they rely on. They found that most of the
time outdated dependencies are kept, and developers are unlikely to
respond to security advisories [27]. Similar results, reporting signifi-
cant delays to upgrade vulnerable dependencies, were also observed
for other ecosystems, for instance by Decan et al. for NPM [10]
and Alfadel et al. for Python [1]. Mirhosseini and Parnin studied
whether automated pull requests (PRs) are effective to speed up
upgrades [34]. This mechanism is often deployed by composition
analysis tools like GitHub’s popular Dependabot. In general, they
found that PRs do speed up upgrades, although the merge rate is
still surprisingly low at around a third of all PRs. Alfadel et al. stud-
ied particular PRs made by Dependabot, and found a significantly
higher acceptance (merge) rate of about two thirds. This study
considered only NPM projects. Dann et al. [9] studied several OSS
vulnerability scanners (OWASP Dependency-Check, Eclipse Steady,
Snyk, Black Duck, WhiteSource) and evaluated their performance
on a set of 7,024 projects collected by SAP. They found limitations
of the tools to deal with several modifications (re-compilation, re-
bundling, metadata-removal and re-packaging) of the original vul-
nerable projects. Their observations are consistent with ours, and
the respective modifications roughly correspond to our notions of
cloning and shading. Bui et al. developed vul4j [5], a dataset consist-
ing of 79 reproducible vulnerabilities from 51 open-source projects.
Reproducibility is achieved via proof-of-vulnerability (POV) tests.
This is the same approach we are using to confirm the presence of
a vulnerability. We use some suitable parts of this dataset for our
evaluation — details will be discussed in Section 3.1.

Ponta et al. [42] propose a hybrid, code-centric vulnerability
detection method that overcomes the limitations (here mainly seen
as the low precision) of metadata-based SCA approaches. Their
analysis uses code changes introduced by security fixes. The tool
resulting from this is vulas, later renamed to Steady. Ponta et al. [43]
then compare the performance of Steady with OWASP Dependency-
Check, and find that the sampled Steady results are all true positives,
while OWASP Dependency-Check produces a significant number of
false positives. Their evaluation includes the detection of re-bundled
packages; this notion encompasses shading. We have used both
Steady and OWASP Dependency-Check in our evaluation, and found
that our tool finds vulnerabilities both tools miss (see Section 4.3).

SCORED 24, October 14-18, 2024, Salt Lake City, UT, USA

Possible reasons for Steady failing to detect certain vulnerabilities
are (1) gaps in the knowledge base it relies on, and (2) the fact that
it does not use a specific driver for the dynamic analysis part. This
affects the reachability analysis, and may therefore lead to false
negatives. In our approach, this problem is avoided by the use of
targeted test cases. Our approach does not rely on the creation and
maintenance of a knowledge base, whereas Steady does. In Tables 4
and 5 we report CVEs not supported by Project KB to gauge the
impact the first reason has on Steady results.

Research into code clone detection has established a classification
for levels of clone similarity: type-1 clones are identical except for
layout (whitespace) and comments; type-2 clones are syntactically
equivalent, allowing for renaming of variables, functions, types,
etc.; type-3 clones are syntactically similar, additionally allowing
for some statements to be added or removed. Clone detection is
used to improve or enforce software development quality standards
by detecting unwanted copies of code leading to maintainability
or licensing issues, and, in academic settings to detect plagiarism.
There is a vast amount of research in this field, covered in surveys
such as [47, 50]. We use type-2 clone detection as a proxy to detect
compositional clones, i.e., the practice of copying (parts of) existing
software libraries into projects.

Binary code similarity [21] can be seen as an instance of clone
detection and related to our work. Comparing code at the binary
(or bytecode) level comes with the challenge of variations intro-
duced by different (versions of) compilers, different compile-time
transformations, and different compile environments. In particular
for Java, clone detection in bytecode has been studied by Dann et
al. [8]. They address the problem by translating bytecode into an
intermediate, soot-based format that can abstract from the particu-
larities of different compilers to some extent. We did consider using
a similar approach; however, as source code is readily available in
Maven, a traditional AST-based clone detection appears to be the
better choice as those problems can be avoided. Closely related to it,
and also targeting the Java open-source ecosystem, is SCA-related
research focusing on libraries included in released Android applica-
tions under the term third-party library detection [67]. Note that in
this context, research tries to solve the harder problem of creating
an analysis that is resilient to hiding and obfuscation of libraries.
It does this using similarity search techniques based on features
(e.g., class dependency structure, method signatures, control-flow
graphs) extracted from bytecode.

