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Abstract— A significant challenge for Machine Learning (ML) 

prognostic analyses of large-scale time series databases is variable 

clock skew between/among multiple data acquisition (DAQ) 

systems across assets in a fleet of monitored assets, and even inside 

individual assets, where the sheer numbers of sensors being 

deployed are so large that multiple individual DAQs, each with 

their own internal clocks, can create significant clock-mismatch 

issues.  For Big Data prognostic anomaly detection, we have 

discovered and amply demonstrated that variable clock skew 

issues in the timestamps for time series telemetry signatures cause 

poor performance for ML prognostics, resulting in high false-

alarm and missed-alarm probabilities (FAPs and MAPs).  This 

paper describes a new Analytical Resampling Process (ARP) that 

embodies novel techniques in the time domain and frequency 

domain for interpolative online normalization and optimal phase 

coherence so that all system telemetry time series outputs are 

available in a uniform format and aligned with a common 

sampling frequency. More importantly, the “optimality” of the 

proposed technique gives end users the ability to select between 

“ultimate accuracy” or “lowest overhead compute cost”, for 

automated coherence synchronization of collections of time series 

signatures, whether from a few sensors, or hundreds of thousands 

of sensors, and regardless of the sampling rates and signal-to-noise 

(S/N) ratios for those sensors. 
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I. INTRODUCTION  

The expansions of Internet-of-Things (IoT) dense-sensor 

applications across many industrial segments are fast growing 

in the past decade. For example, a modern oil refinery these 

days has 1M sensors recording time series signals generating 

observations 24x7x365.  A typical large commercial airplane 

has 75,000 sensors these days, and a medium size enterprise or 

cloud data center can have 1M sensors. Very many dense-sensor 

IoT applications have distributed data-acquisition (DAQ) 

modules across their fleet of assets.  Moreover, it is not 

uncommon for there to be multiple DAQ modules inside each 

large asset.  However, it is most often the case that the clocks in 

the DAQ modules are generating the timestamps for the packets 

of observations being aggregated by the DAQ, and humans set 

up the clocks for the DAQ modules.  Whether the distributed 

DAQ clocks are out of synch because of human errors, or from 

a variety of long-term clock skew mechanisms, the consequence 

for big-data Machine Learning (ML) anomaly discovery can be 

very poor prognostic performance.  Variable clock skews can 

cause the best ML pattern recognition algorithm to "blur" the 

patterns of correlation across large-scale collections of time-

series signatures.  In addition, variable clock skews across a 

collection of digitized sensor time series result in excessive 

False-Alarm Probabilities and Missed-Alarm Probabilities 

(FAPs and MAPs) for the prognostic surveillance ML 

algorithm.   

 

One hardware-based solution is to subscribe to commercial 

clock-synchronization hardware/software systems that will 

periodically synchronize a network of distributed clocks to a 

remote highly-accurate atomic clock.  This approach became 

popular in the previous decade, in spite of the significant cost to 

design in clocks with either network or wireless capability for 

periodic re-sync updates on the fly.  However, this clock-synch 

methodology has fallen out of favor for many business-critical 

facilities after some well-publicized hacks occurred when 

hackers discovered they could tap into facility critical assets 

through the clock-synch connections (which require a 

penetration through the facility-network firewall). 

 
Oracle previously developed a separate solution for 

empirical re-synchronization [1-2], which requires no hardware 
modifications anywhere in the IoT assets or networks, nor any 
penetration through the firewall, in the form of machine-
learning-based empirical synchronization of all types of IoT 
digitized time series signatures.   This innovative technique, 
called the Analytical Resampling Process (ARP), has 
demonstrated significant ROI for autonomous prognostics over 
the years.  ARP embodies novel techniques in the time domain 
and frequency domain for optimal phase coherence so that all 
system telemetry time series outputs are available in a uniform 
format and aligned with a common sampling frequency.  ARP 
synthesizes data from multiple, disparate-format sources and has 
become an indispensable tool for producing synchronized data 
streams suitable for use in the design, testing, and performance 
evaluation of real-time prognostic monitoring techniques. Over 
the last 15 years, three completely different approaches for 
empirical re-synchronization of time series signals have been 
developed.  These 3 earlier versions of ARP include: 

1. Correlogram: One signal is picked as the ‘reference anchor’ 
signal, meaning its timestamps will be assumed to be correct.  
All other signals in the asset or fleet of assets will be empirically 
aligned to the “reference anchor” signal by computing pairwise 



cross correlation coefficients, then systematically “adjusting” 
the lags for the individual signals to optimize the correlation 
coefficient with respect to the “reference anchor”. 

