
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Synthesis of Allowlists for Runtime Protection against SQLi
Kostyantyn Vorobyov

kostyantyn.x.vorobyov@oracle.com
Oracle Labs

Brisbane, Queensland, Australia

François Gauthier
francois.gauthier@oracle.com

Oracle Labs
Brisbane, Queensland, Australia

Padmanabhan Krishnan
paddy.krishnan@oracle.com

Oracle Labs
Brisbane, Queensland, Australia

ABSTRACT
Data is the new oil. This metaphor is commonly used to highlight
the fact that data is a highly valuable commodity. Nowadays, much
of worldwide data sits in SQL databases and transits through web-
based applications of all kinds. As the value of data increases and
attracts more attention from malicious actors, application protec-
tions against SQL injections need to become more sophisticated.
Although SQL injections have been known for many years, they
are still one of the top security vulnerabilities. For example, in 2022
more than 1000 CVEs related to SQL injection were reported. We
propose a runtime application protection approach that infers and
constrains the information that can be disclosed by database-backed
applications. Where existing approaches use syntax or hand-crafted
features as a proxy for information disclosure, we propose a light-
weight information disclosure model that faithfully captures the
semantics of SQL and achieves finer-grain security.

KEYWORDS
SQLi, Synthesis, Generalisation

ACM Reference Format:
Kostyantyn Vorobyov, François Gauthier, and Padmanabhan Krishnan. 2024.
Synthesis of Allowlists for Runtime Protection against SQLi. In New Ideas
and Emerging Results (ICSE-NIER’24). ACM, New York, NY, USA, 5 pages.

1 INTRODUCTION
A commonway of securingweb applications against cyber threats is
by using a Web Application Firewall (WAF) that monitors HTTP(S)
traffic and blocks suspicious requests. To identify SQL injections
(SQLi), WAFs analyse request payloads for syntactic anomalies.
For instance, payloads containing apostrophes, comments, or SQL
keywords could be blocked as potentially dangerous.

While effective at deterring simple SQLi attacks, WAFs can be
evaded using malicious payloads whose syntax resemble benign
inputs. For instance, an attacker can send a harmless-looking hexa-
decimal string that will be executed as code or use functions like
concat and chr to obfuscate malicious payloads. WAF’s analysis is
also limited to network payloads, which may not contain SQL frag-
ments but still influence how SQL queries are built at runtime. Such
payloads are typically application-specific and difficult to detect at
the network level.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-NIER’24, ,
© 2024 Association for Computing Machinery.

A more robust prevention of SQLi attacks is offered by database
firewalls or runtime application self protection (RASP) tools that
intercept and check incoming SQL queries before they reach the
database. Checking queries for SQLi is delegated to a security policy
that is typically generated from known benign queries.

A popular way of detecting SQLi attacks is by comparing the
parse trees of known benign and incoming queries. For example,
Sofia [6] is a SQLi detector that uses parse tree similarity to cluster
known benign queries and report incoming queries that are too
distant from any benign cluster as potential attacks. SEPTIC [12],
on the other hand, generates context-sensitive policies (or profiles)
as parse-tree signatures. At runtime, a SQLi attack is reported if the
signature of an incoming query does not match any pre-recorded
benign signatures. Other techniques utilising parse trees for pre-
vention of SQLi attacks include [2] and [4].

Because they report all syntactic deviations as SQLi, parse tree-
based methods can be prone to false positives and negatives. Dy-
namic yet benign queries that add or remove predicates e.g., a
search and filter functionality, can be rejected while syntactically
similar yet malicious queries, e.g., mimicry attacks [19] can be ac-
cepted. Syntactic properties alone are thus insufficient to accurately
model benign queries. In an attempt to produce syntax-agnostic
models, SQLBlock [9] generates context-sensitive "profiles" that
capture features such as table names, logical operators, functions
and types of queries (e.g., SELECT) emitted from a given function
in the application. At runtime, incoming queries are allowed if
all their features are listed in the profile matching their calling
function. In practice, SQLBlock has been shown to be effective
against common SQLi attacks that access system tables, execute
new functions or use additional operators. However, depending on
the training queries, SQLBlock can also be prone to false positives
and negatives, as highlighted in the motivating examples below.
Furthermore, because SQLBlock operates at the granularity of data-
base tables, it provides limited protection against data ex-filtration
attacks targeting specific columns or rows.

