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ABSTRACT
Estimating the number of distinct values (NDV) in a dataset is an

important operation in modern database systems for many tasks,

including query optimization. In large scale systems, tables often

contain billions of rows and wrong optimizer decisions can cause

severe deterioration in query performance. Additionally in many

situations, such as having large tables or NDV estimation after the

application of filters, it is not feasible to scan the entire dataset

to compute the number of distinct values. In such cases, the only

available option is to use a dataset sample to estimate the NDV. This,

however, is not trivial as data properties of the sample usually do

not mirror the properties of the full dataset. Approaches in related

work have shown that this kind of estimation is connected to large

errors. In this paper, we present two novel approaches for the

problem of estimating the number of distinct values from a dataset

sample. Our first approach presents a novel statistical estimator that

shows good and robust results across a broad range of datasets. The

second approach is based on Machine Learning (ML), hence being

the first time that ML is applied to this problem. Both approaches

outperform the state-of-the-art, with the ML approach reducing the

average error by 3x for real-world datasets. Beyond pure prediction

quality, both our approaches have their own set of advantages

and disadvantages, and we show that the right approach actually

depends on the specific application scenario.
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1 INTRODUCTION
Estimating the number of distinct values of a dataset or table at-

tribute is an important operation in modern database systems,

which is also known as the approximate count distinct problem.

This paper investigates this problem with the additional constraint

that it is not possible to scan the whole dataset for estimation.

The general problem can be described as follows: we are ana-

lyzing a multiset1 with a total population size of N elements. Each

element of the multiset has a ‘key’ value, with each key potentially

having a different frequency: the number of times it occurs in the

multiset. We are allowed to take a sample of r elements from this

multiset (or dataset)
2
. Based on this sample, the goal is to predict

the number of distinct keys in the multiset (also known as the

number of distinct values or NDV). A simple example of a multiset

in databases is a table column. The population size is equal to the

number of rows in the table and the number of unique keys in

the column (NDV) is the target to be estimated. For example, in a

‘months’ column, the NDV value is likely to be 12.

NDV estimates are essential for many database operations. For

example, the query optimizer may rely on them to estimate result

sizes of join or group-by operators [18]. The estimates can be used

to determine the join order or to optimize the succeeding query

operators, resulting in better and more robust query plans. Another

application of NDV estimates is resource allocation for indexes or

hash tables. The former is important to decide if an index is worth

its memory overhead (e.g., for auto-index-creation [8]), while the

latter is important for performance reasons. Filling a hash table

with a bucket size that is too small for the number of keys, results

in orders of magnitude higher access latency due to chaining or

rehashing [1, 17].

The naïve approach to calculate the NDV is scanning the full

dataset and calculating the exact number of distinct values. Count-

ing the exact number is resource intensive as either large interme-

diate structures need to be maintained (e.g., a hash table) or the

data needs to be scanned multiple times. Many one-pass approaches
[10, 12, 16, 34] have been proposed to address this problem that

scan the whole table but reduce the cost of intermediate structures.

However, scanning the entire data is often not feasible due to time

constraints for datasets with billions of elements, especially in sys-

tems where the data can not be kept in main memory. Therefore,

the only practical solution is to collect a random sample of the

dataset and to estimate the NDV based on this sample.

Estimating the number of distinct values from a sample, however,

is a challenging problem, where even the most accurate estimators

occasionally produce large errors. In addition, there are strong

1
A multiset is a modification of the concept of a mathematical set, that allows each of

its elements (or keys) to occur multiple times.

2
In this paper the terms multiset and dataset are used interchangeably.
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negative results [5, 6] showing that no estimator can guarantee good

results against an adversarial choice of input data. However, while

the inability to provide guaranteed robust bounds is unfortunate,

there are a large number of database scenarios, where there is no

practical alternative to estimating NDV from a sample. Despite the

need for sampling based estimation for large datasets, there has not

been much recent research on the problem, and most commercial

products are tending towards one-pass approaches.

To show the feasibility of NDV estimation based on sampling, we

present two novel and inherently different approaches in this paper.

The two approaches are (1) a new statistical estimator based on a

Binomial model of key selection [5, 33], and (2) a Machine Learning

(ML) approach, build upon an ensemble-based regression model,

while encoding extreme parts of the problem as an additional classi-

fication task. To the best of our knowledge, this is the first Machine

Learning approach to address this problem. We use a broad range of

datasets and standard metrics for our evaluation, while introducing

a new metric, called singed relative error (sRE), to better understand
the predictions. Both approaches significantly exceed the prediction

quality compared to current state-of-the-art estimators, while each

approach has its own advantages and disadvantages. In fact, these

two approaches were designed and developed independently for

two different application environments because of their specific

properties. Therefore, we not only evaluate their prediction quality

in this paper, but also discuss their properties and applicability to

various application scenarios.

The paper is structured as follows. We discuss related work in

Section 2, introduce our statistical estimation approach in Section 3,

and present our ML approach in Section 4. Afterwards, we evaluate

both approaches in terms of accuracy in Section 5 and compare the

approaches along other attributes in Section 6. Finally, we conclude

the paper in Section 7.

2 RELATEDWORK
Calculating the number of distinct keys in a multiset on-demand

incurs two major costs: (1) the cost of scanning the entire multiset

and (2) the cost of maintaining an in-memory structure (such as

a hash table), to store the keys already observed during the scan.

There is a large body of work on one-pass count distinct estima-

tion [10, 12, 16, 34] with the goal of scanning the full dataset once,

while keeping a light-weight in-memory structure that stores an

estimate NDV. While this is a significant improvement in mem-

ory space, it does not reduce the scanning cost. In the context of

database systems, in situations where it is not possible to scan the

entire table, database structures like histograms or indexes can be

used to estimate the NDV [31, 32]. However, estimates from these

structures often need to be modified (e.g., when query filters are

applied), which can introduce large errors. In addition, there are

many situations, where maintaining a histogram or index may not

be feasible or might be too expensive. In such situations, the NDV

can only be estimated using a sample.

This problem is not unique to database systems as for example

file duplication in storage systems [36] or estimating animal pop-

ulations [3, 4] experience the same challenge. A large number of

statistical techniques have been developed to address the problem of

estimating the number of distinct values from a sample [9, 14, 15].

Several studies [9, 15] provide a comparison of the accuracy of

these techniques. Deolalikar et al. [9] provide a more recent sur-

vey, specifically focusing on Zipfian distributions [38], due to their

growing prominence in large datasets. Though all techniques show

significant error, they identify the Adaptive Estimator (AE) [5] as
having relatively better performance, compared to other methods.

AE is a model-based estimator that, along with the Shlosser esti-

mator [33], can be considered to belong to a family of estimators that

share a common Bernoulli sampling based model of key selection.

The Shlosser [33] estimator differs from AE in explicitly assuming

that the key frequencies follow a Zipf distribution. This makes

the Shlosser estimator highly effective for Zipf distributions, but

inaccurate for other distributions. To address this, Haas et al. [15]

proposed a hybrid approach combining the Shlosser estimator [33]

and the smoothed Jacknife estimator [4], while switching between

them depending on data properties.

This paper introduces a new estimator, the Histogram Normal-

ization Estimator (HNE), which uses the Bernoulli sampling model

of key selection, but corrects for sampling errors that can cause

estimators such as AE to provide highly inaccurate NDV estimates.

We show that as a result, HNE outperforms other Bernoulli esti-

mators across a range of datasets. In addition to HNE, this paper
presents a machine learning based approach to NDV prediction,

completely different to existing statistical methods.

