
MUTS: Native Scala Constructs for
Software Transactional Memory

Daniel Goodman Behram Khan Salman Khan
Chris Kirkham Mikel Luján Ian Watson

The University of Manchester
Daniel.Goodman@cs.man.ac.uk

Abstract
In this paper we argue that the current approaches to imple-
menting transactional memory in Scala, while very clean,
adversely affect the programmability, readability and main-
tainability of transactional code. These problems occur out
of a desire to avoid making modifications to the Scala com-
piler. As an alternative we introduce Manchester University
Transactions for Scala (MUTS), which instead adds key-
words to the Scala compiler to allow for the implementation
of transactions through traditional block syntax such as that
used in “while” statements. This allows for transactions that
do not require a change of syntax style and do not restrict
their granularity to whole classes or methods. While imple-
menting MUTS does require some changes to the compiler’s
parser, no further changes are required to the compiler. This
is achieved by the parser describing the transactions in terms
of existing constructs of the abstract syntax tree, and the use
of Java Agents to rewrite to resulting class files once the
compiler has completed. In addition to being an effective
way of implementing transactional memory, this technique
has the potential to be used as a light-weight way of adding
support for additional Scala functionality to the Scala com-
piler.

1. Introduction
In this paper we will describe how, through a combina-
tion of modifications to just the compiler parser and byte-
code rewriting, we have added native support for Software
Transactional Memory (STM) [7] to the Scala program-
ming language [10]. As motivation for this we argue that
existing implementations of STM either have limitations
on the granularity of the transactions, or require a syntax
change between transactional and non-transactional code.
This, we feel, results in fragmentation of the code, adversely
affecting its programmability, readability and maintainabil-
ity. These limitations occur because these implementations
restrict themselves to not making any changes to the com-
piler. We instead created Manchester University Transac-
tions for Scala (MUTS), in which we restrict ourselves to
making the minimal set of changes required to implement

transactional memory such that MUTS does not place limi-
tations on the granularity of transactions or require changes
to the syntax. The changes to the compiler turn out to be a
relatively small set of changes to the parser, in order to de-
tect transactions and encode the required logic using existing
components of the abstract syntax tree. Having added these
elements to the tree, the process of adding transactions is
completed by a byte-code rewrite, so preventing the need to
make any further modifications to the compiler, and leaving
all but the first compilation step unchanged. In addition to
being an effective way of implementing transactional mem-
ory, this technique has the potential to be used as a light-
weight way of adding support for additional Scala function-
ality to the Scala compiler.

We will now introduce in more detail both Transactional
Memory and Scala. Then we will introduce some of the ex-
isting STMs for Scala and Java before detailing our imple-
mentation.

1.1 Transactional Memory
To ensure that correct results are generated when handling
the concurrent access to shared memory it is necessary to
control access to the shared state. Without such controls
errors can occur when threads interleave reads and writes.
For example, consider a program that contains a counter
to keep track of the number of completed threads. In this
example, each thread at the end of its execution performs
the assignment counter = counter + 1 to increment
the counter. Unfortunately, if thread A reads the value of
counter, then Thread B reads the value of counter and
increments it, when thread A writes back its result, because it
read counter before B incremented it, the value of counter
will be one less than it should be and the computation may
no longer behave correctly.

Traditionally this issue is handled by some form of lock-
ing that restricts the access to the shared state to a single
thread at a time. This approach has several complications:

1. The composition of functions that require a lock needs
to break the encapsulation of the implementation of the
composed functions. For example if we have functions to

deposit and withdraw money from bank accounts, each
of these functions will require a lock to ensure that the
balances remain correct. To now construct a function that
atomically transfers money from one account to another
so that all money can remain accounted for at all time, it
is necessary to get the locks of both the sending and the
receiving account before the functions can be invoked.
To achieve this, the locking mechanisms for the individ-
ual functions and therefore information about their inter-
nal data structures has to be made available to the pro-
grammer. This breach of encapsulation affects both pro-
grammability and maintainability.

