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Abstract

We consider the problem of making apps fault-tolerant
through replication, when apps operate at the microsecond
scale, as in finance, embedded computing, and microservices
apps. These apps need a replication scheme that also operates
at the microsecond scale, otherwise replication becomes a
burden. We propose Mu, a system that takes less than 1.3
microseconds to replicate a (small) request in memory, and
less than a millisecond to fail-over the system—this cuts the
replication and fail-over latencies of the prior systems by at
least 61% and 90%. Mu implements bona fide state machine
replication/consensus (SMR) with strong consistency for a
generic app, but it really shines on microsecond apps, where
even the smallest overhead is significant. To provide this
performance, Mu introduces a new SMR protocol that care-
fully leverages RDMA. Roughly, in Mu a leader replicates
a request by simply writing it directly to the log of other
replicas using RDMA, without any additional communica-
tion. Doing so, however, introduces the challenge of handling
concurrent leaders, changing leaders, garbage collecting the
logs, and more—challenges that we address in this paper
through a judicious combination of RDMA permissions and
distributed algorithmic design. We implemented Mu and used
it to replicate several systems: a financial exchange app called
Liquibook, Redis, Memcached, and HERD [32]. Our evalua-
tion shows that Mu incurs a small replication latency, in some
cases being the only viable replication system that incurs an
acceptable overhead.

1 Introduction

Enabled by modern technologies such as RDMA,
Microsecond-scale computing is emerging as a must [6]. A
microsecond app might be expected to process a request
in 10 microseconds. Areas where software systems care
about microsecond performance include finance (e.g., trading
systems), embedded computing (e.g., control systems), and
microservices (e.g., key-value stores). Some of these areas
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are critical and it is desirable to replicate their microsecond
apps across many hosts to provide high availability, due to
economic, safety, or robustness reasons. Typically, a system
may have hundreds of microservice apps [24], some of which
are stateful and can disrupt a global execution if they fail
(e.g., key-value stores)—these apps should be replicated for
the sake of the whole system.

The golden standard to replicate an app is State Machine
Replication (SMR) [67], whereby replicas execute requests
in the same total order determined by a consensus protocol.
Unfortunately, traditional SMR systems add hundreds of mi-
croseconds of overhead even on a fast network [27]. Recent
work explores modern hardware in order to improve the per-
formance of replication [29,31,35,37,60,70]. The fastest of
these (e.g., Hermes [35], DARE [60], and HovercRaft [37])
induce however an overhead of several microseconds, which
is clearly high for apps that themselves take few microsec-
onds. Furthermore, when a failure occurs, prior systems incur
a prohibitively large fail-over time in the tens of milliseconds
(not microseconds). For instance, HovercRaft takes 10 mil-
liseconds, DARE 30 milliseconds, and Hermes at least 150
milliseconds. The rationale for such large latencies are time-
outs that account for the natural fluctuations in the latency
of modern networks. Improving replication and fail-over
latencies requires fundamentally new techniques.

We propose Mu, a new SMR system that adds less than
1.3 microseconds to replicate a (small) app request, with
the 99th-percentile at 1.6 microseconds. Although Mu is a
general-purpose SMR scheme for a generic app, Mu really
shines with microsecond apps, where even the smallest repli-
cation overhead is significant. Compared to the fastest prior
system, Mu is able to cut 61% of its latency. This is the
smallest latency possible with current RDMA hardware, as it
corresponds to one round of one-sided communication.

To achieve this performance, Mu introduces a new SMR
protocol that fundamentally changes how RDMA can be lever-
aged for replication. Our protocol reaches consensus and repli-
cates a request with just one round of parallel RDMA write
operations on a majority of replicas. This is in contrast to



prior approaches, which take multiple rounds [29,60,70] or re-
sort to two-sided communication [27,31, 38, 52]. Roughly, in
Mu the leader replicates a request by simply using RDMA to
write it to the log of each replica, without additional rounds of
communication. Doing this correctly is challenging because
concurrent leaders may try to write to the logs simultaneously.
In fact, the hardest part of most replication protocols is the
mechanism to protect against races of concurrent leaders (e.g.,
Paxos proposal numbers [39]). Traditional replication imple-
ments this mechanism using send-receive communication
(two-sided operations) or multiple rounds of communication.
Instead, Mu uses RDMA write permissions to guarantee that
areplica’s log can be written by only one leader. Critical to
correctness are the mechanisms to change leaders and garbage
collect logs, as we describe in the paper.

