
An Efficient Tunable Selective Points-to
Analysis for Large Codebases

Behnaz Hassanshahi Raghavendra K.R. Padmanabhan Krishnan
Bernhard Scholz ∗ Yi Lu

Oracle Labs, Brisbane
{behnaz.hassanshahi, raghavendra.kr, paddy.krishnan, yi.x.lu}@oracle.com

Abstract
Points-to analysis is a fundamental static program analysis
technique for tools including compilers and bug-checkers.
Although object-based context sensitivity is known to im-
prove precision of points-to analysis, scaling it for large Java
codebases remains an challenge.

In this work, we develop a tunable, client-independent,
object-sensitive points-to analysis framework where heap
cloning is applied selectively. This approach is aimed at
large codebases where standard analysis is typically expen-
sive. Our design includes a pre-analysis that determines pro-
gram points that contribute to the cost of an object-sensitive
points-to analysis. A subsequent analysis then determines
the context depth for each allocation site. While our frame-
work can run standalone, it is also possible to tune it – the
user of the framework can use the knowledge of the code-
base being analysed to influence the selection of expen-
sive program points as well as the process to differentiate
the required context-depth. Overall, the approach determines
where the cloning is beneficial and where the cloning is un-
likely to be beneficial.

We have implemented our approach using Soufflé (a Dat-
alog compiler) and an extension of the DOOP framework.
Our experiments on large programs, including OpenJDK,
show that our technique is efficient and precise. For the
OpenJDK, our analysis reduces 27% of runtime and 18%
of memory usage for a negligible loss of precision, while for
Jython from the DaCapo benchmark suite, the same analysis
reduces 91% of runtime for no loss of precision.

∗ Current Affiliation/Contact:School of Information Technologies, Univer-
sity of Sydney, bernhard.scholz@sydney.edu.au

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

SOAP’17 c© Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN
. . . $15.00

DOI: nnnn.nnnn

1. Introduction
Points-to analysis is a fundamental analysis that is necessary
to statically analyze programs especially from languages that
support reference types and virtual dispatch like Java1, C#
and C++. The objectives for analyzing programs is varied,
spanning from call-graph construction for compiler opti-
mization to bug-finding and security for verification.

Technically, points-to analysis is a static program anal-
ysis technique that builds a heap abstraction of the input
program without executing it. Adding context sensitivity to
points-to analyses has been the standard way to improve
the precision. Context-sensitivity is introduced by version-
ing variables and object-creation sites. Each version is at-
tached to a context. There are many kinds of context sen-
sitivities, including call-site-based, object-based and type-
based. Object-based context sensitivity (object sensitivity) is
shown to be the most effective context sensitivity in terms of
both precision and computational costs for object-oriented
programs when compared to call-site-based and type-based
context-sensitive points-to analysis [4, 8].

However, applying a sufficiently precise object-sensitive
points-to analysis uniformly to large programs is expen-
sive with respect to runtime and memory consumption [9].
Our key observation in this work is that if the chosen heap
cloning context is not sufficient for a particular object, the
resulting points-to relation has many spurious facts for other
related objects. This choice has a cascading effect on other
objects, resulting in valuable resources being spent on com-
puting irrelevant and unnecessary facts. Alternatively, in-
creasing the level of object sensitivity for all allocation sites
in an attempt to improve precision is not always feasible
because it typically incurs unacceptably high computational
costs without corresponding benefits. Smaragdakis et al. [9]
have proposed an introspective points-to analysis to tackle
the performance challenge. However, our experiments show
that using their metrics to conduct 2O+1H points-to on
OpenJDK1 results in high loss of precision.

In this paper, we address the following research prob-
lem. Given a large program P , for which a context-sensitive
points-to analysis does not scale, identify the allocation sites

in P that contribute to the generation of spurious points-to
facts, and determine the object-sensitivity depth required for
each such allocation site in P so as to make the points-to
analysis scalable and precise. While our framework can run
standalone, it is also possible to be tuned by the user to de-
termine which allocation sites in P should be considered and
which context depths are necessary for them.

The key ideas are the following:

1. A technique based on context-insensitive points-to anal-
ysis (which is inexpensive but very imprecise) to extract
the kernel, i.e., a portion of the input program for which
fixed object-sensitive points-to analysis is computation-
ally expensive compared to the rest of the input program.
The analysis accepts parameters from the user which is
used to determine the size of the kernel. If the kernel is
too big then the cost of the analysis cannot be reduced
while if the kernel is too small the precision will suffer.