3 HISTOGRAM NORMALIZATION
ESTIMATOR

This section first provides a description of the estimation problem

and introduces the notation. Following this, we briefly describe

the Binomial family [5, 33] of NDV estimators. Then we provide a

derivation for the histogram normalization estimator (HNE), a novel
count distinct estimator.

3.1 Problem Formulation and Binomial Model
The problem input is a sample from a dataset of population size

N , with an unknown number of distinct keys D, characterized
by: (1) the set of distinct keys observed in the sample, and (2) the

number of times each of these keys is observed in the sample.

Let fi be the number of keys in the sample that were observed i
times (so, for example, f2 represents the number of keys included

twice in the sample). Then the sample is represented by the vector

f = (f0, f1, . . . , fr ) , 0 ≤ fi ≤ r , where r is the sample size. While

f1, . . . , fr are observed, f0 is unknown. A large number of values in

f could be zero. The number of distinct keys observed in the sample

can then be written as d =
∑r
i=1 fi . Since D = f0 + d =

∑r
i=0 fi ,

our goal is to estimate f0. We call these f0 keys the missing keys,
as these keys are missing from the sample. To avoid confusion, we

call the number of times a key is observed in the sample the size of
the key in the sample, while we call the number of times a key of a

certain size is present in the sample, the frequency of the key size
in the sample. So, for example, f2 represents the frequency with

which keys of size 2 are present in the sample. Similarly, we call

the number of times a key is present in the dataset, the size of the

key in the dataset.

The Binomial model of key selection [5, 33] models each key

in the sample as drawn from a Bernoulli process with r draws
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(r being the sample size). Thus the probability that a key with size

S in the dataset is observed i times in the sample is given by the

Binomial probability Pr (i; r , SN ) = Bin

(
k = i,n = r ,p = S

N

)
. Under

this model, f0 is the number of Binomial experiments, out of a total

of D, that yielded 0 successes. A derivation of the model from a

hyper-geometric model of key selection is provided by Shlosser

et al. [33].

The Adaptive Estimator (AE) [5] uses the Binomial model and

models the sample as drawn from k components (sub-populations),

one for each key size i having fi > 0. All keys in the ith sub-

population have a Binomial probability Pr
(
0; r , ir

)
of being absent

(or missed) in the sample. This probability is higher for what we call

the small key components, that is, sub-populations corresponding to

keys observed once or twice in the sample. AE models the relative

frequency of keys of size i in the dataset as proportional to fi .
However, this approximation is vulnerable to sampling error as,

for example, a significant portion of the keys observed twice in the

sample could possibly have a probability
i
r of selection, where i ≥ 3.

These sampling errors can have an outsized impact because AE

uses a separate model for keys missing from components i ∈ {1, 2}.
Section 3.3.1, presents a method we call histogram normalization

to correct for such sampling errors in key frequency estimation.

As AE cannot be easily modified to incorporate these corrections,

we develop an alternative estimator which can include them, in

the next section (Section 3.2). This estimator is then modified to

incorporate both: a) histogram normalization (Section 3.3.1), and

also, b) amore elaboratemodel for estimating the number ofmissing

small keys (Section 3.3). We refer to the resulting estimator as the

Histogram Normalization Estimator (HNE). Following this, Section

3.3.2 discusses HNE derived bounds that can be provided on NDV

estimates.

3.2 Naïve NDV Estimator
This section provides a naïve estimator for an upper bound on E[f0],
the expected number of missing keys in the sample. We consider

it a naïve estimator because: a) it assumes that a key’s size in the

sample is an adequate estimate of its Bernoulli selection probability,

and b) it does not correct for sampling errors. These drawbacks

are corrected in Sections 3.3 and 3.3.1, leading to the Histogram

Normalization estimator (HNE). The naïve estimator is based on

the following assumption:

Assumption A1: Let S = {i, fi ∈ f , i > 0, fi > 0}, be the set (of

size k), consisting of key sizes for which non-zero frequencies were

observed in the sample. Then the sample f is assumed to be gener-

ated by a mixture of k Binomial distributions, {Pr (j; r , ir ), i ∈ S}.

Proposition 3.1. Given AssumptionA1, an upper bound estimate
Ê [f0] on the expected number of missing keys f0 in the sample is
given by:

Ê [f0] ≤
∑
i ∈S

Bin
(
k = 0,n = r ,p = i

r

)
Bin

(
k = i,n = r ,p = i

r

) · fi (1)

Proof. Let f i
0
be the number of keys belonging to mixture com-

ponent i ∈ S , that were not observed in the sample. Then:

f0 =
∑
i ∈S

f i
0

(2)

⇒ E[f0] =
∑
i ∈S

E
[
f i
0

]
(3)

Let F = (F1, F2, . . . , Fk ) be a vector, such that Fi is the (unknown)

number of keys belonging to the ith component in S . And let

P(r+1)×k be a matrix, such that Pji , 0 ≤ j ≤ r , 1 ≤ i ≤ k is the

Binomial probability of sampling a key j times from the ith mixture

component. Then:

E[f ] = P · F (4)

As a special case of eq. (4):

E[f i
0
] = P0iFi (5)

Since the linear system in eq. (4) may not have a solution with

positive Fi , we instead use an upper-bound on Fi . Ignoring non-

diagonal values for each row in eq. (4), for each fi :

E[fi ] ≥ PiiFi (6)

⇒ Fi ≤
E [fi ]

Pii
(7)

Replacing eq. (7) in eq. (5):

E
[
f i
0

]
≤

P0i
Pii

E [fi ] (8)

In order to get an estimate Ê [f0], we treat the observed values of fi
in f as the expected values E [fi ]. We observe that, once we replace

the expected values E [fi ] with the observed values fi , eq. (8) is
only non-zero for i ∈ S . Based on this, replacing eq. (8) in eq. (3)

and expanding the terms gives:

Ê [f0] ≤
∑
i ∈S

Bin

(
k = 0,n = r ,p = i

r

)
Bin

(
k = i,n = r ,p = i

r

) · fi (9)

□

We made the following simplifying assumption in the above

proof: that each of the unobserved keys has exactly the same prob-

ability of selection as the Bernoulli probability of selection of one

of the sampled keys. Given the limited information inherent in a

sample, and the large set of possible sizes a key can have in the

dataset, this seems reasonable. Note that other statistical estimators

[5, 33] make similar simplifying assumptions.

However, the above estimator is not accurate for keys observed

once or twice in the sample. This is because they are often a subset

of a larger group of keys, each with a much lower individual proba-

bility of selection (than
1

r or
2

r ), a fraction of which were randomly

selected into the sample from amongst their peers. For example,

they might be keys occurring once in the dataset (singletons), and a

random subset of singletons were selected into the sample. Due to

this reason, we use eq. (1) to only calculate the values E[f 3
0
] and

above. The final estimate is then the sum of the following three

values, each estimated separately:

• Missing Large Keys: Estimated as Ê
[
f 3...N
0

] ∑r
i=3 f

i
0
, i ∈ S ,

the estimated number of missing keys from component sub-

populations with i ≥ 3.
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• Observed Large Keys: The observed (non-missing) number of

large keys in the sample (f
obs
=
∑N
i=3 fi ).

• Small Keys: The estimated number of small sized keys (keys

similar to those with observed frequency 1 or 2 in the sample,

written asm.

Then the final estimate of the dataset NDV is given by:

Dest = Ê
[
f 3...N
0

]
+ f

obs
+m (10)

The naïve estimator thus allows us to divide the estimation problem

into sub-problems, which was not possible with AE. This division

allows us to address the estimation ofm as a separate problem, that

can be solved analytically (in the next section), and also allows us

to correct for sampling errors when estimatingm (Section 3.3.1).