2. Code that requires multiple locks to be obtained is prone
to dead-lock or live-lock as competing functions may
attempt to gain the same set of locks in a different order.
If the set of locks required is known in advance, then a
total order can be applied to the locks to overcome this,
but for a large collection of interesting problems this is
not possible. For example, exploring a graph in order to
make modifications.

3. Locking is pessimistic, it assumes that there will be a
conflict and so restricts access on the basis of this. This
pessimistic nature of the locking means that opportunities
for concurrency are missed. As the world is forced to
use parallel processing due to the limits of single core
processors, this is becoming a serious issue.

One solution to these problems is transactional memory.
Here, instead of taking locks, the code executes and records
sufficient information such that conflicts can be detected and
one of the conflicting transactions can be rolled back and
restarted when a conflict occurs. The underlying system is
constructed such that when the transaction has completed,
it will attempt to commit, and if it succeeds its changes to
the system will appear atomically, otherwise the transaction
will roll back such that, as far as all other processes are
aware, it never executed. This means that the semantics of
transactions are equivalent to having a single global lock that
the transaction takes, while it executes, but because of the
underlying implementation the possible concurrency is far
higher.

We will now describe how this alternative approach ad-
dresses the specific points raised about locks.

1. Because transactions can be nested within one another,
and the collection of data and the handling of collision
detection is all dealt with by the runtime, the user does
not need to be aware of any of the internal locking infor-
mation of functions, so the composition of functions does
not require the breaking of encapsulation.

2. As there are no specific locks, just logged information,
there is no possibility of dead-locking. Live-lock is pos-
sible with some collision detection mechanisms, but the
use of live lock free collision management resolves this.

3. Transactions do not have locks that prevent code from
executing concurrently. As a result they are optimistic
and concurrency is not restricted.

1.2 Scala
Scala [10] is a general purpose programming language de-
signed to smoothly integrate features of object-oriented [12]
and functional languages [2]. By design it supports seam-
less integration with Java and existing Java code including
libraries and the compiler generates Java byte-code [9]. This
means that you can call Scala from Java and you can call
Java from Scala. Scala is a pure object-oriented language
in the sense that every value is an object. Types and be-
haviour of objects are described by classes and traits, and
classes are extended by sub-classing and a flexible mixin-
based composition mechanism as a clean replacement for
multiple inheritance. However, Scala is also a functional lan-
guage in the sense that every function is a value. This power
is furthered through the provision of a lightweight syntax
for defining anonymous functions, support for higher-order
functions, the nesting of functions, and support for curry-
ing. Scalas case classes and its built-in support for pattern
matching model algebraic types are equivalent to those used
in many functional programming languages.

For typing, Scala is statically typed and equipped with
a type system that statically enforces that abstractions are
used in a safe and coherent manner. A local type inference
mechanism means that the user is not required to annotate
the program with redundant type information.

Finally Scala provides a combination of language mech-
anisms that make it easy to smoothly add new language con-
structs in the form of libraries. Specifically, any method may
be used as an infix or postfix operator, and closures are con-
structed automatically depending on the expected type (tar-
get typing). A joint use of both features facilitates the def-
inition of new statements without extending the syntax and
without using macro-like meta-programming facilities.

2. Related Work
There are already a large number of transactional memories
for different languages implemented in software and many
proposals for both hardware and hybrid systems [7]. Here
we will briefly look at some of the existing Scala STM’s and
explain why we feel that they do not meet our needs. We will
also introduce Deuce STM which is an STM targeted at Java
and modified as part of the work described in this paper.

2.1 Scala STMs
Existing Scala STM’s that we are aware of fall into two
categories, both of which aim to add transactions to Scala
without modification to the Scala compiler:

1. Libraries that require the user to add method calls
for every read and write to variables within a trans-
action. [11] This technique adds a huge amount of addi-

tional code even in Scala code which is for the most part
functional. This in turn makes writing, reading and main-
taining programs challenging. In addition, in languages
such as Scala, ensuring that all relevant variables are in-
strumented is challenging as the introduction of implicit
variables is easy. For these reasons this style of STM is
rare.