2. Metrics based on fixed object-sensitive points-to analysis
on the kernel that determine the allocation sites where
the contexts are insufficient or where contexts do not add
much value.

3. A heuristic to identify the context-depths that will over-
come the efficiency bottleneck with no or subtle loss
of precision of fixed object-sensitive points-to analysis.
That is, the metrics in the previous step are used to iden-
tify allocation sites where contexts need to be increased
as well as to identify allocation sites where contexts can
be reduced without decreasing precision significantly.
This is also influenced by parameters which guide the
calculation of the desired depth. If too many objects are
chosen for deep contexts, the analysis is unlikely to scale
because it is almost equivalent to having a deep context-
sensitive analysis for the entire code-base while if too
few objects are chosen, there will be significant loss of
precision.

The rest of this paper is organised as follows. Section 2
establishes definitions and preliminaries required to under-
stand the technicalities of our approach. Section 3 describes
our technique in detail. Section 4 describes our implementa-
tion and experimental results. Section 5 surveys the related
work in the literature and contrasts them with our approach.
Section 6 concludes the paper by summarising our contribu-
tions and pointing to future directions.

2. Preliminaries
In this section, we summarise the key concepts and defini-
tions that are used in the sequel of the paper. We port points-
to analysis of the DOOP [3] framework and optimize it to
Soufflé Datalog engine [6]. DOOP framework uses the do-
main of different sets, like the set of program variables, ob-

1 Java and JDK are registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners.

ject allocation sites, method invocation sites, field names etc.
The input program is represented as relations on these do-
mains. From these relations, the points-to analysis is com-
puted. For detailed definitions, please refer to [7].

Input Relations. We first describe the relations that cap-
ture the structure of the input program. We assume that the
domain of classes (or types), methods and variables are de-
fined.

Alloc(o,m) indicates that there is an allocation site labelled
o in method m.

Store(b, f , v) indicates that there is an assignment of the
form b.f ← v where b and v are variables and f is a
field. We overload this relation for storing elements in
an array where f represents the index. However, as we
do not distinguish the different elements in the array, the
field f will represent a wild-card.

Load(b, f , v) indicates that there is an assignment of the
form v ← b.f where b and v are variables and f is a
field. As in the case of Store , the field f will represent a
wild-card for arrays.

Computed Relations. Our framework computes the follow-
ing relations and uses them in different stages of the analysis.

PointsTo(hc, h, c, v) is the result of object-sensitive points-
to analysis. It states that the variable v under the object
context c points to an object h qualified with the heap
context hc.

PointsTo(h, v) is the result of context-insensitive points-to
analysis. It states that the variable v points to an object
h. We overload the same relation name both for the re-
sults of context-insensitive and object-sensitive points-to
analysis.

PointedToByVar(o) is the set {v | PointsTo(o, v)}.
MethodPointsTo(m) is the set {o | PointsTo(o, v) for a

variable v declared in m}.
ReachableCtx (m, c) states that method m is reachable in

context c from the program’s main entry/entries.

Object Sensitivity. The above definitions do not specify
the exact contexts used in the analysis. To define a general
n1O+n2H object-sensitive points-to analysis [9], the terms
n1O and n2H have the following meanings:

n1O: n1-Method cloning. An instance method m that is a
potential target of an invocation is distinguished with
respect to an ordered sequence of objects of the form
(o1, o2, . . . , on1

), where on1
is the base object of the

invocation of m and oi is the object creating oi+1. We
often refer to this context as the object context.

n2H: n2-Heap cloning. A heap object o is distinguished
with respect to an ordered sequence of objects of the
form (o1, o2, . . . , on2

), where on2
is the object creating o

Program

Extract
Kernel

Fixed Object-Sensitive
Points-To Analysis

Identify
Candidate Objects

Determine their
Context Depth

Pre-analysis

Main analysis

Selective Object-Sensitive
Points-To Analysis

Points-to
Analysis
Results

Figure 1: Workflow in Selective Points-To Analysis

and oj is the object creating oj+1. We often refer to this
context as the heap context.

3. Selective Object-sensitive Points-to
In this section, we describe our general selective object-
sensitive points-to analysis framework. Fig. 1 describes the
key steps and the workflow in our framework. The approach
can be separated into two stages: pre-analysis and main
analysis.