3.3 Missing Small Keys Estimation
To estimate the number of missing small keys, we make the same

assumption as AE: that all the small keys are drawn from a single

component, where all keys in the component have the same size.

Letm be the total number of small keys in the dataset, all having

the same size. We can write the number of missing small keys in

two ways: (1) asm− f1− f2 (since f1 and f2 is the subset of the small

keys that were observed), and (2) using a Binomial model withm
as a parameter. Equating the two, we solve form. In more detail,

letm be the total number of small keys. The number of rows in the

sample that consist of small keys is estimated as rs = f1 + 2f2. As
we assume that all the small keys have the same size, their Bernoulli

probability ps of selection in the sample is given by:

ps =
rs
rm
=

f1 + 2f2
rm

(11)

Let f s
0
represent the number of small keys that are missing from

the sample. Then:

E[f s
0
] = Bin

(
k = 0,n = r ,p =

rs
rm

)
·m (12)

Also, since:

E [f1] = Bin

(
k = 1,n = r ,p =

rs
rm

)
·m (13)

Using the observed value f1 for E [f1] in eq. (13), we get an estimate

m̂ ofm as:

m̂ =
f1

Bin

(
k = 1,n = r ,p = rs

rm
) (14)

Using this value of m̂ for m in eq. (12), expanding the Binomial

expressions, and simplifying:

E
[
f s
0

]
=

m

rs

(
1 −

rs
rm

)
· f1 (15)

Also, since E[f s
0
] =m−E[f1]−E[f2], we equate this to eq. (15), and

use the observed values of f1 and f2 as the expected value. Then

solving form gives:

m =
f1 + 2f2
2f2

(
f1

(
1 −

1

r

)
+ f2

)
(16)

Since eq. (16) is not defined for f2 = 0, we setm = f1 ·
N
r if f2 = 0

(unique keys).

3.3.1 Histogram Normalization.
In the previous derivation, we assumed that all keys with size 1

or 2 in the sample, are not drawn from the larger sub-populations.

However, in reality, a significant portion of the observed small keys

could be large keys that were sampled once or twice by accident.

This is an important problem because, as eq. (16) shows, the final

estimate of NDV is highly dependent on f1 and f2. To address this,

we apply a correction to our estimates of f1 and f2. The corrected
estimates of f1 and f2, written as f ′

1
and f ′

2
respectively, are esti-

mates of what subset of these keys observed once are actually small

keys, and not under-sampled large keys. The correction is made by

expanding the f1 term in eq. (4) (after ignoring the zero-valued Fi
terms):

f1 =
∑
i ∈S

P1iFi = f ′
1
+
∑
i ∈S
i>2

P1iFi (17)

Using the upper-bound in eq. (7) gives:

f ′
1
≥ f1 −

∑
i ∈S
i>2

P1i
Pii

fi (18)

Similarly:

f ′
2
≥ f2 −

∑
i ∈S
i>2

P2i
Pii

fi (19)

We use the values of f ′
1
and f ′

2
calculated above to calculatem using

eq. (16). While technically f ′
1
and f ′

2
over-correct for large keys,

empirically we find in our experiments that using these corrected

values significantly outperforms using the original values f1 and
f2. We do use one heuristic to guard against over-correction: we do

not rely on f ′
1
and f ′

2
estimates if f ′

1
is set to 0 or f ′

2
is set to ≤ 1. In

such cases, we first recalculate f ′
1
and f ′

2
, after setting i > 3. If f ′

1

is still equal to 0, or f ′
2
≤ 1, we use the original values of f1 and f2.

3.3.2 NDV Upper Bound using HNE.
The HNE estimator assumes that all small keys (Section 3.3) have

the same size. This condition can be relaxed by assuming that only

a subset д of f ′
1
keys have the same size as the f ′

2
keys, while f ′

1
−д

of the f ′
1
keys have a fixed size t . Then the small key NDV can be

estimated as:

mд =
(
f ′
1
− д

) N
rt
+
д + 2f ′

2

2f ′
2

(
д

(
1 −

1

r

)
+ f ′

2

)
(20)

It may be possible to set appropriate values for д and t , using
information such as database table statistics. In the absence of such

information, it can be seen that setting t = 1, д = 0 maximizesmд .

The NDV upper bound DU B is then given by:

DU B =
N

r
f ′
1
+ f ′

2
+ Ê

[
f 3...N
0

]
(21)

This corresponds to the case where there are a large number of keys

with frequency 1, or singletons in the dataset. This DU B estimate

is similar (though not identical) to the worst-case upper bound

established in [6], and is often too high to be useful.

However, database systems often require an upper bound on the

NDV estimate, even if there is a risk of occasional underestimation.

To address this, we find that empirically, the geometric mean of

the HNE estimate and the NDV upper bound is able to provide a

worst case upper bound on the ground truth NDV, even for highly

skewed datasets. Intuitively, the use of geometric mean can be
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understood as follows: in situations where we suspect that the

dataset might contain singletons, we might prefer to be as close to

the HNE estimate as possible, while trying to minimize the error

due to the presence of singletons. A common error measure used

in NDV literature is the error ratio, defined as:

Error Ratio = max

(
True NDV

Estimate

,
Estimate

True NDV

)
(22)

To minimize our error with respect to this error measure, we could

use the geometric mean (rounded to the closest integer) as an upper

bound on the NDV (Dgm =
√
Dest · DU B ).

4 MACHINE LEARNING APPROACH
In the previous section, we introduced a new statistical estimator.

In this section, we present a novel approach using ML to predict

the NDV of a dataset given only a data sample.

Traditional approaches to the NDV problem [5, 15] use manually-

tuned statistical methods. This manual tuning involves adjusting

and extending the theoretical principles of the model itself, which

needs an expert in the field to do so.

Classical ML algorithms, on the other hand, are usually out-of-

the-shelf tools provided by different libraries in nearly all program-

ming languages. The main complexity for an ML approach is to find

the right set of features, choose a model, and fine-tune the models

hyper-parameters. For the later two points, there is already a selec-

tion of AutoML tools, which can do this automatically [7, 11, 37].

With the ML approach, our goal is to utilize this already existing

ML environment, to simplify and improve the NDV prediction.

In the following, we introduce the key ideas as our general ML

approach, a regression model, to predict the NDV of a dataset.

Afterwards, we present optimizations to the initial model, which

let the model perform better for cases with NDVs close to zero or

close to the population size. Finally, we give an overview on how

model training and inference is performed.

4.1 General ML Approach
For the general approach, we devise a single regression model

that predicts the NDV of a dataset. As stated before, choosing and

engineering the right input features is the most important part for

the model. In this section, we show the key ideas for defining the

input features and target data (label) to train our regression model.

4.1.1 Using Multiple Samples.
Approaches in the literature usually use a random data sample of

a certain percentage and estimate the NDV based on the properties

seen in this sample.

One of our key ideas for the MLmodel is taking multiple samples

and comparing the unique keys in these different samples. This

can also be achieved by taking only one sample and dividing it

randomly into multiple sample chunks.
Figure 1 shows an example of gaining information by using

multiple sample chunks. The dataset contains 100K unique keys,

while each key occurs 10 times in the dataset. For this graph, we

divide the dataset in 10 random sample chunks, each containing

10% of the dataset. Each of the separate chunks contains around

65K unique keys. This does not give much information about the

NDV of the full dataset (i.e., 100K). However, more information
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Figure 1: Example of a dataset with 100Kunique keys, where
each key occurs exactly 10 times. Samples are taken ran-
domly in chunks of 100K without replacement.

becomes visible when comparing sample chunks, like investigating

how many new (i.e., never-before-seen) keys are observed in an

additional chunk given the context of the sample chunks seen

before. In Figure 1, this means 65K new unique keys for the first

sample, 24K new unique keys, when adding the second sample, 8K

new unique keys for the third sample, and so on. This reduction

rate is a good indicator on the key distribution of the entire dataset,

so we want to use it for our feature creation. With the chunking

approach, it is easier for the ML model to extract information by

comparing n chunks to n + 1 chunks, compared to a single sample

approach with the same size of n + 1 chunks.
Generally, our approach can be used with a variable number of

chunks and chunk sizes. However, for this paper, we define the

chunk size to 0.5% of the dataset, while using three chunks in total,

leading to a full sample size of 1.5% of the dataset.