2. Libraries which take advantage of Scala’s treatment
of functions as first class variables. [3, 11] This allows
for the creation of a function atomic that takes a func-
tion as its argument. Because Scala will implicitly con-
vert a set of statements into a function that can be passed
into this library call, the definition of a transaction can
be achieved as though a new keyword has been added to
the language. The library calls for the individual reads
and writes can then be added by the creation of an encap-
sulating object for each piece of transactional data and
utilising Scalas ability to override accessors. This creates
code that looks very much like a new set of keywords in
the language. However, there are some changes between
the code that appears inside the atomic library call and
outside the call, for example in CCSTM = has to be re-
placed with := and the variables have to be appropriately
wrapped. These changes are required because in Scala it
is not possible to overload = to handle the instrumentation
of transactional code, or for the method := to be imple-
mented in a single location without the enclosing wrap-
per class. These changes create opportunities for errors
to slip into the system, and make changing the regions
marked as atomic labour intensive. As such we feel that
while this is a very neat solution, these problems mean
alternatives should be investigated.

2.2 Deuce
An interesting alternative approach is provided in Java by the
Deuce STM library [8]. With this library the user adds Java
annotations to the declaration of a method. This method is
then turned into a transaction in its entirety. The transfor-
mation of this method is achieved through the use of a Java
Agent to perform byte-code rewriting. Java Agents are Java
programs that are specified as parameters to the JVM when
it is initialised. These programs rewrite Java class files when
they are loaded into the JVM, allowing them to seamlessly
augment existing class files with additional functionality, in
this case adding transactional semantics to methods starting
with the @atomic annotation. The rewriting uses the ASM
framework [4] for rewriting class files. This framework con-
sists of an object for reading class files and a set of objects
that implement the visitor pattern [5]. These visitors are then
linked together into a pipeline, such that each visitor per-
forms an action on the code they are called on which is pro-
vided by the call from the previous visitor. The final visitor
writes the modified output back into byte-code that can be
written to file, or in this case passed to the class loader.

Using this framework the process of adding transactions
is achieved through two steps:

1. An additional copy of each method in each class file is
created. These additional methods take an extra param-
eter in the form of a transactional context, and have all
instructions to load and store fields replaced with method
calls to this context. In conjunction with these instru-
menting calls, all method calls within these methods also
have the context added as an extra parameter. This effec-
tively creates two separate code bases, one running as a
transaction, the other as normal code without the instru-
mentation and associated overhead.

2. Methods annotated as atomic are replaced with a method
that constructs a transactional context and, using this
context, calls the duplicate method constructed from the
original replaced method. This provides the means for
the control flow to pass back and forth between the un-
instrumented non-transactional methods and the instru-
mented transactional methods. In addition to constructing
an instance of a transactional context, this new method
also contains all the control logic required to both com-
mit and rollback transactions.

While this approach is very effective and removes the
need for the user to adjust their code to use different syntax,
it does force transactions to occur at the method level. The
net effect of this when adding transactions is that bits of
code have to be re-factored out into separate methods, and if
the user wants to change the scope of their transactions they
have to re-factor these methods again. This in our experience
makes programs harder to read and to maintain.

3. Design and Implementation of MUTS
As we feel that none of the solutions discussed in Section 2
are satisfactory for a languages in which transactions are ac-
cessible and maintainable to all users, we decided to look at
how we could add transactions using traditional block syntax
and extra keywords, without the need for different syntacti-
cal elements to be added. This is clearly not achievable with-
out modification to the Scala compiler, however we wanted
to ensure that these modifications remained as small as pos-
sible, and in this section we will detail the design and imple-
mentation we used to achieve this.