The pre-analysis stage identifies the heap allocation sites
that are potential bottlenecks when applying a chosen fixed
object-sensitive points-to analysis uniformly on the input
program. It also determines the requisite depth of object sen-
sitivity needed for these allocation sites. The main analysis
uses the information gathered in pre-analysis (i.e., the se-
lective sensitivity for each allocation site) and performs the
points-to analysis.

We describe the four steps in the pre-analysis in detail.

3.1 Extracting the Kernel
The first step is to extract the portion of the input pro-
gram that contains the allocation sites that possibly generate
spurious points-to information from a fixed object-sensitive
points-to analysis. We refer to this portion of the input pro-
gram as the kernel.

We extract the kernel using the results of a computation-
ally inexpensive, context-insensitive, Anderson-style points-
to analysis on the input program. Given thresholds K1 and
K2, a class c of the input program is selected if:

• there is an object o with type c where the cardinality of
PointedToByVar(o) is larger than K1, or

• there is an object o allocated in a method of class c where
the cardinality of PointedToByVar(o) is larger than K1,
or

• there is a method m in class c with the cardinality of
MethodPointsTo(m) is larger than K2.

Then the kernel is constructed from the input program by
removing all objects (allocation sites) except the selected
classes. The intuition here is that for the remaining portion of
the program, a context-insensitive or a fixed object-sensitive
analysis is sufficiently precise.

Note that if there is even a single object o such that
the cardinality of PointedTByVar(o) is larger than K1,
the entire class identified by o and all its related objects
will be retained. Also note that the kernel may not be a
valid program but has the program elements that can make
context-sensitive points-to analysis less precise.

Our framework uses the context-insensitive points-to
analysis results to estimate the values for K1 and K2. The
estimated values can be tried and chosen iteratively by set-
ting a timeout limit. We start with the mean value between
the minimum and maximum PointedToByVar value for
K1. Similarly we select K2 based on MethodsPointsTo.
Intuitively, these values identify the heavy heap allocation
sites and methods that cause a large percentage of the final
points-to results. With these thresholds, if the computation
of the fixed object sensitive points-to analysis of the ker-
nel exceeds a timeout, then larger thresholds are selected.
Typically we iterate by taking the mean value between
the current K1 (K2) and the maximum PointedToByVar
(MethodPointsTo) value for K1 (K2).

Alternatively, the users can tune the analysis by choosing
the thresholds interactively based on the estimated thresh-
olds and their knowledge of the codebase. In this way, our
framework is flexible in choosing a subset of the program
that contains the problematic heap allocations.

3.2 Fixed Object-Sensitive Analysis
The second step (as shown in Fig. 1) is to perform a fixed
object-sensitive points-to analysis on the kernel. For this
step, we use the standard mO+nH points-to analysis of the
DOOP [3, 8] framework. Note that the fixed object-sensitive
points-to analysis on the original program P is expensive but
applying it on the kernel is not, as only a subset of the objects
in the original program is retained. The main purpose here is
to observe the value of contexts.

3.3 Identifying Candidate Objects
The third step (as shown in Fig. 1) is to identify the candidate
allocation sites from the results of the fixed object-sensitive
points-to analysis on the kernel where the contexts are not ef-
fective in removing spurious points-to tuples. Objects in the
kernel that potentially have the compounded smashing ef-
fect, as we call it, are selected. Typically, certain program el-
ements are not handled precisely. For example, the elements

of the arrays are smashed, i.e., they are not distinguished
in a simple points-to analysis. That means, no matter what,
we already have some amount of spuriousness. Adding con-
text sensitivity to analyse such program elements may have
a cascading effect, leading to many spurious points-to facts
being generated. This we describe as compounded smashing
effect. The reason could be either insufficient context sensi-
tivity or context sensitivity is not the way to precisely handle
program elements with compounded smashing effect.

3.4 Determinining Context Depths
The fourth and final step in the pre-analysis determines the
requisite object sensitivity depth for the candidate allocation
sites selected in the previous step. To help describe this
process, we define some terms and metrics.