A recent study looked into a problem closely related to ours:
Rack and Staicu [44] studied the implications of using JavaScript
bundlers like webpack or rollup to merge library code into applica-
tions. They found that this practice is common, partially motivated
by the desire to avoid name clashes [40], a problem similar to the
classpath hell that motivates developers to shade Java libraries.
They found numerous web sites with vulnerabilities from bundled
libraries, although it is unclear how many of those vulnerabilities
are exploitable. The difference to our study is that they studied
applications (web sites), while we studied libraries. Studying web
sites creates a much larger dataset that can be acquired by crawling,
whereas our study focuses on deployed components in a component
ecosystem, i.e., software upstream in the software supply chain,

SCORED °24, October 14-18, 2024, Salt Lake City, UT, USA

each therefore with greater impact. Due to the use of proof-of-
vulnerability tests our analysis is also more precise. Finally, our
analysis is based on another ecosystem, Java.

Our approach leverages proof-of-vulnerability (POV) projects
with tests, and would therefore benefit from the automated genera-
tion of such projects and tests in order to scale up the analysis and
completely automate the detection of vulnerable clones. Currently,
the POVs we use are crafted from existing exploit code or regression
tests found in patches. There is some initial work to automate this.
Tannone et al. [23] proposed SIEGE, a tool to automatically generate
test cases demonstrating the exploitability of vulnerabilities. SIEGE
is built on top of EvoSuite [17], and customises its algorithm by
using fitness functions built from known details of a given vulnera-
bility (i.e., class and method names, and line number). SIEGE does
not use specific oracles to test for the effects of exploits. Kang et al.
[25] proposed test mimicry and a tool TRANSFER implementing this
approach. The aim is to construct a test case exploiting a library
vulnerability in a library client. Like SIEGE, TRANSFER also uses
EvoSuite, but uses an existing library witness test case to guide
the genetic algorithm. This is similar to our use of regression tests
included in the vul4j dataset. Chen et al. [6] propose Vesta, an ap-
proach that is conceptually similar to TRANSFER, but does not rely
on library tests. Instead, (less structured) exploit code can be used to
guide test generation. This approach might be suitable to partially
automate the generation of POV projects and tests from exploit
databases and snippets like ysoserial. As with SIEGE, It remains an
open problem how to generate oracles that facilitate testing for the
specific effects of an exploit.

Our use of POV tests can be considered a special case of test
adaptation. Mirzaaghaei et al. [35] proposed test adaptation to repair
existing and generate new test cases from existing ones during
software evolution. Test adaptation across different applications (i.e.,
not just different versions of the same application) has been used
successfully to utilise GUI tests in mobile apps (“source” apps) to
generate tests in other apps (“target” apps) [3, 29, 32]. This requires
some semantic mapping between apps. This is conceptually similar
to our use of POV projects testing a vulnerable component (source)
to synthesise POVs for vulnerable clones (targets). In our case, the
semantic mapping is straightforward as we can assume that the
clones are semantically very similar to the original component by
design ?°, and mapping is merely a matter of adjusting package
references changed due to shading, and component references.
Another difference is that our tests are not part of the component
under test, but embedded in an independent dedicated test project
to facilitate use cases like vulnerability reporting. The work of Kang
et al. [25] discussed above can also be considered as test adaptation,
with semantic matching based on existing tests providing fitness
functions for test generation.

8 Conclusion

We have presented a novel lightweight approach to detect the pres-
ence of vulnerabilities in components that use cloning and shad-
ing. We demonstrated that this reveals blind spots in vulnerability
databases and tools relying on those. This is a common problem

20We are careful here not to claim equivalence, as even renaming packages can change
the semantics of a component, e.g., when reflection is used.

Jens Dietrich, Shawn Rasheed, Alexander Jordan and Tim White

- we detected vulnerable clones for more than half of the vulnera-
bilities studied, including vulnerabilities that are critical, and have
been known for years.

Our results indicate that we need to design software composition
analysis tools that perform deeper analyses that do not rely only on
project metadata. Several accepted GHSA pull requests emphasise
the practical relevance of our findings.

9 Acknowledgements

The authors would like to thank Dhanushka Jayasuriya, Emanuel
Evans and Valerio Terragni. The work of the first author was sup-
ported by a gift by Oracle Labs Australia, the first and the last author
were supported by the New Zealand National Science Challenge
for Technological Innovation (Sfti) -funded Veracity project.

References

[1] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2023. Empirical analysis
of security vulnerabilities in python packages. Empirical Software Engineering
28, 3 (2023), 59.