Mu also improves fail-over time to just 873 microseconds,
with the 99-th percentile at 945 microseconds, which cuts
fail-over time of prior systems by an order of magnitude. The
fact that Mu significantly improves both replication overhead
and fail-over latency is perhaps surprising: folklore suggests
a trade-off between the latencies of replication in the fast path,
and fail-over in the slow path.

The fail-over time of Mu has two parts: failure detection
and leader change. For failure detection, traditional SMR sys-
tems typically use a timeout on heartbeat messages from the
leader. Due to large variances in network latencies, timeout
values are in the 10-100ms even with the fastest networks.
This is clearly high for microsecond apps. Mu uses a con-
ceptually different method based on a pull-score mechanism
over RDMA. The leader increments a heartbeat counter in its
local memory, while other replicas use RDMA to periodically
read the counter and calculate a badness score. The score is
the number of successive reads that returned the same value.
Replicas declare a failure if the score is above a threshold,
corresponding to a timeout. Different from the traditional
heartbeats, this method can use an aggressively small timeout
without false positives because network delays slow down the
reads rather than the heartbeat. In this way, Mu detects fail-
ures usually within ~600 microseconds. This is bottlenecked
by variances in process scheduling, as we discuss later.

For leader change, the latency comes from the cost of
changing RDMA write permissions, which with current NICs
are hundreds of microseconds. This is higher than we ex-
pected: it is far slower than RDMA reads and writes, which go
over the network. We attribute this delay to a lack of hardware
optimization. RDMA has many methods to change permis-
sions: (1) re-register memory regions, (2) change queue-pair
access flags, or (3) close and reopen queue pairs. We carefully
evaluate the speed of each method and propose a scheme that
combines two of them using a fast-slow path to minimize
latency. Despite our efforts, the best way to cut this latency
further is to improve the NIC hardware.

We prove that Mu provides strong consistency in the form
of linearizability [25], despite crashes and asynchrony, and it

ensures liveness under the same assumptions as Paxos [39].

We implemented Mu and used it to replicate several
apps: a financial exchange app called Liquibook [49], Redis,
Memcached, and an RDMA-based key-value stored called
HERD [32].

We evaluate Mu extensively, by studying its replication
latency stand-alone or integrated into each of the above apps.
We find that, for some of these apps (Liquibook, HERD), Mu
is the only viable replication system that incurs a reasonable
overhead. This is because Mu’s latency is significantly lower
by a factor of at least 2.7x compared to other replication
systems. We also report on our study of Mu’s fail-over latency,
with a breakdown of its components, suggesting ways to
improve the infrastructure to further reduce the latency.

Mu has some limitations. First, Mu relies on RDMA and
so it is suitable only for networks with RDMA, such as local
area networks, but not across the wide area. Second, Mu
is an in-memory system that does not persist data in stable
storage—doing so would add additional latency dependent
on the device speed. | However, we observe that the industry
is working on extensions of RDMA for persistent memory,
whereby RDMA writes can be flushed at a remote persistent
memory with minimum latency [69]—once available, this
extension will provide persistence for Mu.

To summarize, we make the following contributions:

* We propose Mu, a new SMR system with low replication
and fail-over latencies.

* To achieve its performance, Mu leverages RDMA per-
missions and a scoring mechanism over heartbeat coun-
ters.

* We give the complete correctness proof of Mu.

* We implement Mu, and evaluate both its raw perfor-
mance and its performance in microsecond apps. Results
show that Mu significantly reduces replication latencies
to an acceptable level for microsecond apps.

e Mu’s code is available at:
https://github.com/LPD-EPFL/mu.

One might argue that Mu is ahead of its time, as most apps
today are not yet microsecond apps. However, this situation
is changing. We already have important microsecond apps in
areas such as trading, and more will come as existing timing
requirements become stricter and new systems emerge as the
composition of a large number of microservices (§2.1).