2. CPSD: Cross Power Spectral Density technique [1].  A 
bivariate frequency-domain technique that uses a sophisticated 
FFT computation that infers with high accuracy the “phase 
angle” (in the frequency domain) between two timeseries.  An 
algorithm is then employed to compute an optimal estimate of 
the lag time from the phase angle.  Pairwise computations are 
performed for all signals in the collection, adjusting signals to 
bring the empirical lag times to zero. 

3. Genetic Algorithm (GA): A metaheuristic-type optimization 
technique wherein signals are given random “kicks” in positive 
or negative directions, after which the overall synchronization 
score for the population is evaluated.  Signal kicks that result in 
an improvement are retained for the next “generation”, whereas 
kicks that worsen the degree of correlation are moved back to 
the positions they held in the previous generation.  Kick sizes 
are systematically reduced in each generation (to prevent 
oscillatory “hopping over” the optimum synchronization value) 
[3]. 

Although each of the above earlier ARP approaches does the 
job for empirical re-synchronization of time series sensor 
signals, it is by no means obvious, even to senior-level data 
scientists, which technique is the “best” for any given prognostic 
monitoring use case in the various industries starting to adopt 
dense-sensor prognostic solutions (which include Utilities, Oil-
and-Gas, Manufacturing, Transportation, and of course 
Datacenters). However, it is a significant amount of work to 
decide in advance which of the above 3 earlier ARP approaches 
may be “best” for any given use case. The reasons are twofold: 

1) For some IoT prognostic surveillance use cases, “best” 

means highest possible accuracy for realignment of signals for 

which time-stamps are out of sync due to variable clock-skew 

issues in DAQs.  But for other IoT prognostic use cases, ball-

park alignment of signals (e.g. reducing clock-skews from 

minutes to ~10 seconds) is more than adequate to achieve 

Prognostic Functional Requirements (PFRs), but overhead 

compute cost (CC) is the gating factor for whether ML 

prognostics are economically feasible.  This is the case for large-

scale streaming analytics where the overhead of empirical re-

sync computations performed “upstream” of the ML prognostics 

can exceed the available CPU cycles for the computer (or VM 

in a cloud architecture), without requiring a more powerful 

prognostic platform (or more VMs). 

2) Both the re-sync accuracy, and the overhead CC, are 

complex nonlinear functions of the number of monitored 

signals, the sampling rates for those signals, and the signal-to-

noise ratios (SNRs) for those signals. 

Because of the heretofore intractable complexity in knowing 

which of 3 drastically different mathematical implementations 

of ARP might be “best” for any given use case, we have in the 

past used a very human-intensive seat-of-the-pants approach in 

selecting which one of the 3 ARP algorithms to use for a 

prognostic challenge at hand:  A human data scientist 

knowledgeable with Oracle’s 3 ARP approaches would take a 

test data set, and “try out” a ML prognostic evaluation using 

each ARP algorithm separately, then compile results, and see 

which technique produced the best prognostic accuracy (if that 

is the top priority), or produced the lowest overhead compute 

cost (if that is the top priority), then deploy that algorithm. 

 

In this paper, we teach an automated parametric framework that 

systematically evaluates any example dataset of target time 

series signatures, lets the end customer specify whether top 

accuracy or low overhead compute cost (CC) is the most 

desirable functional requirement, and then uses an innovative 

adaptive machine-learning approach to select for the end user 

the optimal algorithmic implementation to achieve ARP 

functional requirements.  This automates the process so that 

novice users at companies subscribing to Oracle Cloud 

autonomous prognostic offerings across multiple industrial 

segments served by Oracle, will always have optimal phase-

synchronization of signals (and hence highest-sensitivity 

prognostic performance for ML anomaly discovery, with lowest 

false-alarm and missed-alarm probabilities).  