[2] Sebastian Baltes and Christoph Treude. 2020. Code duplication on stack over-
flow. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: New Ideas and Emerging Results. 13-16.

[3] Farnaz Behrang and Alessandro Orso. 2019. Test migration between mobile apps
with similar functionality. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 54-65.

[4] AlBessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A few billion
lines of code later: using static analysis to find bugs in the real world. Commun.
ACM 53, 2 (2010), 66-75.

[5] Quang-Cuong Bui, Riccardo Scandariato, and Nicolas E Diaz Ferreyra. 2022.
Vul4]: a dataset of reproducible Java vulnerabilities geared towards the study of
program repair techniques. In Proceedings of the 19th International Conference on
Mining Software Repositories. 464-468.

[6] Zirui Chen, Xing Hu, Xin Xia, Yi Gao, Tongtong Xu, David Lo, and Xiaohu Yang.
2023. Exploiting Library Vulnerability via Migration Based Automating Test
Generation. arXiv preprint arXiv:2312.09564 (2023).

[7] Md Atique Reza Chowdhury, Rabe Abdalkareem, Emad Shihab, and Bram Adams.
2021. On the untriviality of trivial packages: An empirical study of npm javascript
packages. IEEE Transactions on Software Engineering 48, 8 (2021), 2695-2708.

[8] Andreas Dann, Ben Hermann, and Eric Bodden. 2019. Sootdiff: Bytecode com-
parison across different java compilers. In Proceedings of the 8th ACM SIGPLAN
International Workshop on State of the Art in Program Analysis. 14-19.

[9] Andreas Dann, Henrik Plate, Ben Hermann, Serena Elisa Ponta, and Eric Bodden.
2021. Identifying challenges for oss vulnerability scanners-a study & test suite.
IEEE Transactions on Software Engineering 48, 9 (2021), 3613-3625.

[10] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Proceedings
of the 15th international conference on mining software repositories. 181-191.

[11] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2019. An empirical compar-

ison of dependency network evolution in seven software packaging ecosystems.

Empirical Software Engineering 24 (2019), 381-416.

Stephanie Dick and Daniel Volmar. 2018. DLL hell: Software dependencies,

failure, and the maintenance of Microsoft Windows. IEEE Annals of the History

of Computing 40, 4 (2018), 28-51.

[13] Jens Dietrich, Kamil Jezek, and Premek Brada. 2016. What Java developers know
about compatibility, and why this matters. Empirical Software Engineering 21
(2016), 1371-1396.

[14] Dino Distefano, Manuel Fahndrich, Francesco Logozzo, and Peter W O’'Hearn.
2019. Scaling static analyses at Facebook. Commun. ACM 62, 8 (2019), 62-70.

[15] Michael Eichberg and Ben Hermann. 2014. A software product line for static anal-
yses: the OPAL framework. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on the State of the Art in Java Program Analysis. 1-6.

[16] Michael D Ernst. 2003. Static and dynamic analysis: Synergy and duality. In
WODA 2003: ICSE Workshop on Dynamic Analysis. 24-27.

[17] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416-419.

[18] GitHub, Inc. 2020. Dependabot — Automated dependency updates built into
GitHub. https://github.com/dependabot.

[19] GitHub, Inc. 2024. GitHub Advisory Database. https://github.com/advisories.

[12

https://github.com/dependabot
https://github.com/advisories

On the Security Blind Spots of Software Composition Analysis

[20]

[21

[22]

[23

[24

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37

[38]
[39]

[40]

[41]

[42]

[43]

David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. 1997. Call
graph construction in object-oriented languages. In Proceedings of the 12th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications. 108-124.

Irfan Ul Haq and Juan Caballero. 2021. A Survey of Binary Code Similarity.
Comput. Surveys 54 (6 2021), 1-38. Issue 3. https://doi.org/10.1145/3446371
Raphael Hiesgen, Marcin Nawrocki, Thomas C Schmidt, and Matthias Wihlisch.
2022. The race to the vulnerable: Measuring the log4j shell incident. arXiv
preprint arXiv:2205.02544 (2022).

Emanuele Iannone, Dario Di Nucci, Antonino Sabetta, and Andrea De Lucia.
2021. Toward automated exploit generation for known vulnerabilities in open-
source libraries. In 2021 IEEE/ACM 29th International Conference on Program
Comprehension (ICPC). IEEE, 396-400.

Kamil Jezek, Jens Dietrich, and Premek Brada. 2015. How Java APIs break—-an
empirical study. Information and Software Technology 65 (2015), 129-146.