!For fairness, all SMR systems that we compare against also operate
in-memory.


https://github.com/LPD-EPFL/mu

2 Background

2.1 Microsecond Apps and Computing

Apps that are consumed by humans typically work at the
millisecond scale: to the human brain, the lowest reported
perceptible latency is 13 milliseconds [61]. Yet, we see the
emergence of apps that are consumed not by humans but by
other computing systems. An increasing number of such sys-
tems must operate at the microsecond scale, for competitive,
physical, or composition reasons. Schneider [66] speaks of a
microsecond market where traders spend massive resources
to gain a microsecond advantage in their high-frequency trad-
ing. Industrial robots must orchestrate their motors with mi-
crosecond granularity for precise movements [5]. Modern
distributed systems are composed of hundreds [24] of state-
less and stateful microservices, such as key-value stores, web
servers, load balancers, and ad services—each operating as
an independent app whose latency requirements are gradually
decreasing to the microsecond level [8], as the number of com-
posed services is increasing. With this trend, we already see
the emergence of key-value stores with microsecond latency
(e.g., [31,54]).

To operate at the microsecond scale, the computing ecosys-
tem must be improved at many layers. This is happening
gradually by various recent efforts. Barroso et al [6] argue
for better support of microsecond-scale events. The latest
Precision Time Protocol improves clock synchronization to
achieve submicrosecond accuracy [3]. And other recent work
improves CPU scheduling [8,57,62], thread management [64],
power management [63], RPC handling [17,31], and the net-
work stack [57]—all at the microsecond scale. Mu fits in this
context, by providing microsecond SMR.

2.2 State Machine Replication

State Machine Replication (SMR) replicates a service (e.g.,
a key-value storage system) across multiple physical servers
called replicas, such that the system remains available and
consistent even if some servers fail. SMR provides strong
consistency in the form of linearizability [25]. A common
way to implement SMR, which we adopt in this paper, is
as follows: each replica has a copy of the service software
and a log. The log stores client requests. We consider non-
durable SMR systems [28,30,48,51,56,58], which keep state
in memory only, without logging updates to stable storage.
Such systems make an item of data reliable by keeping copies
of it in the memory of several nodes. Thus, the data remains
recoverable as long as there are fewer simultaneous node
failures than data copies [60].

A consensus protocol ensures that all replicas agree on
what request is stored in each slot of the log. Replicas then
apply the requests in the log (i.e., execute the corresponding
operations), in log order. Assuming that the service is deter-

ministic, this ensures all replicas remain in sync. We adopt a
leader-based approach, in which a dynamically elected replica
called the leader communicates with the clients and sends
back responses after requests reach a majority of replicas. We
assume a crash-failure model: servers may fail by crashing,
after which they stop executing.

A consensus protocol must ensure safety and liveness prop-
erties. Safety here means (1) agreement (different replicas do
not obtain different values for a given log slot) and (2) validity
(replicas do not obtain spurious values). Liveness means fer-
mination—every live replica eventually obtains a value. We
guarantee agreement and validity in an asynchronous system,
while termination requires eventual synchrony and a majority
of non-crashed replicas, as in typical consensus protocols. In
theory, it is possible to design systems that terminate under
weaker synchrony [13], but this is not our goal.

2.3 RDMA

Remote Direct Memory Access (RDMA) allows a host to
access the memory of another host without involving the
processor at the other host. RDMA enables low-latency com-
munication by bypassing the OS kernel and by implementing
several layers of the network stack in hardware.

RDMA supports many operations: Send/Receive,
Write/Read, and Atomics (compare-and-swap, fetch-and-
increment). Because of their lower latency, we use only
RDMA Writes and Reads. RDMA has several transports;
we use Reliable Connection (RC) to provide in-order reliable
delivery.

RDMA connection endpoints are called Queue Pairs (QPs).
Each QP is associated to a Completion Queue (CQ). Op-
erations are posted to QPs as Work Requests (WRs). The
RDMA hardware consumes the WR, performs the operation,
and posts a Work Completion (WC) to the CQ. Applications
make local memory available for remote access by registering
local virtual memory regions (MRs) with the RDMA driver.
Both QPs and MRs can have different access modes (e.g.,
read-only or read-write). The access mode is specified when
initializing the QP or registering the MR, but can be changed
later. MRs can overlap: the same memory can be registered
multiple times, yielding multiple MRs, each with its own
access mode. In this way, different remote machines can have
different access rights to the same memory. The same effect
can be obtained by using different access flags for the QPs
used to communicate with remote machines.