4.1.2 Input Features.
To construct the model features, we are using the multiple sample-

chunks idea as introduced above. Features are either based on single

chunks or a combination of chunks, e.g., groups of two or three

chunks treated as a combined sample.

For some of the used features, we construct a frequency his-

togram of the data distribution for a chunk or groups of chunks.

The histogram is similar to the approach in Section 3.3 (without

normalization). For each key, the frequency of its occurrence in

the sample is calculated, before aggregating the frequencies to the

frequency histogram. For example, if a sample contains 100 keys

and the frequency histogram of this sample only contains f1 = 100,

we know that each key occurs only once, i.e., each key is unique. On

the other side, if f100 = 1, we know that there is only one unique

key occurring 100 times in the sample (frequency of 100).

To create features out of the sample chunks and frequency his-

tograms, we compose a large amount of features and feature combi-

nations and apply feature selection [19] to reduce the set of features

to important ones for the prediction. The resulting feature set con-

tains 14 features, which can be grouped into three categories.

Category 1: Features based on the frequency histograms:

(1.1) Amount of keys with frequency 1 based on a single chunk
(1.2) Amount of keys with frequency 2 based on a 2 chunk group
(1.3) Amount of keys with frequency 1 based on 3 chunk group
(1.4) Amount of keys with frequency 2 based on 3 chunk group
(1.5) Amount of keys with frequency 3 based on 3 chunk group
(1.6) Amount of keys with frequency 4 based on 3 chunk group
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Six features are based directly on the frequency histograms. Most

features are using the three chunk group, because this group con-

tains the largest sample (three times 0.5%), hence it uses the most

amount of data containing the most information compared to single

chunks or two-chunk groups.

Category 2: Features based on unique keys and chunk differences:

(2.1) Amount of new unique keys in the second chunk when consid-
ering the first chunk

(2.2) Amount of new unique keys in the third chunk when consider-
ing the first two chunks

(2.3) Total amount of unique values (NDV) for 3 chunk group
There are two features looking at the additional unique keys that

can be observed by adding one chunk to one or two previous chunks

and one feature that is using the NDV of the three chunk group.

Category 3: Feature Combinations:

(3.1) Feature 2.2 divided by Feature 2.1
(3.2) Feature 2.1 divided by Feature 1.4
(3.3) Feature 2.2 divided by Feature 1.4
(3.4) Feature 1.2 divided by Feature 1.5
(3.5) Feature 2.3 divided by population size.

There are five features either using a division of the previous fea-

tures or a division by the population size. These features are deter-

mined as important by feature selection [19] and extensive testing,

given hundreds of similar feature combinations as initial input.

4.1.3 Averaging Chunk-based Statistics.
In the previous section, we introduced features either based on sin-

gle chunks or groups of chunks, e.g., groups of two or three chunks

treated as a combined sample. To add robustness to our features,

we average the chunk and chunk group statistics, whenever there

are multiple possible combinations.

For the single-chunk features, there are exactly three chunks

to choose from so we compute the feature for each chunk and

average the results. For the two-chunk-group features, there are

three different combinations of two chunks, so we compute the

feature for each combination and average the results. For the three-

chunk-group there is only one possible combination. For all cases,

where we have multiple possible combinations of chunks, we look

at every combination, extract our features, and average the feature

values over similar combinations. This averaging approach helps

to mitigate the randomness of the sampling.

4.1.4 Feature and Label Normalization.
So far, the features taken from the sample chunks are absolute values

or averages of absolute values. To make our approach generalized

for dataset sizes that have not been seen by the model, we need

to normalize them depending on the sample size. Therefore, we

divide the features by the total number of keys in the chunk or

chunk-group, on which the feature is based on. For example, if a

chunk contains 200 keys and there are 100 keys that occur only

once, then Feature 1.1 is using the normalized value of 0.5 instead

of the absolute value of 100. This allows our approach to identify

similar pattern for datasets with completely different numbers of

keys, since after normalization, features are in the same range

of values. This kind of normalization is applied to all features of

Category 1 and 2, but not Category 3, since there the features are

already normalized through the inherent division.

A similar normalization is done for the prediction label (i.e., the

NDV). There, instead of predicting the NDV directly, we follow

our idea of feature-normalization and predict the relative NDV
(

NDV
population_size ) instead. This has two advantages, as datasets

with different NDV and different number of elements might be

similar through their relative NDV, and the ML target values are

limited to numbers between 0 and 1. The latter is a large advantage

as most ML algorithms can only predict labels that lie within the

range of labels seen in the training data.

Using labels and features in a normalized format allows us to pre-

dict for arbitrary datasets, even if they are not within the boundaries

of our training data. During inference, the model predicts relative

NDVs, so for a final result the prediction needs to be multiplied by

the population size.

4.2 Model Optimizations
In addition to our general ML approach, we present two optimiza-

tions to improve the predictions for low and high relative NDVs.

4.2.1 Label Transformation.
As stated before, we are normalizing prediction labels (NDVs) with

the population size to predict relative NDVs instead of absolute

NDVs. There could be large relative NDVs close to and including

the value 1.0, which represent an NDV close to the population size

of a dataset, hence, most of the values are unique. There could also

be low relative NDVs close to (but not including) the value 0.0,

which represent a NDV with a small number of unique values.

Many ML algorithms internally use a scoring metric like mean-

absolute-error (MAE) or mean-squared-error (MSE), which are opti-

mized to penalize large errors, while being willing to allow smaller

ones. With our approach of using a relative NDV as target, this

might cause problems for small relative NDVs. As an example, for

a Dataset A with 100M keys and a NDV of 1M, the target value is

0.01. For Dataset B with 2M keys and an NDV of 1M, the target

value is 0.5. If the model is using a metric like MSE, it might con-

sider an error of +0.1 as acceptable. For Dataset A, this implies a

percentage error of 1000%, while for Dataset B, with exactly the

same NDV, this only causes an error of 20%. In general, we found

that a percentage error or mean-absolute-percentage-error (MAPE)

is more suited as an optimization goal for our purposes. However,

many ML algorithms inherently do not support this optimization

metric, so we have to use MAE or MSE.

To avoid this imbalance and allow smaller relative NDV to be

predicted in a good quality, we transform our label using loga-

rithmic transformation. Before training, we apply a logarithmic

operation to all labels (y) and then train the algorithm with the

new label (yloд = loд(y)). During inference, the model predicts the

log-scaled label, so the actual prediction needs to be transformed

again using the constant e to the power of the log-scaled predic-

tion (y = eyloд ). With this transformation, very small labels are

transformed to larger negative values and prediction errors on

these values have a larger magnitude than before, hence, are more

prioritized in the optimization of the ML algorithm.