Column and row granularity is typically required by applications
that need to achieve a trade-off between performance (e.g., min-
imising the number of tables and table joins), maintainability (e.g.,
minimising the number user- role- or application-specific views)
and privacy and might not be obvious from the open-source appli-
cations that have been studied in past work. This need has however
been recognised by several database vendors who offer various
flavours of row- and column-based access control [1, 14–17].

Motivating Example. Consider a "members" table, as shown in Ta-
ble 1, that contains sensitive information, highlighted in red. Next,
assume that the following queries pertaining to the "members" table
were collected from the application under test:

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE-NIER’24, , Kostyantyn Vorobyov, François Gauthier, and Padmanabhan Krishnan

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: The "members" table

1 2 3 4 5
1 fname lname ssn dept email
2 John Adams XXXX HR j.adams@foo.com
3 Mary Baker XXXX HR m.baker@bar.com
4 Juan Lopez XXXX Sales j.lopez@foo.com
5 Amir Zafar XXXX Sales a.zafar@bar.com
6 Kira Patel XXXX CEO k.patel@baz.com

SELECT lname, fname, email FROM members WHERE dept = 'HR' ;
SELECT dept, email FROM members WHERE lname = 'Baker' OR

dept = 'Sales';↩→

These queries access or disclose the blue cells in Table 1 and make
up our training set. After training, our approach would infer that
the yellow cells can be disclosed, based on the fact that columns
1 and 2 and rows 4 and 5 have been partially disclosed during
training. Let’s now consider queries encountered at runtime and
how various approaches might classify them.
SELECT email FROM members;

Because the above query uses fewer operators than training queries,
it will be allowed by SQLBlock despite the fact that it discloses
sensitive fields from row 6. On the other hand SQLBlockwill reject
the following query.
SELECT email FROM members WHERE dept = 'HR' AND lname =

'Baker';↩→

This query, while syntactically similar to training queries, uses
more operators in its predicate to disclose less information (i.e. cells
(3,4) and (3,5) only). The addition of an AND operator would cause
SQLBlock to reject this legitimate query. In the next example,
SELECT * FROM members WHERE dept = 'HR';

the * operator causes the disclosure of sensitive social security
numbers (SSN). Reasoning about the * requires knowledge of the
database schema, which is not available in the AST. Hence SQL-
Block would allow this query. The final example,
SELECT fname || ' ' || lname AS name FROM Members M HAVING

dept IN ('Sales', 'HR');↩→

discloses similar information than training queries (e.g. blue and
yellow cells), it is syntactically different and introduces several
new operators. This benign query would be rejected outright by
syntax-based approaches and SQLBlock.

In summary, existing approaches are designed to prevent com-
mon SQLi attacks that alter the syntax of queries or attempt to
access additional tables, functions and operators. As shown in our
examples, however, using syntax or hand-picked features as a proxy
for information disclosure is fundamentally limited andmight result
in false positives and negatives that will hinder usability, privacy
and security.

In this paper we present a novel allowlist-based technique to
prevent data ex-filtration attacks at the application level, before
queries reach the database. Similar to SQLBlock, our technique
automatically synthesises context-sensitive security policies from
benign queries. Unlike existing bodies of work, however, our ap-
proach uses ASTs to derive an information flow-based allowlist
from queries. At runtime, incoming queries are allowed if they not

disclose more information than permitted by the allowlist. Queries
that violate this condition are flagged as malicious and rejected.
The following sections detail the process by which we synthesise
allowlists, in the form of generalised abstract queries, from sets of
benign queries.

2 OVERVIEW
The idea of synthesising SQL queries is not new. Past work has
included synthesis from natural language descriptions [21], input
examples [20], or using machine learning techniques from features
in SQL queries [3]. Our work is focused on generating an abstract
query that over-approximates a collection of queries and based on
a simplified version of the information flow model from Guarnieri
et al. [8]. As the aim is not to prove non-interference, we do not
consider explicit security labels associated with a trace-based se-
mantics. This simplifiedmodel is generalised as part of the synthesis
process.