3 Overview of Mu

3.1 Architecture

Figure | depicts the architecture of Mu. At the top, a client
sends requests to an application and receives a response. We
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Figure 1: Architecture of Mu. Grey color shows Mu components. A replica is either a leader or a follower, with different
behaviors. The leader captures client requests and writes them to the local logs of all replicas. Followers replay the log to inject
the client requests into the application. A leader election component includes a heartbeat and the identity of the current leader. A
permission management component allows a leader to request write permission to the local log while revoking the permission

from other nodes.

are not particularly concerned about how the client commu-
nicates with the application: it can use a network, a local
pipe, a function call, etc. We do assume however that this
communication is amenable to being captured and injected.
That is, there is a mechanism to capture requests from the
client before they reach the application, so we can forward
these requests to the replicas; a request is an opaque buffer
that is not interpreted by Mu. Similarly, there is a mechanism
to inject requests into the app. Providing such mechanisms
requires changing the application; however, in our experience,
the changes are small and non-intrusive. These mechanisms
are standard in any SMR system.

Each replica has an idea of which replica is currently the
leader. A replica that considers itself the leader assumes
that role (left of figure); otherwise, it assumes the role of a
follower (right of figure). Each replica grants RDMA write
permission to its log for its current leader and no other replica.
The replicas constantly monitor their current leader to check
that it is still active. The replicas might not agree on who the
current leader is. But in the common case, all replicas have the
same leader, and that leader is active. When that happens, Mu
is simple and efficient. The leader captures a client request,
uses an RDMA Write to append that request to the log of each
follower, and then continues the application to process the
request. When the followers detect a new request in their log,
they inject the request into the application, thereby updating
the replicas.

The main challenge in the design of SMR protocols is to
handle leader failures. Of particular concern is the case when
a leader appears failed (due to intermittent network delays) so

another leader takes over, but the original leader is still active.

To detect failures in Mu, the leader periodically increments
a local counter: the followers periodically check the counter
using an RDMA Read. If the followers do not detect an
increment of the counter after a few tries, a new leader is
elected.

The new leader revokes a write permission by any old
leaders, thereby ensuring that old leaders cannot interfere
with the operation of the new leader [2]. The new leader also
reconstructs any partial work left by prior leaders.

Both the leader and the followers are internally divided into
two major parts: the replication plane and the background
plane. Roughly, the replication plane plays one of two mu-
tually exclusive roles: the leader role, which is responsible
for copying requests captured by the leader to the followers,
or the follower role, which replays those requests to update
the followers’ replicas. The background plane monitors the
health of the leader, determines and assigns the leader or fol-
lower role to the replication plane, and handles permission
changes. Each plane has its own threads and queue pairs. This
is in order to improve parallelism and provide isolation of per-
formance and functionality. More specifically, the following
components exist in each of the planes.

The replication plane has three components:

* Replicator. This component implements the main proto-
col to replicate a request from the leader to the follow-
ers, by writing the request in the followers’ logs using
RDMA Write.

* Replayer. This component replays entries from the lo-



cal log. This component and the replicator component
are mutually exclusive; a replica only has one of these
components active, depending on its role in the system.

* Logging. This component stores client requests to be
replicated. Each replica has its own local log, which
may be written remotely by other replicas according to
previously granted permissions. Replicas also keep a
copy of remote logs, which is used by a new leader to
reconstruct partial log updates by older leaders.

The background plane has two components:

e Leader election. This component detects failures of
leaders and selects other replicas to become leader. This
is what determines the role a replica plays.

* Permission management. This component grants and
revokes write access of local data by remote replicas.
It maintains a permissions array, which stores access
requests by remote replicas. Basically, a remote replica
uses RDMA to store a 1 in this vector to request access.

We describe these planes in more detain in §4 and §5.

3.2 RDMA Communication

Each replica has two QPs for each remote replica: one QP for
the replication plane and one for the background plane. The
QPs for the replication plane share a completion queue, while
the QPs for the background plane share another completion
queue. The QPs operate in Reliable Connection (RC) mode.

Each replica also maintains two MRs, one for each plane.
The MR of the replication plane contains the consensus log
and the MR of the background plane contains metadata for
leader election (§5.1) and permission management (§5.2).
During execution, replicas may change the level of access to
their log that they give to each remote replica; this is done
by changing QP access flags. Note that all replicas always
have remote read and write access permissions to the memory
region in the background plane of each replica.