4.2.2 Edge-Case Model.
In addition to the label transformation, we noticed that NDV edge

cases need more optimization as they are hard to predict exactly
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F1 F2 F3 F4 label class

1 2 10 20 10 A

2 5 20 30 20 A

11 2 10 40 40 B

12 3 20 50 50 B

1 7 20 40 30 X

Table 1: Features values can be used as label. Here two pat-
terns emerge (A) when F1 ≤ 2 and F2 ≤ 5 then label = F3 and
(B) when F1 ≥ 11 then label = F4. (X) symbolizes no match.

right for the presented regression model. Such edge cases are either

very small NDVs, where the NDV observed in the sample is close

to the NDV of the full dataset; or large NDVs close to or equal to

the population size. We further noticed for these cases, that the

actual prediction target is represented in one or multiple of the

input features. For example, for very small NDVs, where all unique

keys of the dataset can be seen in the sample, Feature 3.5 equals the

relative target NDV. Additionally, when all keys of the dataset are

unique, Feature 1.1 and 1.3 have the value 1.0, which also equals

the relative target NDV in this case.

To detect these cases automatically, we construct a ML model

to predict when a Feature Fi equals the label and thus can be used

directly as result. An example for this problem is shown in Table 1.

There Feature F3 equals the label but only if Feature F1 is less or
equal to 2 and Feature F2 is less or equal to 5.

The presented ML regression model is not suited for finding

these cases and in general it is not common for ML algorithms to

conditionally use an exact feature value as prediction result. To

solve this problem, we create a classification ML model, where we

encode certain patterns in the data (like (A) and (B) in Table 1) as

separate classes. In detail, we apply the following steps:

(1)With the given training data, we check if a feature is equal

to the prediction label (relative NDV). For training data, both, the

features and the label are known.

(2) We assign classes for each instance, where features equal

the label. In our example from Table 1, this results in Class A

(label = F3) and Class B (label = F4). The classes only describe the

observable outcomes (label = Fi ), but do not know the reason or

pattern behind it. The number of classes depends on the number

of features that, for some datasets, equal the label, with an addi-

tional Class X for the remaining cases (no matching feature). For

the example in Table 1 this results in three different classes.

(3) Based on the created classes, the classification model uses

the same features as the regression model, however, using the

classes as prediction label instead of the relative NDV values. We

only provide the classes to the model. The model itself finds the

underlying pattern, when these classes (i.e. label matches) occur.

(4) During the inference, the model predicts a class for every

instance. For each predicted class, we either convert the class to a

result value by replacing the class with the corresponding feature

value or use the described regression model to predict the NDV if

the predicted class indicated that no feature is matching.

4.3 Model Training and Inference
Given our general ML approach and the proposed optimizations,

Figure 2 is illustrating the model training and inference steps.
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Figure 2: Training and inference for the ML approach.

For model training, we use dataset samples with the corre-

sponding relative NDV numbers of the full dataset (relNDV label).

The samples are used for generating the features as described in

Section 4.1. The regression model is trained with the generated fea-

tures and the log-transformed NDV labels. The Edge-Case Model

first needs to detect and encode features classes based on the gener-

ated features and the relative NDV labels. The Model then is trained

using the detected classes and the generated features. We evaluated

multiple ML algorithms for our two models and found that ensem-

ble models based on multiple decision-trees are suited best for this

task. As a result, we are using a Random Forest [2] algorithm for our

regression model and a AdaBoost [13] algorithm for the Edge-Case

Model. The ML model training is performed off-line, which means

it is trained outside production environment, where we have time

and resources for extended model optimization. Only the trained

and optimized models are deployed.

For model inference, we generate features in the same way as

in the training step. The features are used to first predict a feature

class with the Edge-Case model. If the predicted class is a feature,

we resolve this class by using the corresponding feature value

and return the relative NDV. If the predicted class is indicating

no feature match, then the generated features are used with the

regression model and the reverse log-transformation to predict the

final relative NDV.

Depending on the prediction problem, the real NDV numbers

need to be transformed into relative NDV values ( relNDV =
NDV

population_size ) for the training step and the predicted relative

NDVs need to be transformed back into real NDV values ( NDV =
relNDV · population_size ).

5 EVALUATION
In this section, we evaluate our two approaches together with the

state-of-the-art described in related work. First, we describe the

evaluation setup used in the experiments and then we present a

general comparison of the different approaches, followed by a more

detailed investigation for our approaches.

5.1 Evaluation Setup
Our evaluation setup consists of the evaluation datasets and their

generation, algorithms, and error metrics.
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5.1.1 Datasets.
To compare the different approaches, we generate a number of dif-

ferent dataset corpora. We only use datasets with a population size

of 100K keys or more, because smaller datasets can be completely

scanned to compute the NDV without high overhead. In addition

to datasets with specific distributions, we create larger corpora of

datasets from common database benchmarks and open data sources,

as these are relevant examples for database systems. Finally, we

generate a large dataset corpus based on random data to train our

ML approach. The ML model is only trained on this corpus, which

does not include any other datasets we test on. The details of the

datasets are the following:

• TheUniform corpus contains 7 datasets, each with a population

size of 10M, where values occur uniformly 1, 2, 3, 4, 5, 10, 100,

and 1000 times, resulting in relative NDVs from 0.1% to 100%.

• The Zipf corpus includes 11 datasets generated from a standard

Zipf distribution [38] with a infinite vocabulary, so that the

probability of sampling key i is given by f (k) = k−s
ζ (s) , where

ζ (s) is the Reimann Zeta function, and s is a parameter governing

the skewness of the data. The population size was set to 10M

and s was set to values s ∈ {1.01, 1.1, 1.2, . . . , 2}. The observed
relative NDVs range from 0.04% to 70%.

• The dZipf (discrete Zipf) corpus includes 20 datasets having

the following Zipfian property: if the keys are arranged in de-

creasing order of frequency, the frequency of the kth order key

is proportional to k−s . Each of the 20 datasets was generated

by a unique value from the set s ∈ {0.1, 0.2 . . . 2.0}. The target
population size was set to N = 10M , and the number of distinct

values D was set so that the lowest order key had a frequency

of 1. The value of D meeting this condition was found by nu-

merically finding the largest D such that HD,s · D
s ≤ N , where

HD,s is the Harmonic number HD,s =
∑D
i=1

1

is .

• The TPCH corpus is taken from TPCH database benchmark

tables [35], using the scale factor 1024. The benchmark tables

contain a total of 61 columns, however, only 54 columns have

more than 100K rows. The largest columns contain 6.1B rows.

• The TPCDS corpus is taken from TPCDS database benchmark

tables [20], also using a scale factor of 1024. There, 206 columns

contain more than 100K rows (out of 429 columns in total). The

largest columns contain up to 2.9B rows.

• The RWD (RealWorldData) corpus is constructed using 10 real-

world data sources from the cities of Seattle and New York

[21–30]. The sources consist of multiple tables and result in

340 columns with more than 100K rows. The largest columns

contain about 62M rows.

• The MLtrain corpus was specifically created to train the ML

models for the ML approach. It contains 100K datasets with a

population size between 100K to 10M. Algorithm 1 shows the

algorithm used to generate the MLtrain datasets. The goal of

the algorithm is not to randomly generate a full dataset but

to generate a random frequency histogram that represents a

dataset. First a target population size is defined as a random

number between 150K and 10M (Line 2). This target population

size is reduced with every iteration until it is smaller than 50K.