InFlow For a given object o, and field f , InFlowf (o) gives
a measure of the heap contexts related to the heap objects
that are stored in the field f of object o, as given by
the fixed object-sensitive points-to analysis on the kernel.
Recall that for arrays, the field f is ignored. To simplify
the presentation we ignore the field f in all cases – but
technically the Load and Store pairs are matched up via
the named field f . Thus InFlow(o) is defined as:

{
(h, hc, oc)

∣∣∣∣∣ Store(b, ∗, v) for some variables b, v
PointsTo(oc, o, c, b) and
PointsTo(hc, h, c, v) for some context c

}

OutFlow For a given variable v, object o, field f and a
context oc, OutFlowf (v, o, oc) gives a measure of the
heap contexts related to the heap objects that are loaded
from the field f of the object o qualified with v ’s con-
text oc. But as in the case of InFlow , we ignore the
field f to simplify the explanation. More precisely, the
Outflow(v , o, oc) is defined as the set:

(c, h, hc)

∣∣∣∣∣∣
Load(b, ∗, v) for some variable b
PointsTo(oc, o, c, b) and
PointsTo(hc, h, c, v)


The intuition behind OutFlow is analogous to InFlow
and captures the cascading or multiplier effect of the
Load operation. However, note that this set is defined per
(loaded) variable and per heap cloning context.

ContextValue For an object o and a context oc,
ContextValue(o, oc) estimates the value of the heap
context oc generated for o. In other words, it determines
the effectiveness of the context generated for an object.
More precisely, we define ContextValue(o, oc) as:

min
v

|InFlow(o)| · |CtxInOutFlow(v, o, oc)|
|OutFlow(v, o, oc)|

where CtxInOutFlow(v , o, oc) is

{c | (c, h, hc) ∈ OutFlow(v, o, oc) for some h, hc}.

Intuitively, for an object o with sufficiently large InFlow ,
if ContextValue(o, oc) = 1, it means that the con-
text oc has not distinguished any points-to facts. If
ContextValue(o, oc) is greater than a threshold, say
K3, then context oc is valuable as it has distinguished
some points-to facts and so we can keep that. When
ContextValue(o, oc) < K3 and Inflow(o) > K4, our
heuristic is to increase the context depth for o to the max-
imum desired if a deeper context adds value (e.g., Col-
lections such as HashMap). Otherwise, we switch off the
context for o. Note that increasing the context depth for o
entails correspondingly increasing the context depths for
the objects in the context oc. Similar to K1 and K2, we
treat K3 and K4 as input parameters to our analysis. In-
tuitively, very high values for K3 and K4 will not refine
the depth (so the results are likely to be imprecise) while
choosing very low values will refine too many allocation
sites (so the analysis is unlikely to scale).

Now the main analysis is straightforward. It applies a se-
lective object-sensitive points-to analysis on the whole input
program. This analysis applies a fixed object sensitivity to
objects not in the kernel. For every object in the kernel, the
context depth as identified by the pre-analysis is applied.

4. Implementation and Experiments
We implemented our framework using DOOP[3] in Datalog
declarative language. We use Soufflé as the Datalog engine
[6]. We used SQLite relational database system to compute
the metrics of Section 3. We used the workstation – Xeon
E5-2699 2.30GHz machine with 396 GB RAM – utlizing 8
cores for all our experiments.

For our experiments, we considered OpenJDK7-b147 and
the programs from DaCapo 2006-10-MR2 [2]. As the JDK is
a library, the points-to analysis is extended with the construc-
tion of the Most General Application (MGA) [1] modeling
the unknown application. Programs in DaCapo benchmark
is analyzed with the JDK. The sizes of OpenJDK and the
largest program in DaCapo – Jython (with JDK), is given in
Table 1.

For the purposes of our experiments, we set the default
maximum context-sensitivity to be 3O+3H. Note that it is
not feasible to compute 3O+3H context-sensitive points-to
analysis for OpenJDK.

4.1 Framework Setup
In order to extract the kernel in the pre-analysis phase, we
need to provide K1 and K2 as thresholds. We have found the
mean sizes of PointedToByVar and MethodsPointsTo very
effective for K1 and K2 respectively and applied them to all
of the programs in the Dacapo benchmark. For larger and

Benchmarks Size Runtime(seconds) Memory (GB)
#Variables #Call-sites #Heap-allocations 2O1H Ours Imp. 2O1H Ours Imp.