3.1 Choice of constructs
If the compiler is to be modified to accept transactions,
we first need to define what the syntax and semantics of
these transactions should be. In the literature [6, 7] there are
three basic types of transactional construct, and currently we
support all three. These are as follows, complete with the
syntax we use to represent them:

• Transactions that will not retry in the event of failure.

atomic(Test)
{

Body
}

• Transactions that will retry in the event of failure.

atomic(Test)
{

Body
} retry;

• Transactions that will run a different piece of code in the
event of failure.

atomic(Test)
{

Body
} orElse

{
ElseBody

}
All of these blocks support the optional inclusion of a set

of test conditions that must be met before the transaction
can start to execute. This range of constructs and functional-
ity has been included in order to test the completeness of our
system, however in a production system it may be decided to
reduce this scope to improve ease of use. Library calls could
be used to allow user code to abort transactions. These have
not been included as it is not clear that user code should have
the ability to interact with the transaction in this manner.
For example if an abort was added to a function, then that
function could only ever be called from within a transaction.
However, transactions are intended as a non invasive way of
protecting code against race conditions. The inclusion of the
information that the function has to be called from a trans-
action at a system level would undermine this transparency.
In our implementation the keywords are prefixed with “TF”
to prevent collisions with existing code, but this has been
removed within this paper to improve clarity. We will now
describe how these constructs are implemented.

4. Scala Compiler Architecture and
Modifications

In this section we will give a brief overview of the structure
of the compiler, before describing the minimal modifications
that we have made in order to support the required block
structures as described in Section 3.1.

The Scala compiler is made up of a pipeline consisting of
21 phases. This pipeline starts with the parser that converts a
textual input into a tokenised abstract syntax tree. The tree is
then transformed by the remaining phases, with each trans-
formation moving it closer to the required output. When the
final phase passes over the tree JVM byte-code is produced.

The pipeline can be extended by the addition of user defined
phases to add functionality, however, this requires knowl-
edge of the complex relationships of the different data struc-
tures within the tree. This situation is made more complex by
the insertion and use of implicit methods. These are added
in several of the phases, and any phase that added transac-
tions would have to occur after all of these. However, the
more transformations that have occurred to the tree, the fur-
ther the data structures are from the initial Scala input and
the greater level of understanding that is required of the in-
ternal data structures of the compiler. This means making
any changes to add functionality at this level requires a high
level of understanding, and makes any work extremely vul-
nerable to changes in the compiler architecture. As a result
the only change made directly to the Scala compiler is to
the parser, and functionality that cannot be added to this first
phase is instead added through a byte-code rewrite when we
once again have a strong and guaranteed stable specifica-
tion of the structures involved. To do this we constructed a
Java Agent based on the one produced as part of the Deuce
STM [8]. The modifications to the parser will now be dis-
cussed in detail, before describing how the implantation of
transactions was completed with the Java Agent.

4.1 Parser Modifications
The modifications to the parser consist of adjusting it to ac-
cept the three new keywords “atomic”, “retry” and “orElse”,
and interpreting these into the blocks described by the three
types of transaction. These modifications take advantage of
the same functionality as “if” and “while” blocks. Once
these have been interpreted, they are mapped onto the ab-
stract syntax tree using existing Scala functionality to pro-
vide the required control flow. These transformations can be
seen in Figures 1, 2 and 3. Currently the type of these trans-
formations is Unit, so no information about the transaction
escapes the transaction. This could be trivially extended to
return the value of the encased user code if required for bet-
ter integration with Scala.

As can be seen in these Figures, this stage of the transfor-
mation adds a context that will be used to store the informa-
tion required to check for conflicts and commit the computa-
tion if there are none. The calls to initiate the conflict check
and commit the transaction are also added at this stage. The
information to be stored in the context will be added by calls
to the context when each read and write is performed; how-
ever, it is not yet possible to add in these calls as the implicit
methods are yet to be added by the compiler. This instead
will be handled by the byte-code rewrite. Leaving this until
later not only removes the need for further interference with
the compiler, but also has the advantage of not weakening
the compile time type checking.