 

II. METHODOLOGY 

A. ARP-resampling: 

First of all, the various signals like power, CPU utilization, 

performance, and temperature need to be analytically resampled 

(i.e. they may be physically sampled at different frequencies, but 

in this step they are analytically upsampled/downsampled as 

necessary to produce uniform sampling intervals). One common 

sampling frequency is picked and all the signals are resampled 

so that they have common time stamps. One common sampling 

frequency is picked and all the signals are upsampled or 

downsampled through an innovative imputation algorithm so 

that they have common time intervals (but still may be out of 

phase alignment). 

 

 
(a) 

 
(b) 



Figure 1: Use case of ARP upsampling 

Figure 1a and Figure 1b illustrate the performance of ARP 

resampling through a use case where 5 telemetry signals in 

different sampling rate are presented. The algorithm first 

detects the fastest sampling rate (or user-specified sampling rate 

of 1s in this case), and then upsamples those slower signals 

using spline interpolation for purposes of illustration. The 

output are signals with uniform 1s samples.  

 

B. ARP-Correlegram Resynchronization 

The most basic approach in ARP is called the correlegram 

technique, which performs an analysis of correlation coefficient 

vs. lag in time domain, to determine the optimum lag at which 

two signals are aligned the closest, i.e., the lag at which the 

correlation (absolute value) is the highest. This step is required 

even though the signals may their individual time stamps, due 

to various clock-mismatch mechanisms mentioned above. 

Examples below show the correlegram for power and 

utilization signals when the highest correlation occurs at a 

positive lag, at a negative lag, and after the appropriate phase 

shift has been performed. This new innovation works even 

when all clocks for the hardware power meter, the hardware 

external temperature DAQ, the operating system (OS), and (if 

applicable) the Service Processor (SP) are totally out of sync. 

 

If the highest correlation occurs at a non-zero lag, one of the 

signals is shifted by that corresponding lag so that with this 

newly shifted signal, the highest correlation occurs at zero lag. 

The correlogram analysis is performed for every pair of signals. 

This is not very resource intensive since we have only a few 

number of signals for this illustrative example. Subsequent ML 

prognostics are now generated using the processed set of 

signals. This results in an accurate analysis.  

 

 
Figure 2: Use case of ARP Correlegram 

 

Figure 2 illustrates a use case of ARP correlegram on two out 

of sync telemetry signals. The correlogram analysis is 

performed for matching the signal #2 to signal #1 by iteratively 

measuring the correlation coefficient between signal #1 and 

shifted copies of signal #2 (middle plot). The non-zero lag 

corresponding to the highest correlation is captured and used to 

shift the signal #2, yielding the synced two signals (bottom 

plot). 

 

C. ARP-CPSD Resynchronization 

Some business-critical applications need the finest resolution 

possible on alignment of signals, thus we developed a second 

technique that uses a cross power spectral density (CPSD) 

method in the frequency domain. The signals are transformed 

into the frequency domain using Fourier decomposition and a 

cross power spectral density (CPSD) analysis is performed to 

determine the relative phase shift (and hence time lag) between 

all possible pairwise combinations of telemetry signals. In this 

analysis, the phase angle is plotted against frequency, then the 

slope of the phase-vs-frequency curve indicates whether the 

original telemetry signals are aligned or not. A non-zero slope 

in the phase angle vs frequency line indicates that the two 

signals are not aligned. The phase angle is treated as an 

adjustable parameter in a systematic stepwise iterative 

algorithm that is recursively applied until a zero slope indicates 

that the signals are perfectly aligned.  
 

If there is a non-zero slope, one of the signals is shifted by the 

corresponding lag so that with this newly shifted signal, the 

phase angle vs frequency plot has zero slope. The CPSD 

analysis is performed for every pairwise combination of 

telemetry signals.  

 

The novel frequency-domain technique has been developed 

for analytical resampling and phase shift optimization of 

telemetry signals coming from server power measurements 

that are being required by new EPA guidelines for all future 

computer servers. The advantage that this technique brings is 

that power-versus-utilization monitoring can be performed 

more efficiently and accurately, even when the signals are 

dynamically varying and even when those signals are 

contaminated with significant degrees of quantization from 

low-resolution A/D chips used in most enterprise computing 

systems. Conventional time-domain signal synchronization 

techniques can presently only measure EPA power efficiency 

metrics while all signals are held constant with time. If the 

signals are varying dynamically, then any small time shifts 

due to clock skews between the external hardware power 

meter, the temperature measurements, and the OS throughput 

and performance variables, causes very large uncertainties 

with conventional methods). 