2.1 Information Model
Our information model of a SQL query is based on disclosure –
columns disclosed to the user (e.g., via a select statement but can
also include INSERT, UPDATE or DELETE), access – columns used to
compute the disclosed information, and predicates – conditions for
disclosure to occur expressed as a boolean formula. For a query 𝑞,
we let 𝐷 (𝑞) denote disclosed columns, 𝐴(𝑞) denote accessed, and
𝑃 (𝑞) denote predicates. For example, in the following query
SELECT dept, email FROM members WHERE lname = 'Baker';

𝐷 (𝑞) is {dept, email},𝐴(𝑞) is {lname}, and 𝑃 (𝑞) is lname = ’Baker’.

Information Tuple. In a query, different columns can be disclosed
under different conditions. For instance, the following example that
uses a LEFT JOIN returns all rows from the left (members) table
even if the condition in the ON clause evaluates to false.
SELECT M.lname, O.info FROM members AS M LEFT JOIN orders AS

O ON M.email = O.email;↩→

That is, O.info is disclosed under predicate M.email = O.email and
requires access to both email columns, whereas lname is disclosed
unconditionally. To account for this issue we represent a query
as a set of information tuples where each tuple ⟨𝑑,𝐴, 𝑃⟩ models
the disclosure of a single column 𝑑 , the set of accessed columns
𝐴 needed for the disclosure and the predicates 𝑃 leading to the
disclosure. An information tuple is thus an information model of a
query that discloses a single column. The above example query is
represented by (or decomposed into) two tuples: ⟨M.lname, ∅, 𝑡𝑟𝑢𝑒⟩
and ⟨O.info, {M.email, O.email}, M.email = O.email⟩

Query Decomposition. Computing the decomposition of a query
into a set of information tuples is done by traversing a graph that
represents the semantics of the query in a structural form, called
a structural graph. The nodes of the structural graph correspond
to syntactic elements (e.g., SELECT, WHERE) and annotated with
predicates. The edges of the structural graph capture direction of
information flow. While supporting the full semantics of SQL is
beyond the scope of this paper, we explain key concepts using a
simple example shown below.
SELECT M.lname, O.info
FROM members AS M

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Synthesis of Allowlists for Runtime Protection against SQLi ICSE-NIER’24, ,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

LEFT JOIN orders AS O ON M.email = O.email
WHERE M.dept = 'HR'

The structural graph for the above query is shown in Figure 1.
Note the difference in direction of information flow between the
join and the tables. This models LEFT JOIN used in this query,
where ON predicates (associated only with table orders) are not
reachable from the members table graph node. For each disclosed
column in the query we compute an information tuple by iden-
tifying the table of that tuple and traversing the graph starting
with that node. The predicates part of the tuple is constructed by
conjunction of all reachable predicates. The set of accessed columns
is then constructed from all encountered columns. For instance, to
compute the information tuple for O.info we first locate the table
node (O) and collect predicates from reachable ON and WHERE nodes
that generates tuple ⟨O.info, {O.email,M.email,M.dept},M.email =
O.email∧M.dept = ’HR’⟩. The information tuple ofM.lname is then
⟨M.lname, {M.dept},M.dept = ’HR’⟩.

Figure 1: Example Structural Graph

In summary, structural decomposition represents a SQL query as
a set of information tuples, where each tuple captures information
about a distinct disclosed column. We let Inf(𝑞) denote the set of
information tuples of a query 𝑞.

2.2 Information Disclosure
Given two information tuples 𝑡1 = ⟨𝑑1, 𝐴1, 𝑃1⟩ and 𝑡2 = ⟨𝑑2, 𝐴2, 𝑃2⟩
we say that 𝑡1 discloses no more information than 𝑡2 (written as
𝑡1 ⪯ 𝑡2) if the following three conditions hold.

(1) 𝑑1 = 𝑑2
(2) 𝐴1 ⊆ 𝐴2 and
(3) 𝑃1 ⇒ 𝑃2.

Query Disclosure. Given two queries, 𝑞1 and 𝑞2, we say that 𝑞1
discloses no more information than 𝑞2 if for each information tuple
𝑡 in Inf(𝑞1) there exists a tuple 𝑡 ′ in Inf(𝑞2) such that 𝑡 ⪯ 𝑡 ′.