When using library calls, it is necessary to provide the call
with sufficient information to update the value that the call
relates to if required by the commit. For method variables,
this is not possible as the structure of the JVM is deliber-

ately such that one method cannot interfere with the method
variables belonging to another method. An alternative tech-
nique was chosen that takes advantage of the type inference
provided by the Scala type system. With this technique, the
set of method variables that are updated, but not declared
within a transaction is detected. In Figures 1, 2 and 3, this set
is called transaction Variables. These values are then copied
to a set of variables labelled transaction Variables Backup.
Having done this the method variables can be updated with-
out requiring any additional instrumentation, as these val-
ues are only accessible to the method. If the transaction fails
to commit, then the stored values will be copied back over
any changes that may have occurred. It may be beneficial to
nullify the object values in these copies to facilitate garbage
collection, but due to the structure of Scala’s type system
this involves first determining which of these variables is of
type AnyRef and which is of type AnyVal. This cannot be
achieved until a later phase in the compiler. However, adding
it into a later pass would incur the complications described
earlier and thereby breach the minimum changes remit of
this work. As a result this optimisation would have to be
added during the byte-code rewrite if it is to be included.
However, as the lifetime of these values is at most the life-
time of the method call, for the time being this is not being
addressed.

All of the transformations include a “try catch” block
around the user code. These perform three functions:

1. To catch any exceptions thrown by the user code and
to re-throw these if the transaction commits. If the
transaction fails to commit then the exception will be
caught as the semantics of the transaction are that nothing
should appear to happen unless the transaction success-
fully commits.

2. To catch any exceptions thrown by the transaction
mechanism. This is currently used so that transactions
which fail as a result of a commit by another transaction
are able to jump out of their current function back to their
encasing transaction block. This is vulnerable to user “try
catch” blocks that catch all exceptions, but do not re-
throw them. This can be overcome in almost all cases
simply by throwing a new exception if an access to the
context is made again before the exception propagates
to the correct “try catch” block. The unsupported case is
where no reads or writes are performed before re-entering
the “try catch” block that caught the last exception. For
example if it is encapsulated by a “while” block in which
the guard is simply the value true and no further code is
present. Such cases should not appear in sensible code
within a transaction, or for that matter within code that
forms a component part of an application.

3. To provide a marker in the byte-code, describing the
sections of the code which are transactional. If byte-
code rewriting is to be used to add in library calls for

transactions once the Scala compiler has completed, it
is important that the correct segments of byte-code can
be identified. This is achieved through the capture of the
exception class TransactionArea. This exception class is
created for this purpose, is never thrown, and its capture
is removed during the byte-code rewrite. The effect of its
presence is to mark all regions of the byte-code output
of the compiler that form part of a transactional block.
This is required as transactional code cannot be identified
simply by looking for the call to initialise the context
and the call to commit, as the compilation may have
reordered the byte-code. However, as any reordering will
be applied to the scope of the exception handlers as well,
a record of such transformations is maintained. So the
lines of code that are covered by the handler for this
exception are the lines that the byte-code rewrite must
treat as transactional.

4.2 Byte-code Rewrite
Having added in the control logic and the handling of
method variables in the parser, the remaining functionality to
handle the accesses to class variables is added by rewriting
the original byte-code. To do this we modified the existing
Deuce STM rather than implement a new STM from scratch.
Deuce was chosen as it provides a working implementation
that rewrites byte-code and is well tested. It also, instead of
implementing a single STM backend implementation, pro-
vides an interface that is capable of interacting with a range
of backend STMs. As described in Section 2.2, Deuce uses
the ASM [4] framework to perform the class rewriting. Us-
ing this framework it performs two functions:

1. Add duplicate methods to the compiled classes. These
duplicate methods have the following properties:
• They take a context as an additional parameter.
• They replace all field accesses with method calls to

the context which record the reads and writes.
• They replace all method calls with method calls that

use this extra context parameter.