 

D. ARP-Genetic Algorithm (GA) Resynchronization 

Both of the above techniques have a reasonable compute cost 

for up to dozens of signals.  But the compute cost goes up 

geometrically with the number of signals.  For large-scale 

telemetry databases that may contain many dozens or hundreds 

of time series signals, we also devised a third technique that 

incorporates a GA algorithm and that scales extremely well 

with low compute cost even for huge numbers of signals: 

 



Shift each signal with random phase kicks in turn and compute 

the objective function. If the objective function value increases, 

roll back and continue process until the objective function 

reaches a pre-assigned threshold or does not increase for several 

iterations of random kicks. 

 

 
(a) 

 
(b) 

(c) 
Figure 3: use case of GA at intermediate iterations 

Figure 3(a)-(c) illustrates a use case for the GA phase 

optimization based technique. The clock-mismatch issues in 

distributed data-acquisition modules cause correlated processes 

to be out of alignment when consumed by ML Pattern 

Recognition algorithms. Our proposed technique goes through 

three stages and optimally aligns the signals between each 

other. 

III. EVALUATION 

For any given customer with a set of signals to analyze with 

machine learning (ML) in Oracle’s prognostic cloud, that 

customer’s set of signals will embody a given number of 

signals, number of samples (equivalent to saying a certain 

sampling rate), and characteristic signal-to-noise ratio for the 

signals.  Again, the substantial challenge for a customer to set 

up an ARP pre-processing algorithm to optimally synchronize 

her signals (correcting for clock-skew issues in the data 

acquisition systems) lies in the fact that it takes a very involved 

manual investigation to find the best ARP approach that 

achieves her goals of either: 

 

[A] minimizing overhead compute cost [common for real-time 

streaming prognostics, where latencies have to be minimized]; 

or  

[B] maximizing the accuracy of the time synchronization 

[common for “batch-wise” prognostics, where the signals from 

the customer’s critical assets are periodically (e.g. once per day, 

once per week) analyzed to assess aging-degradation of the 

assets.  For this use case compute cost is no issue; or  

 

[C] a dual-optimization objective of hitting the best sweet-spot 

between lowest compute cost with best accuracy [common for 

cases where the ML algorithm can easily keep up with real-

time, so both high accuracy and low compute cost are 

desirable]. 

 

The technique reported in this paper conducts the entire 

investigation automatically. The customer user can simply 

submit an example dataset of all the signals she will wish to 

monitor with ML prognostics, and her specified top “goodness” 

metric/objective for automated clock mismatch 

synchronization: e.g. lowest possible compute cost, vs highest 

possible synchronization accuracy, vs bi-variate optimal 

accuracy-vs-compute cost. 

 

Of course the analyses and selection of optimal algorithm are 

completely different for any individual customer use case 

(because both compute cost and accuracy are complex 

nonlinear functions of the number of signals, sampling rates for 

the signals, and signal-to-noise ratios for the signals).  We 

discussed in the introduction that how Oracle’s new Automated 

Optimal ARP Supervisor solves this challenge for any 

collection of end-customer signals, and “takes the human out of 

the loop” so that tedious replicated manual experiments are no 

longer necessary, literally creating a fully automated Oracle 

tool that can be operated by a beginning level data technician 

who doesn’t have to know anything about empirical phase 

synchronization…just supplies a test dataset and the new 

Oracle automated optimal ARP supervisor performs a 

systematic parametric nonlinear tradeoff evaluation and sets up 

an optimal ARP algorithm for the customer’s specific use case. 

 

We illustrate in this section how we approach this with a 

systematic parametric evaluation that varies the number of 

signals, the number of samples for the signals (and hence the 

sampling rates for the signals), and the signal-to-noise ratios 

(S/N Ratios) for the signals, and computes the overhead 

compute cost (CC) and the synchronization accuracy (measured 

in RMSE, in the same units as the customer’s signals), then 

picks a customized ARP algorithm that optimally achieves the 

customer’s most important performance metric. 

