
Synthesis of Java Deserialisation Filters
from Examples

Kostyantyn Vorobyov, Francois Gauthier, Sora Bae,
Padmanabhan Krishnan and Rebecca O’Donoghue

Oracle Labs, Australia

June, 2022

June, 2022Copyright © 2022, Oracle and/or its affiliates1

Serialisation/deserialisation

• Convert an object into a stream of bytes and back

• Natively supported by Java1

Deserialisation of untrusted data

• Carefully crafted payload can trigger arbitrary functionality

• Over 600 CVEs reported in the last 5 years

Beyond native Java serialisation

• Jackson-databind: JSON-based serialisation

- 9th most popular package on Maven as of May 2022

• Over 60 CVEs reported since 2017

Deserialisation in Java

June, 2022Copyright © 2022, Oracle and/or its affiliates2

[1] Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Production-time monitor

• Validates contents of deserialised objects

Relies on user-provided filters

• Blocklists: block deserialisation of unsafe classes (less safe)

• Allowlists: allow deserialisation of benign classes (more safe)

Available tools:

• JEP 290 (JDK1)

- First appeared in Java 9, backported to Java 6, 7 and 8

• contrast-rO0 (Contrast Security)

• ValidatingObjectInputStream (Commons Collection)

Deserialisation Filtering

June, 2022Copyright © 2022, Oracle and/or its affiliates3

[1] JDK is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Typically implemented as regular expressions over class names

Manual construction and maintenance of deserialisation filters is tedious and error prone

• Especially for large systems comprising many components

Best delegated to an automated approach

• Synthesise filters (as regular expressions) from examples

• Block deserialisation of potentially dangerous classes

• Allow deserialisation of benign yet previously unseen classes

Deseralisation Filters

June, 2022Copyright © 2022, Oracle and/or its affiliates4

Existing techniques

• Automata-theoretic

• Genetic programming

• Multiple sequence alignment

Not well suited for synthesis of deserialisation filters

• Either too specific or overly generic

• High cost (esp. automata-theoretic)

• Synthesised regular expressions are difficult to maintain

- Reason at the level of individual characters

Can we synthesise accurate and manually auditable deserialisation filters at low cost?

Synthesis of Regular Expressions from Examples

June, 2022Copyright © 2022, Oracle and/or its affiliates5

Focus

• Synthesis of allowlists (regular expressions) from benign and malicious examples (class names)

- An example matching the generated allowlist should be allowed and blocked otherwise

Observation

• Existing filters often reason at the level of packages rather than individual classes

- Allow or block deserialisation of classes with given prefixes

Key ideas

• Find shortest prefixes that describe all positive examples and none of the negative

• Generalise concrete class names

ds-prefix: Automatic Synthesis of Deserialisation Filters from Examples

June, 2022Copyright © 2022, Oracle and/or its affiliates6

Examples

• 𝑆+ = {𝑗𝑎𝑣𝑎. 𝑙𝑎𝑛𝑔. 𝐵𝑦𝑡𝑒, 𝑗𝑎𝑣𝑎. 𝑙𝑎𝑛𝑔. 𝑆ℎ𝑜𝑟𝑡}

• 𝑆− = 𝑗𝑎𝑣𝑎. 𝑖𝑜.𝑊𝑟𝑖𝑡𝑒𝑟

Prefixes

• 𝑗𝑎𝑣𝑎: conflicting

• 𝑗𝑎𝑣𝑎. 𝑙𝑎𝑛𝑔: positive

• 𝑗𝑎𝑣𝑎. 𝑖𝑜: negative

Regular expression

• Accept any class starting with a positive prefix
- java\.lang\..*

Positive, Negative and Conflicting Prefixes

June, 2022Copyright © 2022, Oracle and/or its affiliates7

Examples

- 𝑆+ = {𝑗𝑎𝑣𝑎. 𝑙𝑎𝑛𝑔. 𝑆𝑡𝑟𝑖𝑛𝑔}

- 𝑆− = 𝑗𝑎𝑣𝑎. 𝑙𝑎𝑛𝑔. 𝑅𝑢𝑛𝑡𝑖𝑚𝑒

Additive approach

• Accept only positive examples
- java\.lang\.String

Subtraction approach

• Accept any example from the same package except negative
- java\.lang\.(?!Runtime$)[^.]+