OpenJDK 1440875 591262 4815 16200 11880 27% 186 153 18%
Jython 142641 59379 2425 1280 109 91% 2.8 2.8 0%

Table 1: Size of Programs and Performance Improvements

Benchmarks #VarPointsTo #Alias #ReachableMethods
2O1H Ours Loss 2O1H Ours Loss 2O1H Ours Loss

OpenJDK 10100000 10400000 3% 845518 854600 1% 39909 39880 -0.1%
Jython 68519 68519 0% 28294 28294 0% 2876 2876 0%

Table 2: Experimental results – Precision

more complex codebases like OpenJDK the 2O+1H points-
to analysis on the kernel extracted by the initial estimates
of K1 and K2 did not terminate within a timeout limit (30
minutes). Following the heuristic explained in Section 3.1,
we revised K1 and K2 to the mean of the current values and
the maximum |PointedToByVar | and |MethodPointsTo|
respetively. The 2O1H points-to analysis on the extracted
kernel timed out. On the next mean, with K1 = 20000 and
K2 = 50000, the 2O1H points-to analysis terminated in 25
minutes. Hence we used these thresholds for OpenJDK and
recommend thresholds from third mean onwards for large
programs like OpenJDK.

We use objects that have Array type as candidates due to
their compounded smashing effect. Appropriate values for
K3 and K4 that correspond to ContextValue and InFlow
can be chosen based on the following observations. A low
value (e.g., 10) for K3 would result in missing some of
the objects whose contexts have low values. On the other
hand, a high value (e.g., 400) for K3 would unnecessarily
increase/decrease context depths for objects whose context
were performing well. Similarly, a low value (e.g., 10) for
K4 would consider the objects that are not contributing that
much to points-to propagation. On the other hand, a high
value (e.g., 400) may miss objects that are responsible for
generating spurious contexts. For all the benchmarks, we
used K3 = 200 and K4 = 200 in our experiments and
also recommend them to be used in general (note that small
changes to these values does not matter).

4.2 Loss of Precision
We compare the precision of our technique and 2O+1H us-
ing three clients—size of variable to object points-to rela-
tion, size of alias relation and the number of reachable meth-
ods. Our technique (with the above thresholds) found that
no objects for programs in DaCapo benchmarks, except for
Jython, needs context refinement. This implies that for small
programs like programs other than Jython in DaCapo bench-
mark, regular 2O1H can be used directly. We now focus on

Jython and OpenJDK. Table 1 shows the performance num-
bers for the benchmarks and the improvements obtained.
Table 2 contrasts the numbers from three precision clients.
From both of the tables, we observe that there is no or very
small loss of precision. Hence it is clear that for a possible
slight loss of precision we gain high runtime efficiency and
potential memory reduction for large programs like Open-
JDK.

Note that we do not include the steps of the pre-analysis
in runtime. This is because we are unable to reuse the re-
sults of points-to analysis in subsequent analyses effectively.
Having determined the context depths for objects needing
refinement by running the preanalysis once, we run the main
analysis independently. Hence the cost of preanalysis is am-
mortized over many runs of the main analysis.

5. Related Work
Research works on context-sensitive analysis may be clas-
sified into client-independent and client-dependent/demand-
driven analyses.

5.1 Client-independent Analyses
Object sensitivity was first introduced by Milanova et al. [4].
They empirically show that object sensitivity is better than
call-site sensitivity for object-oriented programs. They also
introduce a parametric object sensitivity for targeted context
sensitivity. Here, the framework user must identify the parts
of the program where more or less object sensitivity is re-
quired. Our main distinguishing contribution in this paper
is to identify these parts of the program and their required
context depths.

Smaragdakis et al. [9] proposed an introspective context-
sensitive points-to analysis in DOOP framework. First,
a context-insensitive, Anderson-style points-to analysis is
done. Based on metrics such as PointedToByVar, Method-
PointsTo, they then determine allocation sites and method
invocation sites where contexts are necessary. Finally, they
perform a fixed object-sensitive analysis switching off con-

text sensitivities at allocation sites and method invocation
sites that do not satisfy the selected heuristic. Applying these
heuristics on the 2O+1H points-to analysis over OpenJDK
resulted a significant loss of precision. It removed only 35%
of the context-insensitive points-to facts, whereas ours re-
moved 96.7%. Hence, we investigate techniques that go be-
yond the binary selection between context-insensitive and
a fixed object sensitivity. We apply a spectrum of context
sensitivities to different parts of the program and achieve
scalability without significantly losing precision.