With every iteration (Line 3), an initial frequency is set to the

population size (Line 4). Afterwards, this frequency is reduced

Algorithm 1 Dataset generation for MLtrain dataset corpus

1: procedure generate_dataset
2: popSize ← дenRandomInt [150K, 10M ]
3: while popSize > 50K do
4: f r equency ← popSize
5: n_r eductions ← дenRandomInt [1, 9]
6: while n_r eductions , 0 do
7: f r equency ← f r equency ∗ дenRandomFloat (0.0, 1.0]
8: n_r eductions ← n_r eductions − 1
9: amount ← дenRandomInt [1, popSize/f r equency]
10: popSize ← popSize − (f r equency ∗ amount )
11: update_f r equency_histoдram(f r equency, amount )

(Line 7) by multiplying it with a random floating point number

between 0 and 1. This reduction is performed between 1 and 9

times (Line 5). After defining the frequency, the amount (how

often this frequency occurs) is chosen randomly between 1 and

the remaining population size divided by the chosen frequency

(Line 9). Finally, the population size is reduced by the chosen

frequency multiplied with the chosen amount (Line 10) and both

values are updated in the frequency histogram (Line 11). The

iterations are repeated until the population size is below 50K. To

produce the MLtrain dataset corpus, this algorithm is executed

100K times. It is important to check if exactly matching datasets

have been created, as these need to be deleted in order to allow

correct leave-out cross-validation.

Table 2 summarizes the properties of the dataset corpora. To cate-

gorize the datasets, we investigate their frequency histograms. We

use the standard deviation of observed frequencies divided by the

mean frequency as a measure of data uniformity. Uniform datasets

have a value close to 0 as only one frequency is observed (e.g., fre-

quency 10 for cases where each key occurs 10 times). Less uniform

datasets (like Zipf distribution) have a higher value. As we can

see from Table 2, TPCH has more uniform datasets, while TPCDS

and MLtrain have more datasets that are less uniform. The relative

NDV statistics show that TPCH has both low and high NDVs, while

TPCDS, RWD, and MLtrain have mainly small NDVs.

For sampling, we always take a 1.5% random sample, if not oth-

erwise stated. The percentage is based on the default input size

of our ML approach (Section 4.1.1) and we discuss this choice of

percentage further in Section 6. We differentiate the sample type

between sampling with replacement (i.i.d. or independent and iden-
tically distributed) and sampling without replacement (in this paper

marked as non i.i.d.). For our tests, exactly the same sample is given

to all approaches for the prediction.

relative SD relative NDV

#datasets #<0.5 #≥0.5 #<1% #>95% #rest

Uniform 7 7 0 1 1 5

Zipf 11 0 11 6 0 5

dZipf 20 1 19 8 1 11

TPCH 54 41 13 30 12 12

TPCDS 206 54 152 175 6 25

RWD 340 31 309 296 9 35

MLtrain 100000 4036 95964 70859 133 29008

Table 2: Properties of the datasets used in experiments. The
relative standard deviation (SD) is the standard deviation of
observed frequencies divided by the mean frequency.
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Corpus (n_datasets) Uniform (7) Zipf (11) dZipf (20) TPCH (54) TPCDS (206) RWD (340) MLtrain (100K)

Sampling Type i.i.d. n.i.i.d. i.i.d. n.i.i.d. i.i.d. n.i.i.d. i.i.d. n.i.i.d. i.i.d. n.i.i.d. i.i.d. n.i.i.d. i.i.d. n.i.i.d.
Hybrid 4.62 4.68 1.05 1.06 1.76 1.79 2.53 2.55 2.03 2.04 1.92 1.92 3.94 3.98

Charikar AE 1.05 1.28 4.52 4.27 2.59 2.45 1.08 1.09 1.17 1.17 2.11 2.09 1.82 2.05

HNE 1.07 1.29 2.02 1.94 1.61 1.46 1.04 1.04 1.13 1.13 1.56 1.55 1.50 1.49

e
r
r
o
r
r
a
t
i
o

ML approach 1.02 1.26 1.76 1.59 1.39 1.35 1.03 1.04 1.06 1.16 1.56 1.54 1.25 1.24

Hybrid 361.6% 368.0% 5.5% 5.8% 76.2% 79.0% 152.7% 155.1% 102.6% 104.0% 79.3% 80.2% 277.3% 281.6%

Charikar AE 5.1% 28.2% 76.5% 74.1% 55.6% 52.7% 4.0% 4.5% 10.1% 10.7% 73.3% 75.1% 41.1% 68.7%

HNE 6.5% 28.5% 61.8% 67.6% 37.8% 31.6% 3.1% 3.6% 10.1% 10.7% 42.9% 42.2% 23.8% 26.3%

M
A
P
E

ML approach 1.8% 25.7% 39.1% 32.3% 24.6% 24.5% 2.9% 4.0% 5.0% 6.6% 25.3% 24.4% 17.2% 16.7%

Table 3: Overall results for different approaches and different dataset corpora, for i.i.d. and non i.i.d. (n.i.i.d.) sampling. ML
model is being trained on the corresponding MLtrain data (i.i.d. or non i.i.d.). In the upper half the error is calculated as error
ratio (eq. (22)) and in the lower half the same error is shown as MAPE.

5.1.2 Algorithms.
For the quality comparison, we use the two approaches presented

in this paper and compare them to two approaches from related

work. The evaluated approaches are, in detail:

• The Hybrid approach based on a combination of Shlosser [33]

and Smoothed Jackknife [15]. Combining both approaches was

proposed by Haas et al. [15].

• The Adaptive Estimation approach (Charikar AE) proposed by
Charikar et al. [5].

• Our Histogram Normalization Estimator (HNE) presented in

Section 3.

• Our ML approach based on two machine learning models as

presented in Section 4.

5.1.3 Metrics.
As comparison metrics, we use error ratio (eq. (22)) and Mean Abso-

lute Percentage Error (MAPE). Bothmetrics characterize the relative

error of the different approaches and a lower value symbolizes a

smaller error.

Additionally, we introduce a new metric to differentiate between

over-prediction and under-prediction, because the differentiation

is not possible in Error Ratio or MAPE. We call this metric signed
relative error (sRE), which is similar to error ratio (eq. (22)) with

changes to make the result signed and based on 0 instead of 1:

sRE =


1 ∗

(
Estimate

Target
− 1

)
, if Estimate > Target

−1 ∗

(
Target

Estimate
− 1

)
, if Estimate ≤ Target

(23)

With this metric, over-prediction has a relative error above zero,

under-prediction a relative error below zero, and zero itself sym-

bolizes no error. Please note, that sRE can only be aggregated for

positive and negative results separately, as differently signed errors

might cancel each other out.

5.2 General Evaluation
Table 3 shows the error ratios and MAPE scores for the different

approaches using the datasets presented in Section 5.1.

The Hybrid approach performs well for the Zipf datasets in ex-

periments, while producing larger errors for the other datasets. This

illustrates the statement made by Haas et al. [15] that it is nearly

impossible to have an approach work well with all distributions.

Here, the internal Shlosser algorithm [33] is highly tuned to skewed

datasets like Zipf and dZipf. The type of sampling does not seem

to impact results for this approach.

The Charikar AE approach shows good results for uniform data

and the benchmark datasets, but shows worse results for Zipf dis-

tributed data, RWD, and the MLtrain dataset corpus. In general, it

outperforms the Hybrid approach except for the Zipf corpus. For

the Zipf-like datasets, it performs better on MAPE, compared to the

error ratio (e.g., 50% MAPE ideally corresponds to an error ratio of

1.5). This is caused by strong under-prediction, which causes the

MAPE to show a 100% error in the worst case, while the error ratio

can show a much higher value. i.i.d. sampling is better for Charikar

AE for Uniform and MLtrain datasets with MAPE differences of up

to 5.5x compared to non i.i.d. sampling.

Our HNE based approach is either similar or significantly better

than the Charikar AE approach, which becomes especially visible

for the error ratios of the Zipf-like datasets and RWD. The difference

between MAPE and error ratio is not as strong as the Charikar AE

approach, which illustrates that the under-prediction problem is

less pronounced. Except for the uniform corpus, we do not see a

significant preference for i.i.d. or non i.i.d. sampling.