2. Replace any method annotated as atomic with a method
that performs the following actions:
• Creates a context to hold the transactional informa-

tion.
• Calls this method’s corresponding duplicate using the

newly created context as the extra parameter.
• Manages commits, retries and exceptions of the trans-

action started through these actions.

While Deuce is highly tested with Java, it is incompatible
with Scala in its current form as it instruments all class
variables. This is a problem because, unlike Java, Scala byte-
code uses the “this” parameter to set class fields representing
object values before it calls the constructor for the super

val context$TM = eu.teraflux.uniman.transactions.TM.beginTransaction();

var transaction Variables Backup = transaction Variables

try {
atomic test$1(){
if (eu.teraflux.uniman.transactions.TM.tmwait(Test, context$TM)){

Transaction Variables = transaction Variables Backup
atomic test$1()

atomic(Test) }
{ };

Body =⇒ Body
} if(!eu.teraflux.uniman.transactions.TM.commit(context$TM))

Transaction Variables = transaction Variables Backup
} catch {

case (e @ (: eu.teraflux.uniman.transactions.TransactionArea))=> ()

case (e @ (: org.deuce.transaction.TransactionException))=> ()

case (e @) => if(eu.teraflux.uniman.transactions.TM.commit(context$TM))

throw e

else

Transaction Variables = transaction Variables Backup
}

Figure 1. Transformation of a basic transaction block into existing Scala abstract syntax tree constructs. On the left the user
code, on the right the parser generated code.

class. This is perfectly legal byte-code, but to change these
assignments to calls on the transactional context that take
“this” as a parameter is not valid as the class is not yet fully
defined and as such cannot yet be passed into methods. The
result is that using Deuce on such Scala class files results
in the JVM detecting a type error and aborting. However, as
these fields are only values, not variables, it is safe to modify
the rewrite to ignore them as they will never change so do not
need instrumenting.

As well as changing Deuce to prevent it adding illegal
method calls, the other change required is to the behaviour
when moving in and out of a transaction. Now instead of
detecting an annotation before visiting a method and choos-
ing the method visitor accordingly, it is necessary to detect
the code within a method that is transactional and instru-
ment it appropriately. As discussed in Section 4.1 this is
achieved through the addition in the parser of a “try catch”
block which in turn creates an exception handler for the re-
quired region. Any field access that appears within the scope
of this exception handler should be instrumented and any
method calls should be augmented with the context as an ex-
tra parameter. These changes require the presence of a con-
text, however, unlike in the initial Deuce implementation, the
code to create the context is added in the parser, not in the
byte-code rewrite. This means that the Scala compiler, not
the byte-code rewrite, decides the location where the con-
text is to be stored. As such it is now also necessary to detect
the call to construct the context and record where the result

from this action is stored in order to gain all the required
information for the instrumentation.

4.3 Nesting
Nesting is handled at two levels. At the parser level the
parser is aware of the nesting of transactions within the
same method. When this occurs, it changes the calls to
beginTransaction() to take the context of the encom-
passing transaction as a parameter. This allows this method
to encode into the newly returned context the required infor-
mation about its encasing transactions and their contexts.

If the nesting occurs outside of the method that created
the encasing transaction it will be met when the byte-code
is rewritten. At this stage the same effect as the parser trans-
formation can be achieved by allowing the byte-code rewrite
to add the context parameter to the beginTransaction method
when it appears within a method that is being instrumented.
As this method already exists and we prevent the rewrite
from rewriting the STM libraries, the net effect is that we
call the beginTransaction method that takes a context as an
argument.