 

Figure 4 below illustrates how synchronization accuracy varies 

for the Correlegram technique as a function of number of 

signals and number of observations (equivalently, sampling 

rate).  We can see that for the Correlogram method, the 

Accuracy is only mildly related to the number of signals and 

sampling rate, whereas Figure 5 shows that the overhead 

compute cost varies substantially with the number of signals 

and sampling rates. 



 
Figure 4: Evaluation of accuracy for Correlegram method. 

 

 

 
Figure 5: Evaluation of compute cost for Correlegram method. 

 

Figure 6 and Figure 7 illustrate example parametric evaluations 

of accuracy and compute cost for the CPSD method.  It is 

important to note in Figure 7 that the compute cost is relatively 

invariant to the sampling rate for the signals, but very sensitive 

to the number of signals for the customer’s specific use case. 

 
Figure 6: Evaluation of accuracy for CPSD method. 

 

 
Figure 7: Evaluation of compute cost for CPSD method. 

 

Figure 8 and Figure 9 illustrate the corresponding parametric 

empirical functional relationships between compute cost (CC) 

and synchronization accuracy (RMSE) for the Genetic 

Algorithm (GA) approach. 

 
Figure 8: Evaluation of accuracy for GA method. 

 
Figure 9: Evaluation of compute cost for GA method. 



 

These systematic parametric optimization techniques have been 

embodied into an Automated Optimal ARP Supervisor 

algorithm as illustrated schematically in Figure 10. 

 

 

 

(a) 

 

(b) 
Figure 10: Flowchart A and B of the automated optimal ARP. 

 

Note that if a data scientist has a use case with some number of 

signals "N" (a number that is different depending on his/her 

system, machine, or use case):  let's say she has 33 signals 

captured in a dataset with a fixed lead/lag relationship captured 

in the dataset.  We synchronize that set of 33 signals, then 

decide by the procedure in A which algorithm had the lowest 

compute cost and/or best accuracy for that one "snapshot" 

dataset.  However, with just that one snapshot use case, the 

results and conclusion could be very misleading.  It could be 

that an hour later or day later the leads/lags could be completely 

different.  [This is especially relevant where the leads/lags are 

due to variable flow processes, and the flowrates can change 

due to many factors.]  It would be imprudent for us to pick an 

optimum algorithm on the basis of just one "snapshot" of 

customer data.  Instead, in our autonomic implementation of 

this Optimal ARP Supervisory algorithm we take the original 

measured signals (which define the # of signals available and 

give a good representation of the sampling rate and "noisiness" 

of the signals) and we do 100 replicated iterations [100 is 

adequate, in our experiments we get good asymptotic accuracy 

and compute cost by averaging across 100 replications] in 

which we randomly permute the lead/lag times in each iteration, 

invoke the 3 candidate ARP sync algorithms [in the preferred 

embodiment, but allow for the possibility that additional 

algorithms can be plugged in in future versions, and Automated 

ARP still yields an optimum sync algorithm for any given set 

of measured signals for any use case], then select the sync 

algorithm that best complies with the customer's most 

important performance criteria [(a) balance between compute 

cost and accuracy, (b) lowest possible overhead compute cost 

during real time streaming applications, vs (c) highest possible 

sync accuracy regardless of compute cost).] 

 

IV. CONCLUSION 

This paper describes a new Optimal Analytical Resampling 

Process for autonomic dense-sensor IoT prognostic use cases 

that embodies novel techniques in the time domain and 

frequency domain for interpolative online normalization and 

optimal phase coherence so that all system telemetry time series 

outputs are available in a uniform format and aligned with a 

common sampling frequency.  ARP synthesizes data from 

multiple, disparate-format sources and has become an 

indispensable tool for producing synchronized data streams 

suitable for use in the design, testing, and performance 

evaluation of dynamic power monitoring techniques for server 

components and subsystems with important spinoff applications 

for proactive fault monitoring tools that catch incipient problems 

in enterprise computing servers. Analytical re-synchronization 

for avoidance of variable clock skews tremendously improves 

prognostic performance for all types of ML-based big-data 

surveillance use cases.  
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