Wei et al. [10] propose adaptive context-sensitive points-
to analysis for JavaScript programs. They apply machine
learning algorithms on the function characteristics collected
from context insensitive points-to analysis results to deter-
mine the kind of context sensitivities – insensitive, 1 call-
site, 1 object, ith-parameter object – to be applied. Based on
the associated context sensitivities for each function, they fi-
nally do a selective context-sensitive points-to analysis on
the whole program. However, the depth of contexts does
not go beyond 1. For our focus on object-oriented Java pro-
grams, we considered only object-sensitive analyses, as has
been clearly established as the way to gain precision in Mi-
lanova et al. [4] work. We then investigated varied depths of
object sensitivity for different allocation sites, which helped
us to scale to large programs.

5.2 Client-dependent Analyses
In principle, client-dependent analysis suffers from its non-
generality because the technique and the results may not
work for a different client. Our objective of points-to anal-
ysis is to extract the basic structure of the program, so that
many clients, such as call-graph construction, taint analysis,
escape analysis, make use of it. This objective is the funda-
mental distinction of the client-dependent context-sensitive
points-to analysis works.

Oh et al. [5] use an impact pre-analysis to determine at
a program point whether call-site context (with predefined
depth) is necessary for a method. Here, they deal with C pro-
grams, hence the focus is only on method contexts and not
heap cloning. First, they fix a call-site context depth. Then
they do an impact pre-analysis, i.e., they do the context-
sensitive (with the defined depth) analysis of the whole pro-
gram but with a simpler or the simplest abstract domain,
such as (>,⊥). From the results of this analysis, they de-
termine whether to apply context sensitivity (of the defined
depth) for a method. This technique is not applicable for our
objective of constructing points-to sets for object-oriented
programs as constructing simple abstract domains to evalu-
ate context sensitivity of points-to analysis is not known.

Zhang et al. [11] proposed a counter-example guided ap-
proach to iteratively clone a method, thus adding call-site
sensitivity, for a given set of client queries. Cloning meth-
ods based on call-sites is proven to be a unviable way to
increase precision for object-oriented programs [4]. Simi-
larly, employing context-insensitive points-to analysis and

MAXSAT solver multiple times iteratively is not a feasible
method when our objective is to scale large programs of the
order of JDK.

6. Conclusion
In this paper we have presented a framework to scale object-
sensitive points-to analysis for large object-oriented pro-
grams. It involves identifying and experimenting on the ker-
nel of the program. Then based on our metrics, a selective
object-sensitive points-to analysis is applied on the input
program. Our experiments on large programs, such as the
JDK and Jython from DaCapo [2] benchmarks, show the
huge effectiveness of our technique. Further experimentation
on other large programs is required.

References
[1] N. Allen, P. Krishnan, and B. Scholz. Combining type-

analysis with points-to analysis for analyzing Java library
source-code. In Proceedings of the SOAP Workshop, pages
13–18. ACM, 2015.

[2] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In OOPSLA,
2006.

[3] M. Bravenboer and Y. Smaragdakis. Strictly declarative spec-
ification of sophisticated points-to analyses. In OOPSLA,
pages 243–262, 2009.

[4] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Pa-
rameterized object sensitivity for points-to analysis for Java.
ACM TOSEM, pages 1–41, January 2005.

[5] H. Oh, W. Lee, K. Heo, H. Yang, and K. Yi. Selective context-
sensitivity guided by impact pre-analysis. In PLDI, pages
475–484, 2014.

[6] B. Scholz, H. Jordan, P. Subotić, and T. Westmann. On
fast large-scale program analysis in Datalog. In Compiler
Construction (CC), pages 196–206, 2016.

[7] Y. Smaragdakis and G. Balatsouras. Pointer analysis. Foun-
dations and Trends in Programming Languages, 1(2):1–69,
2015.

[8] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták.
Pick your contexts well: Understanding object-sensitivity. In
POPL, 2011.

[9] Yannis Smaragdakis, George Kastrinis, and George Balat-
souras. Introspective analysis: Context-sensitivity, across the
board. In PLDI, 2014.

[10] S. Wei and B. G. Ryder. Adaptive context-sensitive analysis
for javascript. In ECOOP, pages 712–734, 2015.

[11] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and
Hongseok Yang. On abstraction refinement for program anal-
yses in datalog. In PLDI, 2014.