Some of this complexity could be removed by maintain-
ing a single context per thread stored and accessed through
the use of a statically stored ThreadLocal object. However,
this would add considerable additional overhead as an ad-
ditional method call would be required to retrieve the con-
text for every transactional read and write. This would be in
addition to the accesses that are subsequently made to the
context.

var context$TM: eu.teraflux.uniman.transactions.Context = null;

var transaction Variables Backup = transaction Variables
var committed$TM = false;

atomic retry$1(){
context$TM = eu.teraflux.uniman.transactions.TM.beginTransaction();

try {
atomic test$1(){
if (eu.teraflux.uniman.transactions.TM.tmwait(Test, context$TM)){

Transaction Variables = transaction Variables Backup
atomic test$1()

}
};

atomic(Test) };
{ Body

Body =⇒ committed$TM = eu.teraflux.uniman.transactions.TM.commit(context$TM)

} retry; } catch {
case (e @ (:eu.teraflux.uniman.transactions.TransactionArea)) => ()

case (e @ (: org.deuce.transaction.TransactionException))=> ()

case (e @) => { committed$TM =

eu.teraflux.uniman.transactions.TM.commit(context$TM);

if (committed$TM) throw e

}
}

};

if (!committed$TM){
Transaction Variables = transaction Variables Backup
atomic retry$1()

}

Figure 2. Transformation of a transaction block with retries into existing Scala abstract syntax tree constructs. On the left the
user code, on the right the parser generated code.

4.3.1 Integration with the Scala Compiler
The byte-code rewrite is intended to be added as a Java
Agent at runtime, and in general there is no reason not to
do this. However, there is also nothing to prevent this trans-
formation being performed immediately after the files have
been constructed at compile time. Such a compilation strat-
egy would require all existing class files being used by the
compiled code to already be instrumented. If they were com-
piled with this new compilation strategy this would be the
case, but when integrating with Java code or existing Scala
class files they would not be instrumented. However the in-
strumentation of existing class files can be achieved by a one
off code transformation on the required extra classes. This
transformation would be exactly the same as the automated
transformation at the end of the compilation script.

5. Conclusion
In this paper we have argued that the current approaches
to implementing transactional memory fragments the code
through restrictions on the syntax or granularity of the ar-

eas that can be covered by these techniques. This in turn
adversely affects accessibility of this functionality and the
construction, readability, and maintainability of codes using
it. This position is reached as a result of the implementers
of transactional memory choosing implementation strategies
that require no changes to the underlying compiler. This is
done for the very valid reason that it means that when the
compiler changes the STM does not have to change too. We
have instead decided to make the minimum changes to the
compiler to implement transactional memory in Scala such
that there would be no syntax changes between transactions
and standard code, and no restriction on the granularity of
the transactions. This aim has been achieved by modifying
the parsing of the initial input to accept three new keywords
that it uses to identify areas of code that are transactional.
Having identified these it encodes them into the abstract syn-
tax tree using existing constructs of the abstract syntax tree.
As these changes are restricted to just the parser, the bulk of
the compiler remains untouched. This encoding in the parser
includes the control logic for the transaction, the handling of

val context$TM = eu.teraflux.uniman.transactions.TM.beginTransaction();

var transaction Variables Backup = transaction Variables
var committed$TM = false;

try {
atomic test$1(){
if (eu.teraflux.uniman.transactions.TM.tmwait(Test, context$TM)){

Transaction Variables = transaction Variables Backup
atomic test$1()

}
atomic(Test) };
{ Body

Body =⇒ committed$TM =

} orElse{ eu.teraflux.uniman.transactions.TM.commit(context$TM)

ElseBody } catch {
} case (e @ (: eu.teraflux.uniman.transactions.TransactionArea)) => ()

case (e @ (: org.deuce.transaction.TransactionException))=> ()

case (e @) => { committed$TM =

eu.teraflux.uniman.transactions.TM.commit(context$TM);

if (committed$TM) throw e

}
};

if (!committed$TM){
Transaction Variables = transaction Variables Backup
ElseBody

}

Figure 3. Transformation of a transaction block with an alternative execution in the event of failure into existing Scala abstract
syntax tree constructs. On the left the user code, on the right the parser generated code.

method variables and the identification of the body of the
transaction such that the remaining changes can be added
later. The process of adding the remaining instrumentation
of the transaction is then performed by a byte-code rewrite
once the Scala compiler has finished. This ensures that all
implicit elements have been added before this commences
and guarantees that this step is independent of the compiler
design. The byte-code rewrite is performed using the ASM
framework and a modified version of the Deuce STM.