Finally, our ML approach shows good results for all corpora, ex-

cept for the the Zipf datasets, where it outperforms all approaches

except the Hybrid approach. For all the experiments, the model is

trained on the full MLtrain dataset. When predicting the MLtrain

dataset itself, the model is trained using 10-fold leave-out cross-

validation (CV). This means it is trained on 90% of the datasets,

while only predicting for the remaining 10%. This is shifted 10

times until the NDV for all datasets is predicted. Using CV avoids

that information about the test data is used for training the model.

For the RWD corpus, the ML approach outperforms the other ap-

proaches, with a 3x MAPE reduction compared to Charikar AE.

Interestingly, the ML approach has a similar error ratio as HNE but

a much better MAPE, caused by slight over-prediction for HNE and

slight under-prediction for the ML approach. The error is gener-

ally a bit higher for RWD compared to most other copora, due to

containing many zipf-like datasets as indicated in Table 2. The ML

approach is flexible in using the i.i.d. and non i.i.d. data; however,
for the uniform corpus it shows a similar behavior as Charikar AE

and HNE, where i.i.d. is much better than non i.i.d. .
To summarize, both of our approaches improve upon the current

state-of-the-art in general, while the ML approach shows the best

results over all. The only exception is the Hybrid approach, which

is specifically optimized for highly skewed datasets (Zipf), while

showing larger errors for all other copora.
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(a) Hybrid approach (b) Charikar AE approach (c) HNE approach (d) ML approach

Figure 3: Prediction errors (sRE, eq. (23)) for theMLtrain dataset using i.i.d. samples ordered by the relativeNDVof the datasets.

5.2.1 Detailed Evaluation on MLtrain Datasets.
As the MLtrain corpus provides us with a large number of datasets,

we investigate the predictions for these datasets in more detail. Fig-

ure 3 shows the predictions for all four approaches as a scatter plot

using our sRE metric (eq. (23)). The true relative NDV of the dataset

is on the x-axis and the signed relative error on the y-axis. Predic-
tions closer or equal to zero sRE are better. In each figure, there

are 100K dataset predictions with the majority of predictions being

for low relative NDVs (Table 2), i.e., on the left side of the graph.

Additionally, we added statistics about the percentage of the pre-

dictions, which are over-predicted (over), under-predicted (under),
or correctly predicted (correct), together with error aggregations.

The first observation is the shape of the scatter plot. The Hy-

brid approach has the most errors for low relative NDVs with a

strong tendency to over-predict. The average sRE for over-predicted

datasets is 4.2 (equal to an error ratio of 5.2). The Charikar AE ap-

proach has also the majority of errors as over-prediction, however,

these predictions are much closer to the correct NDV, resulting

in an average sRE of 0.6. The under-predictions have the same

sRE as the Hybrid approach, while occurring for small and large

relative NDVs. Our HNE approach reduces the average error for

over-prediction and under-prediction compared to both previous

approaches, while the general shape of the plot looks similar to

Charikar AE. The ML approach shows a much tighter scatter plot

with a tendency to over-predict with a sRE of 0.2, while also only

having an under-prediction sRE of only -0.5.

When looking at the exactly matching estimations, the Hybrid

approach (19.9%) and the Charikar AE approach (21.7%) have the

most amount of correct predictions compared to the HNE approach

(15.8%) and the ML approach (19.2%). This means that for HNE

and the ML approach, many predictions are close to the correct

values and few predictions are exactly correct. This influences the

average sRE numbers to be closer to 0 than for the other approaches,

as more predictions are included into the average. However, the

shape of the scatter plot and the results in Table 3 show that these

approaches are performing well and that this is not solely the effect

of these non-correct predictions.

5.2.2 Detailed Evaluation on Zipf Datasets.
In general, our approaches show good results for all the datasets

in Table 3. But specifically for the Zipf dataset corpus the Hybrid
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Figure 4: Zipf-like distribution using i.i.d. sampling.

approach performs much better. Therefore, we illustrate the results

of the Zipf and dZipf corpus in detail in Figure 4. The datasets are

plotted according to the distribution parameter used during their

creation, while showing the signed relative error (sRE).

Figure 4a shows that the Hybrid approach is indeed nearly al-

ways close to zero, indicating near-perfect predictions. The Hybrid

approach consists of two internal algorithms, one of which is cho-

sen automatically based on the data distribution in the sample. For

the Zipf datasets, the chosen algorithm internally is always the

Shlosser approach [33], which seems highly optimized for exactly

this Zipf distributions. The HNE and ML approaches are close to

the Hybrid approach, however, often predicting around half of the

actual NDV (sRE of -1). The HNE approach also seems to alter-

nate between over-prediction and under-prediction depending on

the Zipf distribution parameter. The Charikar AE approach con-

stantly under-predicts by a large margin, with an sRE of -5 in the

extreme case.

For the HNE and ML approach, the behavior is similar in Fig-

ure 4b for slightly less skewed Zipf-like data. Charikar AE shows

a better sRE, while still under-predicting more than the other ap-

proaches. The Hybrid approach, however, shows a much higher

error resulting in often over-predicting about 1x. This shows that

the internal Shlosser model [33] is highly optimized for the spe-

cific distribution shown in Figure 4a but performs worse for any

deviation from this target distribution.



Distinct Value Estimation from a Sample: Statistical Methods vs. Machine Learning SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

TPCDS TPCH Uniform Zipf dZipf MLTrain RWD
Corpus

0

5

10

15

20

25

30

35

40
Es

tim
at

e 
Ra

tio
 to

 G
ro

un
d 

Tr
ut

h

(a) Strict Upper Bound

TPCDS TPCH Uniform Zipf dZipf MLTrain RWD
Corpus

0

5

10

15

20

25

30

35

Es
tim

at
e 

Ra
tio

 to
 G

ro
un

d 
Tr

ut
h

(b) Upper Bound based on Geometric Mean

Figure 5: Distribution of the boundwidth (using bounds pro-
vided byHNE) on dataset corpora, for 1.5% i.i.d. samples. The
value is divided by the NDV ground truth for normalization.

5.3 Upper Bound on NDV Estimates
As previous theoretical negative results [5, 6] prove, error ratio

bounds on NDV estimates are expected to be large, as any sample

data could have been drawn one of two extreme distributions: either

the sample NDV could be the dataset NDV, or the dataset NDV

could be an extremely high value due to presence of singletons. As

a result, while two-sided bounds on NDV estimates can be provided

(by using the sample NDV as the lower bound, and the singleton

estimate as the upper bound), they are often too broad to be useful.

With HNE we mainly address the upper-bound problem. There,

the goal is to be as close to the ground truth as possible, while

avoiding under-estimation. We do not provide a lower bound, but

use the natural lower bound being the sample NDV. The upper-

bound estimation has many applications in database systems. For

example, a query optimizer might have a threshold NDV value,

where a certain plan is only chosen above a certain value. Addition-

ally, NDV estimates may be used for memory allocation and risks

from under-allocation might mean that the system would prefer to

over-allocate memory based on an upper bound.

As described in Section 3.3.2, such an upper bound is provided by

eq. (21). Figure 5a shows the distribution of the ratio of the upper

bound to the NDV ground truth across test corpora. The upper

bound correctly over-estimates the NDV ground truth in almost all

cases (as the upper-bound to ground truth ratio is above 1). There

are only 15 datasets, all in the MLTrain corpus (0.015%), which do

not over-estimate the NDV.