In the context of security checking we can say that an input
query 𝑞𝑖 is malicious with respect to an allowlist given by query
𝑞𝑎 , if the property 𝑞𝑖 does not disclose more information than 𝑞𝑎 .

3 GENERALISATION
We construct an allowlist of permitted queries by using a training set
of known benign queries. Then, an incoming query 𝑞𝑖 is permitted
by the allowlist A = {𝑞1, . . . , 𝑞𝑛} if A contains some query 𝑞𝑎 that
discloses at least as much information as 𝑞𝑖 (i.e., 𝑞𝑖 ⪯ 𝑞𝑎). Since a
training set of queries is rarely complete, however, such an allowlist
is likely to lead to false positives. Furthermore, a large set of training
queries can result in performance bottlenecks because rejecting a
malicious query requires checking disclosure of all queries in the
allowlist.

To solve the above issues, we generaliseA. Given a set of benign
queries {𝑞1, . . . , 𝑞𝑛 } whose semantics is represented as {⟦𝑞1⟧, . . . , ⟦𝑞𝑛⟧}
the aim is to synthesise a generalised query 𝑞+, such that ⟦𝑞+⟧ over-
approximates all the queries in {⟦𝑞1⟧, . . . , ⟦𝑞𝑛⟧}.

Recall that a query 𝑞 is represented by a set of information tuples
Inf(𝑞) obtained from structural decomposition. The generalised
query 𝑞+ can be represented by a collection of generalised informa-
tion tuples, i.e., the problem of query generalisation can be reduced
to generalisation of information tuples. The generalised query is
synthesised from the initial allowlist A = {𝑞1, . . . , 𝑞𝑛} as follows:

(1) Use structural decomposition to generate the set of infor-
mation tuples of A, i.e., {Inf(𝑞1) ∪ . . . ∪ Inf(𝑞𝑛)}.

(2) Collect and generalise tuples disclosing the same column.
For example, consider an initial allowlist A of queries 𝑞1 and 𝑞2

that disclose columns {𝑎, 𝑏} and {𝑎, 𝑏, 𝑐} respectively. In the first
step A is converted into the set of information tuples {𝑡1 (𝑎), 𝑡1 (𝑏),
𝑡2 (𝑎), 𝑡2 (𝑏), 𝑡2 (𝑐)}, where 𝑡1 (𝑎) denotes the information tuple dis-
closing column 𝑎 in query 𝑞1 and so on. The generalised allowlist
A𝑔 is then the set of tuples {𝑡𝑔 (𝑎), 𝑡𝑔 (𝑏), 𝑡𝑔 (𝑐)}, where 𝑡𝑔 (𝑎) denotes
a tuple generalising 𝑡1 (𝑎) and 𝑡2 (𝑎) and so on.

One way to generalise information tuples is by combining re-
spective predicates and access columns. For example, generalisation
over ⟨𝑑, {𝑎, 𝑏}, 𝑝1⟩ and ⟨𝑑, {𝑏, 𝑐}, 𝑝2⟩ becomes ⟨𝑑, {𝑎, 𝑏, 𝑐}, 𝑝1 ∨ 𝑝2⟩.
Such an approach, however, may be considered too permissive. For
example, for disclosure of the column 𝑑 , a query accessing columns
𝑎 and 𝑐 together will be permitted even though it has never been
observed. Furthermore, access to column 𝑐 will now be permitted
under the predicate 𝑝1 that has not been observed either.

To resolve this issue, we extend information tuples to capture
groups of columns observed together in the training set along with
their respective predicates. We now show synthesis of an extended
information tuple using a simple example. Consider information
tuples 𝑡1 = ⟨𝑑, {𝑎, 𝑏}, 𝑝1⟩ and 𝑡2 = ⟨𝑑, {𝑏, 𝑐}, 𝑝2⟩. These tuples both
disclose column 𝑑 and therefore can be generalised. An extended
information tuple combining 𝑡1 and 𝑡2 is shown below (the disclosed
column 𝑑 is omitted to simplify the presentation).