Hong Jin Kang, Truong Giang Nguyen, Bach Le, Corina S Pasareanu, and David
Lo. 2022. Test mimicry to assess the exploitability of library vulnerabilities. In
Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis. 276-288.

Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Struc-
ture and evolution of package dependency networks. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE, 102-112.
Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? An empirical study
on the impact of security advisories on library migration. Empirical Software
Engineering 23 (2018), 384-417.

Davy Landman, Alexander Serebrenik, and Jurgen J Vinju. 2017. Challenges for
static analysis of java reflection-literature review and empirical study. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE,
507-518.

Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test transfer across
mobile apps through semantic mapping. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 42-53.

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondfej Lhotak, J Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Moller,
and Dimitrios Vardoulakis. 2015. In defense of soundiness: A manifesto. Commun.
ACM 58, 2 (2015), 44-46.

Jeff Luszcz. 2018. Apache struts 2: how technical and development gaps caused
the equifax breach. Network Security 2018, 1 (2018), 5-8.

Leonardo Mariani, Ali Mohebbi, Mauro Pezzé, and Valerio Terragni. 2021. Se-
mantic matching of gui events for test reuse: are we there yet?. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
177-190.

Amir M Mir, Mehdi Keshani, and Sebastian Proksch. 2023. On the Effect of Tran-
sitivity and Granularity on Vulnerability Propagation in the Maven Ecosystem.
arXiv preprint arXiv:2301.07972 (2023).

Samim Mirhosseini and Chris Parnin. 2017. Can automated pull requests en-
courage software developers to upgrade out-of-date dependencies?. In 2017 32nd
IEEE/ACM international conference on automated software engineering (ASE). IEEE,
84-94.

Mehdi Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzé. 2012. Supporting test
suite evolution through test case adaptation. In 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation. IEEE, 231-240.
National Institute of Standards and Technology, U.S. Department of Commerce.
2022. National Vulnerability Database. https://nvd.nist.gov/vuln.

Shradha Neupane, Grant Holmes, Elizabeth Wyss, Drew Davidson, and Lorenzo
De Carli. 2023. Beyond typosquatting: an in-depth look at package confusion. In
32nd USENIX Security Symposium (USENIX Security 23). 3439-3456.

OWASP Foundation, Inc. 2013. OWASP Dependency-Check. https://owasp.org/
www-project-dependency-check/.

OWASP Top 10 team. 2021. A06:2021 — Vulnerable and Outdated Components.
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/.
Jibesh Patra, Pooja N Dixit, and Michael Pradel. 2018. Conflictjs: finding and
understanding conflicts between javascript libraries. In Proceedings of the 40th
International Conference on Software Engineering. 741-751.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. 2023. The impact
of ai on developer productivity: Evidence from github copilot. arXiv preprint
arXiv:2302.06590 (2023).

Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2018. Beyond metadata:
Code-centric and usage-based analysis of known vulnerabilities in open-source
software. In 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 449-460.

Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2020. Detection, assess-
ment and mitigation of vulnerabilities in open source dependencies. Empirical
Software Engineering 25, 5 (2020), 3175-3215.

[44]

[45]

[46

[47

(48]

[49

[50

v
_

[56

[57

[58

[59]

[60

[61

[62

(63]

(64

[65]

[66]

SCORED 24, October 14-18, 2024, Salt Lake City, UT, USA

Jeremy Rack and Cristian-Alexandru Staicu. 2023. Jack-in-the-box: An Empirical
Study of JavaScript Bundling on the Web and its Security Implications. In Pro-

ceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security. 3198-3212.

Steven Raemaekers, Arie Van Deursen, and Joost Visser. 2014. Semantic ver-
sioning versus breaking changes: A study of the maven repository. In 2014 IEEE
14th International Working Conference on Source Code Analysis and Manipulation.
IEEE, 215-224.

Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus Paixao, Giuseppe Bianco, and
Rocco Oliveto. 2019. Toxic code snippets on stack overflow. IEEE Transactions on
Software Engineering 47, 3 (2019), 560-581.

Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165-1199. https://doi.org/10.1016/].infsof.2013.01.008

Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their
decision problems. Transactions of the American Mathematical society 74, 2 (1953),
358-366.

Dirk Riehle and Nikolay Harutyunyan. 2019. Open-source license compliance in
software supply chains. In Towards Engineering Free/Libre Open Source Software
(FLOSS) Ecosystems for Impact and Sustainability: Communications of NI Shonan
Meetings. Springer, 83-95.

Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of computer programming 74, 7 (2009), 470-495.

Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera
Jaspan. 2018. Lessons from building static analysis tools at google. Commun.
ACM 61, 4 (2018), 58-66.

Kostya Serebryany. 2017. OSS-Fuzz-Google’s continuous fuzzing service for open
source software. In USENIX Security symposium. USENIX Association.
Snyk Limited. 2015. snyk. https://snyk.io/.

Sonatype Inc. 2015. Apache Maven plugin for Sonatype OSS Index.
//sonatype.github.io/ossindex-maven/maven-plugin/.

César Soto-Valero, Thomas Durieux, and Benoit Baudry. 2021. A longitudinal
analysis of bloated java dependencies. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1021-1031.

César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. 2021.
A comprehensive study of bloated dependencies in the maven ecosystem. Empir-
ical Software Engineering 26, 3 (2021), 45.

Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. 2020. On the recall of
static call graph construction in practice. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (ICSE’20). 1049-1060.
Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and Vaibhav
Rastogi. 2020. Defending against package typosquatting. In Network and Sys-
tem Security: 14th International Conference, NSS 2020, Melbourne, VIC, Australia,
November 25-27, 2020, Proceedings 14. Springer, 112-131.

The MITRE Corporation. 2017. Apache Struts 2 Vulnerability. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2017-5638.

The MITRE Corporation. 2021. Apache Log4j2 Vulnerability. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2021-44228.

Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta.
2020. Typosquatting and combosquatting attacks on the python ecosystem. In
2020 ieee european symposium on security and privacy workshops (euros&pw).
IEEE, 509-514.

Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai Yu,
Zhiliang Zhu, and Shing-Chi Cheung. 2018. Do the dependency conflicts in my
project matter?. In Proceedings of the 2018 26th ACM joint meeting on european
software engineering conference and symposium on the foundations of software
engineering (ESEC/FSE’18). 319-330.

Jeff Williams and Arshan Dabirsiaghi. 2014. The unfortunate reality of inse-
cure libraries. Asp. Secur. Inc (2014). https://cdn2.hubspot.net/hub/203759/file-
1100864196-pdf/docs/Contrast_-_Insecure_Libraries_2014.pdf.

Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A look at the dynam-
ics of the JavaScript package ecosystem. In Proceedings of the 13th International
Conference on Mining Software Repositories. 351-361.

Yulun Wu, Zeliang Yu, Ming Wen, Qiang Li, Deqing Zou, and Hai Jin. 2023.
Understanding the Threats of Upstream Vulnerabilities to Downstream Projects
in the Maven Ecosystem. (2023).

Jiawen Xiong, Yong Shi, Boyuan Chen, Filipe R Cogo, and Zhen Ming Jiang. 2022.
Towards build verifiability for Java-based systems. In Proceedings of the 44th
International Conference on Software Engineering: Software Engineering in Practice.
297-306.

Xian Zhan, Tianming Liu, Yepang Liu, Yang Liu, Li Li, Haoyu Wang, and Xiapu
Luo. 2021. A Systematic Assessment on Android Third-party Library Detection
Tools. IEEE Transactions on Software Engineering (2021), 1-1. https://doi.org/10.
1109/TSE.2021.3115506

https:

https://doi.org/10.1145/3446371
https://nvd.nist.gov/vuln
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://doi.org/10.1016/j.infsof.2013.01.008
https://snyk.io/
https://sonatype.github.io/ossindex-maven/maven-plugin/
https://sonatype.github.io/ossindex-maven/maven-plugin/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cdn2.hubspot.net/hub/203759/file-1100864196-pdf/docs/Contrast_-_Insecure_Libraries_2014.pdf
https://cdn2.hubspot.net/hub/203759/file-1100864196-pdf/docs/Contrast_-_Insecure_Libraries_2014.pdf
https://doi.org/10.1109/TSE.2021.3115506
https://doi.org/10.1109/TSE.2021.3115506

	Abstract
	1 Introduction and Background
	2 Vulnerability Detection
	2.1 Overview
	2.2 Clone Candidate Acquisition
	2.3 Clone Analysis
	2.4 POV Test Adaptation

	3 Evaluation Methodology
	3.1 Dataset
	3.2 SCA Tool Selection

	4 Evaluation Results
	4.1 Pipeline Performance
	4.2 Vulnerable Artifacts Found
	4.3 SCA Results
	4.4 Scalability

	5 Limitations, Threats to Validity and Reproducibility
	5.1 Precision
	5.2 Soundness
	5.3 Reproducibility

	6 Disclosure
	6.1 Disclosure Process
	6.2 Accepted Disclosures

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