5.1 Strong vs Weak Isolation
The construction of transactional blocks from existing Scala
constructs means that reference objects cannot be used to
hold transactional data. This means that, unlike CCSTM, a
different syntax is not required for assignment inside and
outside of transactions. However, this also means that, like
in DeuceSTM, the type system cannot currently be used to
ensure strong isolation of transactional data. An alternative
to using the type system to enforce strong isolation through
object types is to adjust the memory model to create different
types of memory, including memory that is defined as trans-
actional. Such memory could be distinguished by its address
space [1], or through additional record keeping by the run-

time environment, however such work is outside of the scope
of this paper.

5.2 Performance
As this implementation of transactional memory uses the
same backend code as Deuce and only changes the method
by which it is integrated into the class files, the performance
is dependent on the particular implementation of the back-
end being used. It does have the opportunity to outperform
Deuce through a lack of the overhead created by the need
to fragment code with additional method calls to move be-
tween the transactional and non-transactional sections. How-
ever, with a method call being made for every read and write
within the transaction, this performance gain will generally
not be observable. The functional side of Scala provides
many opportunities to insert optimisations, and in the fu-
ture we hope to consider these further, while still maintain-
ing the mandate of making the minimal possible changes to
the compiler.

Acknowledgments
The authors would like to thank the European Commu-
nitys Seventh Framework Programme (FP7/2007-2013)

for funding this work under grant agreement no 249013
(TERAFLUX-project). Dr. Luján is supported by a Royal
Society University Research Fellowship.

References
[1] M. Abadi, T. Harris, and M. Mehrara. Transactional

memory with strong atomicity using off-the-shelf
memory protection hardware. SIGPLAN Not., 44:
185–196, February 2009. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1594835.1504203. URL
http://doi.acm.org/10.1145/1594835.1504203.

[2] R. Bird. Introduction to Functional Programming using
Haskell. Prentice Hall, second edition, 1998.

[3] N. G. Bronson, H. Chafi, and K. Olukotun. CCSTM : A
library-based STM for Scala. In The First Annual Scala
Workshop at Scala Days 2010, April 2010.

[4] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: A code ma-
nipulation tool to implement adaptable systems. In Adaptable
and extensible component systems, 2002.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns, Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Publishing Company, 1995. ISBN
0201633612.

[6] T. Harris, S. Marlow, S. Peyton-Jones, and M. Her-
lihy. Composable memory transactions. In PPoPP ’05:
Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages
48–60, New York, NY, USA, 2005. ACM. ISBN 1-
59593-080-9. doi: 10.1145/1065944.1065952. URL
http://dx.doi.org/10.1145/1065944.1065952.

[7] T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory,
2nd edition. Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, 2010.

[8] G. Korland, N. Shavit, and P. Felber. Noninvasive concurrency
with Java STM. In Third Workshop on Programmability Is-
sues for Multi-Core Computers (MULTIPROG-3), Pisa, Italy,
January 2010.

[9] T. Lindholm and F. Yellin. Java Virtual Machine Specifica-
tion. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 1999. ISBN 0201432943.

[10] M. Odersky, L. Spoon, and B. Venners. Programming in scala:
[a comprehensive step-by-step guide], 2008.

[11] Scalable Solutions AB. Akka project, February 2011. URL
http://akka.io/.

[12] C. T. Wu. An Introduction to Object-Oriented Programming
with Java 2nd Edition. McGraw-Hill, Inc., New York, NY,
USA, 2nd edition, 2000. ISBN 0072396849.