Resolving Conflicting Prefixes

June, 2022Copyright © 2022, Oracle and/or its affiliates8

June, 2022Copyright © 2022, Oracle and/or its affiliates9

Augmented Prefix Tree Acceptor (APTA) over Java Class Names

𝑺+
𝑖𝑛𝑡

𝑗𝑎𝑣𝑎. 𝑙𝑎𝑛𝑔. 𝑆𝑡𝑟𝑖𝑛𝑔

𝑗𝑎𝑣𝑎. 𝑢𝑡𝑖𝑙. 𝑆𝑒𝑡

𝑗𝑎𝑣𝑎. 𝑡𝑖𝑚𝑒. 𝐼𝑛𝑠𝑡𝑎𝑛𝑡

𝑗𝑎𝑣𝑎. 𝑡𝑖𝑚𝑒. 𝐶𝑙𝑜𝑐𝑘

𝑺−
𝑏𝑦𝑡𝑒

𝑗𝑎𝑣𝑎. 𝑙𝑎𝑛𝑔. 𝑅𝑢𝑛𝑡𝑖𝑚𝑒

𝑗𝑎𝑣𝑎. 𝑖𝑜.𝑊𝑟𝑖𝑡𝑒𝑟

𝑗𝑎𝑣𝑎. 𝑡𝑖𝑚𝑒. 𝑐ℎ𝑟𝑜𝑛𝑜. 𝐸𝑟𝑎

Synthesis Example

June, 2022Copyright © 2022, Oracle and/or its affiliates10

Current state: 𝑞0

Synthesis Example

June, 2022Copyright © 2022, Oracle and/or its affiliates11

Regex (additive): int

Regex (subtraction): (?!byte$)[^.]+

Current state: 𝑞0

Synthesis Example

June, 2022Copyright © 2022, Oracle and/or its affiliates12

Current state: 𝑞1

Synthesis Example

June, 2022Copyright © 2022, Oracle and/or its affiliates13

Regex (additive): java\.lang\.String

Regex (subtraction): java\.lang\.(?!Runtime$)[^.]+

Current state: 𝑞4

Synthesis Example

June, 2022Copyright © 2022, Oracle and/or its affiliates14

Current state: 𝑞5

Synthesis Example

June, 2022Copyright © 2022, Oracle and/or its affiliates15

Regex: java\.util\..*

Current state: 𝑞6

Synthesis Example

June, 2022Copyright © 2022, Oracle and/or its affiliates16

Current state: 𝑞7

Synthesis Example

June, 2022Copyright © 2022, Oracle and/or its affiliates17

Current state: 𝑞7

Regex (additive): java\.time\.(Instant|Clock)

Regex (subtraction): java\.time\.[^.]+

Synthesis Example

June, 2022Copyright © 2022, Oracle and/or its affiliates18

Synthesis Example

Current state: 𝑞13

Synthesis Example

June, 2022Copyright © 2022, Oracle and/or its affiliates19

Regex (additive):

^int|java\.lang\.String|java\.time\.(Instant|Clock)|java\.util\..*$

Regex (subtraction):