Accessed Predicate Correlation
𝑎 𝑝1 {𝑏}
𝑏 𝑝1 ∨ 𝑝2 {𝑎, 𝑐}
𝑐 𝑝2 {𝑏}

A row of the table above describes an accessed column of the
tuple, the predicate the column can be accessed under and its cor-
related set (i.e., set of columns it can be used with). The first row
thus shows that column 𝑎 can be accessed under predicate 𝑝1 and

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE-NIER’24, , Kostyantyn Vorobyov, François Gauthier, and Padmanabhan Krishnan

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

together with column 𝑏. This information is gathered from 𝑡1 tuple
exclusively because 𝑎 has not been observed in 𝑡2. Column 𝑏, on
the other hand, appears in both tuples, therefore its correlated set
is {𝑎, 𝑐} and the predicate is a disjunction of predicates from tuples
where it appears (𝑝1 ∨ 𝑝2).

More formally, an extended information tuple is a quadruple
⟨𝑑,𝐴, pred, corr⟩, where 𝑑 is a disclosed column, 𝐴 is a set of ac-
cessed columns, pred is a mapping over 𝐴 that associates accessed
columns with predicates, and corr is a mapping over 𝐴 that asso-
ciates accessed columns with sets of their correlated columns, e.g.,
in the example above 𝐴 is {𝑎, 𝑏, 𝑐}, pred(𝑏) is 𝑝1 ∨ 𝑝2 and corr(𝑏) is
{𝑎, 𝑐}.

In summary, the generalised allowlist A𝐺 consists of a set of
extended information tuples that disclose distinct columns. We use
Inf𝐺 ({𝑞1, . . . , 𝑞𝑛}) to denote generalisation over a training query
set {𝑞1, . . . , 𝑞𝑛}.

Predicate Generalisation. Another dimension to generalisation is
the generalisation over predicates generated from queries. Overall,
standard techniques (e.g., abstract interpretation [10]) can be used
for predicate generalisation. One simple yet practical approach is
the generalisation over constants, e.g., replacing all integers by
1, all strings by ’S’ and so on. The state-of-the-art tools such as
Sofia or SQLBlock employ similar strategies and discard constants
in subtrees or profiles. Another practical option is to use range
abstraction [5, 18]. This type of generalisation is relevant for queries
accepting limited numeric inputs. For more complex expressions
domains such as Pentagons [11] or Octagons [13] can be used.

While specific predicate abstraction and generalisation is beyond
the scope of this paper, we consider predicate generalisation to be
a necessary step in generating a robust allowlist.

Cardinality Generalisation. Another dimension to generalisation
is the generalisation over table columns. For instance, if a query
accesses more columns of a table (say 𝑇 ) than some configured
threshold then the generalisation can allow access to all columns of
that table. In a given extended information tuple this generalisation
should update both the set of accepted columns and the correlation
mapping to include all columns of 𝑇 .

3.1 Generalised Information Disclosure
Given two extended information tuples 𝑡1 = ⟨𝑑1, 𝐴1, pred1, corr1⟩
and 𝑡2 = ⟨𝑑2, 𝐴2, pred2, corr2⟩ we say that 𝑡1 discloses no more
information than 𝑡2 (denoted as 𝑡1 ⪯ 𝑡2) if

𝑑1 = 𝑑2 and for each column 𝑎 from 𝐴1
(1) 𝑎 ∈ 𝐴2
(2) pred1 (𝑎) ⇒ pred2 (𝑎)
(3) corr1 (𝑎) ⊆ corr2 (𝑎)

Allowlist Checking. Let A𝐺 = Inf𝐺 ({𝑞1, . . . , 𝑞𝑛}) be a generalised
allowlist and 𝑞𝑖 be an incoming query. We say that 𝑞𝑖 is accepted
by the generalised allowlist A𝐺 if for each extended information
tuple 𝑡𝑖 in Inf𝐺 ({𝑞𝑖 }) there exists an extended information tuple 𝑡𝑎
in A𝐺 such that 𝑡𝑖 ⪯ 𝑡𝑎 .