Optimizations # affected MAPE gain

(from → to) datasets before after

RM → RM+ECM 7151 2.66% 0.34% 7.8x

RM → RM+yT 78858 28.22% 21.22% 1.3x

RM+yT→ RM+yT+ECM 7044 1.38% 0.34% 4x

Table 4: Improvements using ML optimizations tested with
Regression Model (RM), Edge-Case Model (ECM), and label
transformation (yT).

An interesting aspect of Figure 5a is the set of outlier values that

represent a high over-estimate, particularly for TPCH. This is in

line with the scenario mentioned above, where the sample NDV is

actually the dataset NDV. Technically in these cases, the guarantee

of an over-estimate still holds.

Overall, the strict upper bound is generally high, compared to

the ground truth. For this reason, as discussed in Section 3.3.2, we

propose the use of the geometric mean of the HNE and upper-bound

NDV estimates, as an alternative upper bound. Figure 5b shows

the ratio of the geometric mean based upper bound estimate to the

ground truth. While the geometric mean (GM) upper bound is less

strict, in practice, it over-estimates the ground truth NDV in almost

all cases. The GM upper bound to ground truth ratio is greater than

1 for all histograms across all datasets, with the exception of the

Zipf, MLTrain, and RWD datasets. For the Zipf dataset, the under-

estimate occurs for about 60% of datasets. However, the under-

estimate is small in magnitude: the ratio of estimate to ground truth

is 0.8 in the worst case. Besides this, the GM bound under-estimates

in 3% of histograms in the MLTrain dataset, and 4% of histograms

in RWD. Note, however, that the GM bound has a much narrower

range. For a large number of histograms across all corpora, the

bound is within 2.5x of the ground truth. In situations where the

system is robust to occasional under-estimates, the GM bound can

provide a reasonably narrow upper bound estimate.

5.4 Optimization Impact for ML approach
In this part, we illustrate the impact of our optimizations for the

ML model (Section 4.2). We evaluate the general Regression Model

(RM, Section 4.1) separately and add two optimizations, (1) label

transformation (yT) and (2) the Edge-Case Model (ECM), one at a

time (Section 4.2). Table 4 shows the results of these experiments

with the MLtrain dataset corpus using cross validation. We can

see, that the Edge-Model affects about 7% of the datasets, which

is expected since this model is designed to handle the edge cases

and not the majority of the datasets. This means that for 93% of the

datasets, this model will predict the ’no-match’ class indicating that

the regression model should be used. When only looking at the 7%

affected datasets separately, the MAPE changed from 2.66% to 0.34%,

showing that the regression model handled these cases already

reasonably well, but the Edge-Case Model still reduces the errors

of these cases by about 8x. The impact of the label transformation

(yT) is only 1.3x error improvement, however, this optimization is

affecting the majority of the datasets (79%). Interestingly, the label

transformation and the Edge-Case Model improve similar kinds of

datasets. This can be seen in Table 4, where adding the Edge-Case

Model to the Regression Model with label transformation shows

only an improvement of 4x (instead of 7.8x) for the affected datasets.
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6 DISCUSSION
In this section, we want to discuss different perspectives of judging

our approaches for the final question: which approach is the best?

6.1 Estimation Quality
As shown in Section 5.2, both, the ML approach and HNE approach

show a robust performance without larger errors as seen with the

other approaches. In general, the ML approach surpasses the HNE

approach, but the errors of both are comparably low.

6.2 Varying the Sampling Percentage
One of the main limitations of the ML model is the fixed sample

percentage. The MLmodel is specifically trained on the 1.5% sample

size. While it is expected that the model will do reasonably well

with smaller or larger sample percentages, it needs to be trained

for every new scenario. This means that the ML approach either

supports only one fixed sample percentage or that several models

need to be trained and deployed for a number of fixed percentages.

In contrast, HNE supports a variable sample percentage, since the

percentage is an input to the model. The percentage can be adjusted

for each separate prediction, allowing further optimizations. One

optimization could be upper sampling limits, where the algorithm

never samples more than an absolute number of keys. For example,

while 1.5% could be the default sampling percentage, the system

might have an absolute upper limit and not sample more than a

certain number of keys for performance reasons. This is especially

useful for runtime critical applications. Another use case is adaptive

sampling, where the model starts sampling with a small percentage

and increases the percentage if the bounds indicate high prediction

uncertainty. Generally, having upper and lower bounds is also a

feature of HNE, which is not provided by the ML approach.

6.3 Maintainability
We have seen in Section 5.2 that models perform differently on

different datasets and further adjustments might be needed for

different applications. For example, both of our approaches need

to be improved if the target datasets are mainly consisting of Zipf

distributed keys.

For the HNE approach, this involves changing and extending

the theoretical principles of the model itself and certainly needs

an expert in the field to do so. On the other side, the ML approach

can be trained with data that is targeted by the application. So it is

possible to specifically generate or observe target data to train the

MLmodel. The model could even be trained online, where it predicts
the NDV for certain datasets, while at a later stage it gets the real

NDV as feedback. This can be used to automatically specialize the

model without changing any core principles.

6.4 Applicability
Finally, the question arises on how easy can the approaches be

deployed and applied to existing applications.

For the ML approach, specific libraries are needed, which have

to be present in the product. This involves licensing of these li-

braries and it prevents the model from being deployed in specific

sand-boxed environments like SQL-based stored procedures in a

database system. Additionally, the trained model itself has a sig-

nificant memory footprint. Our ML model contains hundreds of

underlying decision tree structures and when stored to disk, it

results in about 200MB of compressed model-internal data. This

might make it unusable for environments with limited resources.

On the other side, the HNE approach does not need specific

libraries and mainly consists of a few hundred lines of code. This is

much easier to deploy in limited environments and can be ported

easily to any target programming language.

6.5 Which Approach is the Best? ... It depends!
Judging from the prediction quality and maintainability, the ML

approach should be preferred. However, this is only possible if the

dependency on libraries and fixed sample percentages does not pose

a limitation for the final application. Seeing that the HNE approach

has a similar prediction quality, is easier to integrate to existing

projects, and supports variable sample percentages, it seems that

this approach is more flexible in its application. Especially the latter

point is important since sampling percentages are usually preferred

smaller than 1.5% with the option to sample more if the prediction

is not good enough. In the end, it mainly depends on the application

environment and the usage of the NDV predictor.

7 CONCLUSION
In this paper, we investigated the problem of distinct value estima-

tion based on a dataset sample. We proposed two novel approaches

using different methods, a statistical method and a Machine Learn-

ing basedmethod. Both our approaches outperform the competitors,

though performing worse for very specific datasets, which other

approaches are specifically optimized for. Overall, the ML based

technique performs best, with up to 3x in average error reduction

for real-world datasets. However, better prediction quality does not

mean that this approach can be applied directly to existing projects.

It rather depends on the project specifics and it might be better

to choose a statistical method for easier integration. This is the

main reason why we explore two inherently different approaches

in this paper.

In future work, we plan to extend the HNE approach into an

adaptive sampling framework, where the algorithm starts with a

small sample size, and the sampling percentage is increased until a

certain exit criteria is reached. This can result in faster processing

because large samples are only taken where required. We also plan

to investigate extending HNE to include information from multiple

samples, like the ML approach. A key problem statistical estimators

face is that the number of singletons in the dataset are not known.

Incorporating the rate at which new keys are observed with each

additional sample could address this problem.

TheML approach can always be extended by more targeted train-

ing data for certain distributions (e.g., Zipf) or additional features.

Additionally, the whole approach could be extended by incorpo-

rating other approaches like HNE or the Shlosser estimator [33]

in the model. Currently the Edge-Case model is deciding to use a

certain feature value or the regression model. This makes it easily

extensible to add more models and let the edge-case model decide,

which one to use for a given data sample.
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