^(?!byte$)|java\.lang\.(?!Runtime$)[^.]+|java\.time\.[^.]+|java\.util\..*$

𝑺+
𝑖𝑛𝑡

𝑗𝑎𝑣𝑎. 𝑙𝑎𝑛𝑔. 𝑆𝑡𝑟𝑖𝑛𝑔

𝑗𝑎𝑣𝑎. 𝑢𝑡𝑖𝑙. 𝑆𝑒𝑡

𝑗𝑎𝑣𝑎. 𝑡𝑖𝑚𝑒. 𝐼𝑛𝑠𝑡𝑎𝑛𝑡

𝑗𝑎𝑣𝑎. 𝑡𝑖𝑚𝑒. 𝐶𝑙𝑜𝑐𝑘

𝑺−
𝑏𝑦𝑡𝑒

𝑗𝑎𝑣𝑎. 𝑙𝑎𝑛𝑔. 𝑅𝑢𝑛𝑡𝑖𝑚𝑒

𝑗𝑎𝑣𝑎. 𝑖𝑜.𝑊𝑟𝑖𝑡𝑒𝑟

𝑗𝑎𝑣𝑎. 𝑡𝑖𝑚𝑒. 𝑐ℎ𝑟𝑜𝑛𝑜. 𝐸𝑟𝑎

ds-prefix synthesis

• Implemented using dk.brics.automaton library

Monitoring agent

• Collect names of deserialised classes (logging mode)

• Enforce specified allowlist (blocking mode)

• Allows deserialisation filtering in JDK (JEP 290) and Jackson-databind

Experiments

• Investigate applicability of ds-prefix to real deserialisation vulnerabilities

• Investigate precision and performance of ds-prefix

- Compare to state-of-the-art synthesis tools

Evaluation

June, 2022Copyright © 2022, Oracle and/or its affiliates20

Experiment with vulnerable open-source projects

• Can ds-prefix allowlists prevent real vulnerabilities?

Methodology

• Reproduce a known vulnerability

• Gather examples and synthesise the allowlist

- Positive examples gathered from test runs

- Negative examples collected from application’s blocklist and known gadget chains

• Confirm that the generated allowlist prevents the exploit

Vulnerability Detection

June, 2022Copyright © 2022, Oracle and/or its affiliates21

Vulnerability Detection

June, 2022Copyright © 2022, Oracle and/or its affiliates22

Name Versions CVE Synthesised Allowlist

Olingo 4.0.0-4.7.0 CVE-2019-17556 ^org\.apache\.olingo\..+$

Apache
Batik

CVE-2018-8013 ^\[Lorg|com\.sun\.org\.apache\.xerces|com\.sun\.org\.ap
ache\.xml|org\.apache\.batik|org\.apache
\.html|org\.apache\.wml|org\.apache\.xerces|org\.apache
\.xml|org\.python|org\.w3c\..+$

Jackson-
databind

2.9.x CVE-2017-17485 ^((\[Lcom|\[Ljava|com\.fasterxml|java\.io|java\.lang|ja
va\.text|java\.util\.concurrent)
\..+|[^.]+|java\.util\.[^.]+)$

Datasets

• Datasets drawn from the blocklist of Jackson-databind after discovery of each CVE

• Initial dataset (9 negative examples, 1 known CVE)
- Allowlist: ^((\[Lcom|\[Ljava|com\.fasterxml|java) \..+|[^.]+)$

• Latest dataset (134 negative examples, 46 known CVEs)

Results

• Initial allowlist blocks 132 malicious classes (prevents 44 CVEs)

• Allowlist based on negative examples after discovery of the 4th CVE (48 examples)
is sufficient to prevent deserialisation of known malicious classes

Jackson-databind: Historic datasets

June, 2022Copyright © 2022, Oracle and/or its affiliates23

Automata-theoretic algorithms

• Regular Positive Negative Inference (RPNI)

• Trakhtenbrot and Barzdin (Traxbar)

• Blue-fringe

Genetic programming

• Search and Replace Generator with character alphabet (S&R)

• Search and Replace Generator with alphabet of Java sub-packages and class names (S&R-DS)

Multiple Sequence Alignment (MSA)

Comparison with Regular Expression Synthesis Tools

June, 2022Copyright © 2022, Oracle and/or its affiliates24

F1 Score (5-fold Cross Validation)

June, 2022Copyright © 2022, Oracle and/or its affiliates25

75%

80%

85%

90%

95%

100%

 ds-prefix Blue-fringe RPNI Traxbar MSA S&R S&R-DS

F
1

S
co

re

Datasets (positive/negative)

Batik (34/97) Jackson (157/135)

Runtime Performance

June, 2022Copyright © 2022, Oracle and/or its affiliates26

0.1

1

10

100

 ds-prefix Blue-fringe RPNI Traxbar MSA S&R S&R-DS

R
u

n
ti

m
e

 (
se

co
n

d
s)