3.2 Example
SELECT lname, fname, email FROM members WHERE dept = 'HR';
SELECT dept, email FROM members WHERE lname = 'Baker' OR

dept = 'Sales';↩→

The allowlist generated from the above training queries com-
prises 4 extended information tuples that allow disclosure of columns
fname, lname, email and dept. Consider column email disclosed in
both queries. The structural graph decomposition generates the
following information tuples

⟨email, {dept}, dept = ’HR’⟩
⟨email, {lname, dept}, lname = ’Baker’ ∨ dept = ’Sales’⟩

and further generalisation of these tuples (including predicate gen-
eralisation over constants) yields an extended information tuple

Accessed Predicate Correlation
dept lname = ’S’ ∨ dept = ’S’ {𝑙𝑛𝑎𝑚𝑒,𝑑𝑒𝑝𝑡}
lname lname = ’S’ ∨ dept = ’S’ {𝑙𝑛𝑎𝑚𝑒,𝑑𝑒𝑝𝑡}

Let us consider several incoming queries.
SELECT email FROM members;

Having no predicates our approach considers that this query ac-
cesses all columns including SSN. Since the allowlist does not permit
access to SSN (even if it has not been disclosed) the query is rejected.
SELECT email FROM members WHERE dept = 'HR' AND lname =

'Baker';↩→

Our approach permits this query because it discloses no more in-
formation than specified by the allowlist, i.e., (1) information tuple
disclosing email exists, (2) access to dept and lname has been ob-
served, (3) correlation permits using dept and lname together and
(4) the predicate checks under predicate generalisation hold.
SELECT * FROM members WHERE dept = 'HR';

This query is rejected because it discloses all column including SSN,
whereas the allowlist does not permit disclosure of that column.
SELECT fname || ' ' || lname AS name FROM Members M HAVING

dept IN ('Sales', 'HR');↩→

Even though syntactically different from the training queries our
approach allows it. The query discloses fname and lname columns
under predicate dept = ’S’ obtained by generalisation of the predi-
cate build from the IN expression. This query therefore discloses
no more information than the first query in the training set.

4 FUTUREWORK
In this paper we have described how finer-grain information pro-
tection in a world where “data is the new oil” [7] can be achieved.
Our work is far from complete, however. Our allowlist synthesis
strategy is designed to be used for runtime application protection,
where overheads and false positives must be low. Achieving an
acceptable trade-off between security, usability and performance
will require careful experimentation on real-world applications and
vulnerabilities. For example, we are currently investigating how
context-sensitivity — synthesising and enforcing different allowlists
for different execution contexts (e.g. call stacks) — could help us
synthesise tighter allowlists, especially in applications that emit
a wide spectrum of SQL queries. We are also considering various
caching and optimisation strategies to lower the overhead of our
runtime protections.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Synthesis of Allowlists for Runtime Protection against SQLi ICSE-NIER’24, ,

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES
[1] Oracle Database 21c. 2023. Using Oracle Virtual Private Database to

Control Data Access. https://docs.oracle.com/en/database/oracle/oracle-
database/21/dbseg/using-oracle-vpd-to-control-data-access.html#GUID-
06022729-9210-4895-BF04-6177713C65A7

[2] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishnan.
[n. d.]. CANDID: preventing sql injection attacks using dynamic candidate
evaluations. In Proceedings of the 2007 ACM Conference on Computer and Com-
munications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007,
Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson (Eds.). ACM,
12–24.

[3] E. Bertino, A. Kamra, and J. P. Early. 2007. Profiling Database Application to
Detect SQL Injection Attacks. In IPCCC.

[4] Gregory Buehrer, BruceW.Weide, and Paolo A. G. Sivilotti. 2005. Using parse tree
validation to prevent SQL injection attacks. In Proceedings of the 5th International
Workshop on Software Engineering and Middleware, SEM 2005, Lisbon, Portugal,
September 5-6, 2005, Elisabetta Di Nitto and Amy L. Murphy (Eds.). ACM, 106–
113.

[5] V. H. S. Campos, R. E. Rodrigues, I. R. de Assis Costa a nd D. do Couto Texeira,
and F. M. Q. Pereira. [n. d.]. A Tool for the Range Analysis of Whole Programs.
http://range-analysis.googlecode.com/.

[6] Mariano Ceccato, Cu D. Nguyen, Dennis Appelt, and Lionel C. Briand. 2016.
SOFIA: an automated security oracle for black-box testing of SQL-injection
vulnerabilities. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016, David
Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM, 167–177.