Datasets (positive/negative)

Batik (34/97) Jackson (157/135) Olingo (1915/97) XStream (3099/97)

ds-prefix vs automata-theoretic algorithms

ds-prefix

^(\[Lorg|com\.sun\.org\.apache\.xerces|com\.sun\.org\.apache\.xml|org\.apache\.batik|org\.apache
\.html|org\.apache\.wml|org\.apache\.xerces|org\.apache\.xml|org\.python|org\.w3c)\..+$

Blue-fringe

^([a-zA-CE-HJLMOPR-X02-46\$\.\[]|[DIN;]([cmopS]|([dtu]|l[enp])([iI]|[mo][enp])*[aelnC])*([aenrB-
DMOPRT]|([dtu]|l[enp])([iI]|[mo][enp])*E))*[DIN;]([cmopS]|([dtu]|l[enp])([iI]|[mo][enp])*[aelnC])*((
[dtu]|l[enp])([iI]|[mo][enp])*)?$

RPNI

^([a-ce-ik-mopr-uw-yAC-EG-IL-PTV-X3\$\.\[]|[dnS][del-nptIS]*[a-cf-ikorsuw-yAC-EGHL-PTV-X3\$\.\[])*([
dnS][del-nptIS]*|([dnS][deptIS]*)?;[elmptI]*)$

Auditability of Results

June, 2022Copyright © 2022, Oracle and/or its affiliates27

ds-prefix vs genetic programming

ds-prefix

^(\[Lorg|com\.sun\.org\.apache\.xerces|com\.sun\.org\.apache\.xml|org\.apache\.batik|org\.apache
\.html|org\.apache\.wml|org\.apache\.xerces|org\.apache\.xml|org\.python|org\.w3c)\..+$

S&R

^[^I]++[^p]++(?:[^m]++[^r]++)++$

S&R-DS

:ˆ(\[L?\.?|org\.?|xerces\.?)([ˆ.]+\.?)(xml\.?|html\.?|wml\.?|org\.?|apache\.?|batik\.?|dom\.?|xerces
\.?)([^.]+\.?)++;?$

Auditability of Results

June, 2022Copyright © 2022, Oracle and/or its affiliates28

ds-prefix vs multiple sequence alignment

ds-prefix

^(\[Lorg|com\.sun\.org\.apache\.xerces|com\.sun\.org\.apache\.xml|org\.apache\.batik|org\.apache
\.html|org\.apache\.wml|org\.apache\.xerces|org\.apache\.xml|org\.python|org\.w3c)\..+$

MSA

^\[Lorg.apache.batik.dom.AbstractElement\$Entry;$|^com.sun.org.apache.x.{2,5}.internal.{0,8}..{6,25}
Implementation.{0,4}$|^org.apache.{10,44}ent.{0,9}$|^org.python.apache.{0,27}DOMImplementation.{0,4}
$|^ org.w3c.dom.{0,5}..{4,4}DOMImplementation.{0,3}$

Auditability of Results

June, 2022Copyright © 2022, Oracle and/or its affiliates29

ds-prefix

• Synthesis of regular expressions that specifically targets deserialisation filtering

• Find a set of shortest prefixes that describe all positive examples but none of the negative

• Reason at the level of packages and class names rather than individual characters

• Avoid costly conversion from finite automata to regular expressions

Well-suited for deserialisation filtering

• Prevents real exploits using a limited number of input examples

• Has the potential to block future attacks

• More precise and considerably faster then other synthesisers

• Produces manually auditable regular expressions

Conclusions

June, 2022Copyright © 2022, Oracle and/or its affiliates30

Thank you

31 Copyright © 2022, Oracle and/or its affiliates June, 2022

kostyantyn.x.vorobyov@oracle.com
francois.gauthier@oracle.com
sora.bae@oracle.com
paddy.krishnan@oracle.com
rebecca.o.donoghue@oracle.com

https://labs.oracle.com/

https://labs.oracle.com/