[7] The Economist. 2017. The world’s most valuable resource is no longer oil,
but data. https://www.economist.com/leaders/2017/05/06/the-worlds-most-
valuable-resource-is-no-longer-oil-but-data

[8] M. Guarnieri, M. Balliu, D. Schoepe, D. Basin, and A. Sabelfeld. 2019. Information-
Flow Control for Database-Backed Applications. In EuroS&P.

[9] Rasoul Jahanshahi, Adam Doupé, and Manuel Egele. 2020. You shall not pass:
Mitigating SQL Injection Attacks on Legacy Web Applications. In ASIA CCS ’20:
The 15th ACM Asia Conference on Computer and Communications Security, Taipei,
Taiwan, October 5-9, 2020, Hung-Min Sun, Shiuh-Pyng Shieh, Guofei Gu, and
Giuseppe Ateniese (Eds.). ACM, 445–457.

[10] B. Jeannet and A. Miné. 2009. Apron: A Library of Numerical Abstract Domains
for Static Analysis. In CAV.

[11] F. Logozzo and M. Fähndrich. 2008. Pentagons: a weakly relational abstract
domain for the efficient validation of array accesses. In Proceedings of the ACM
Symposium on Applied Computing (SAC). ACM, 184–188.

[12] Ibéria Medeiros, Miguel Beatriz, Nuno Neves, and Miguel Correia. 2019. SEPTIC:
Detecting Injection Attacks and Vulnerabilities Inside the DBMS. IEEE Trans.
Reliab. 68, 3 (2019), 1168–1188.

[13] A. Miné. 2001. The Octagon abstract domain. In Proceedings Eighth Working
Conference on Reverse Engineering. IEEE, 310–319.

[14] MySQL. 2023. Column privileges. https://dev.mysql.com/doc/refman/8.0/en/
grant.html#grant-column-privileges

[15] PostgreSQL. 2023. Row Security Policies. https://www.postgresql.org/docs/
current/ddl-rowsecurity.html

[16] SQL Server. 2023. Column-level Security. https://learn.microsoft.com/en-
us/azure/synapse-analytics/sql-data-warehouse/column-level-security

[17] SQL Server. 2023. Row-level Security. https://learn.microsoft.com/en-us/sql/
relational-databases/security/row-level-security

[18] Z. Su and D. Wagner. 2005. A Class of Polynomially Solvable Range Constraints
for Interval Analysis withoutWidenings. Theoretical Computer Science 345 (2005),
122–138.

[19] David Wagner and Paolo Soto. 2002. Mimicry attacks on host-based intrusion
detection systems. In Proceedings of the 9th ACM Conference on Computer and
Communications Security. 255–264.

[20] C. Wang, A. Cheung, and R. Bodik. 2017. Synthesizing Highly Expressive SQL
Queries from Input-Output Examples. In PLDI.

[21] N. Yaghmazadeh, Y. Wang, I. Dillig, and Thomas Dillig. 2017. SQLizer: Query
Synthesis from Natural Language. In OOPSLA.

5

https://docs.oracle.com/en/database/oracle/oracle-database/21/dbseg/using-oracle-vpd-to-control-data-access.html#GUID-06022729-9210-4895-BF04-6177713C65A7
https://docs.oracle.com/en/database/oracle/oracle-database/21/dbseg/using-oracle-vpd-to-control-data-access.html#GUID-06022729-9210-4895-BF04-6177713C65A7
https://docs.oracle.com/en/database/oracle/oracle-database/21/dbseg/using-oracle-vpd-to-control-data-access.html#GUID-06022729-9210-4895-BF04-6177713C65A7
http://range-analysis.googlecode.com/
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://dev.mysql.com/doc/refman/8.0/en/grant.html#grant-column-privileges
https://dev.mysql.com/doc/refman/8.0/en/grant.html#grant-column-privileges
https://www.postgresql.org/docs/current/ddl-rowsecurity.html
https://www.postgresql.org/docs/current/ddl-rowsecurity.html
https://learn.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/column-level-security
https://learn.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/column-level-security
https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security
https://learn.microsoft.com/en-us/sql/relational-databases/security/row-level-security

	Abstract
	1 Introduction
	2 Overview
	2.1 Information Model
	2.2 Information Disclosure

	3 Generalisation
	3.1 Generalised Information Disclosure
	3.2 Example

	4 Future Work
	References