4 Replication Plane

The replication plane takes care of execution in the common
case, but remains safe during leader changes. This is where
we take care to optimize the latency of the common path. We
do so by ensuring that, in the replication plane, only a leader
replica communicates over the network, whereas all follower
replicas are silent (i.e., only do local work).

In this section, we discuss algorithmic details related to
replication in Mu. For pedagogical reasons, we first describe
in §4.1 a basic version of the algorithm, which requires sev-
eral round-trips to decide. Later, in §4.2, we discuss how
Mu achieves its single round-trip complexity in the common

case, as we present key extensions and optimizations to im-
prove functionality and performance. We give an intuition of
why the algorithm works in this section, and we provide the
complete correctness argument in the Appendix.

4.1 Basic Algorithm

The leader captures client requests, and calls propose to repli-
cate these requests. It is simplest to understand our replication
algorithm relative to the Paxos algorithm, which we briefly
summarize; for details, we refer the reader to [39]. In Paxos,
for each slot of the log, a leader first executes a prepare phase
where it sends a proposal number to all replicas.” A replica
replies with either nack if it has seen a higher proposal number,
or otherwise with the value with the highest proposal number
that it has accepted. After getting a majority of replies, the
leader adopts the value with the highest proposal number. If it
got no values (only acks), it adopts its own proposal value. In
the next phase, the accept phase, the leader sends its proposal
number and adopted value to all replicas. A replica acks if
it has not received any prepare phase message with a higher
proposal number.

In Paxos, replicas actively reply to messages from the
leader, but in our algorithm, replicas are silent and communi-
cate information passively by publishing it to their memory.
Specifically, along with their log, a replica publishes a min-
Proposal representing the minimum proposal number which
it can accept. The correctness of our algorithm hinges on the
leader reading and updating the minProposal number of each
follower before updating anything in its log, and on updates
on a replica’s log happening in slot-order.

However, this by itself is not enough; Paxos relies on active
participation from the followers not only for the data itself,
but also to avoid races. Simply publishing the relevant data
on each replica is not enough, since two competing leaders
could miss each other’s updates. This can be avoided if each
of the leaders rereads the value after writing it [23]. However,
this requires more communication. To avoid this, we shift
the focus from the communication itself to the prevention of
bad communication. A leader ¢ maintains a set of confirmed
Jfollowers, which have granted write permission to ¢ and re-
voked write permission from other leaders before ¢ begins its
operation. This is what prevents races among leaders in Mu.
We describe these mechanisms in more detail below.

Log Structure

The main data structure used by the algorithm is the consensus
log kept at each replica (Listing 1). The log consists of (1)
a minProposal number, representing the smallest proposal
number with which a leader may enter the accept phase on this
replica; (2) a first undecided offset (FUO), representing the

ZPaxos uses proposer and acceptor terms; instead, we use leader and
replica.



lowest log index which this replica believes to be undecided;
and (3) a sequence of slots—each slot is a (propNr,value)
tuple.

Listing 1: Log Structure

struct Log {
minProposal = 0,
FUO = 0,
slots[] = (0,L) for all slots

[ N O N

Algorithm Description

Each leader begins its propose call by constructing its con-
firmed followers set (Listing 2, lines 9-12). This step is
only necessary the first time a new leader invokes propose
or immediately after an abort. This step is done by sending
permission requests to all replicas and waiting for a majority
of acks. When a replica acks, it means that this replica has
granted write permission to this leader and revoked it from
other replicas. The leader then adds this replica to its con-
firmed followers set. During execution, if the leader ¢ fails to
write to one of its confirmed followers, because that follower
crashed or gave write access to another leader, ¢ aborts and,
if it still thinks it is the leader, it calls propose again.

After establishing its confirmed followers set, the leader
invokes the prepare phase. To do so, the leader reads the min-
Proposal from its confirmed followers (line 19) and chooses
a proposal number propNum which is larger than any that it
has read or used before. Then, the leader writes its proposal
number into minProposal for each of its confirmed follow-
ers. Recall that if this write fails at any follower, the leader
aborts. It is safe to overwrite a follower f’s minProposal in
line 22 because, if that write succeeds, then ¢ has not lost its
write permission since adding f to its confirmed followers set,
meaning no other leader wrote to f since then. To complete
its prepare phase, the leader reads the relevant log slot of all of
its confirmed followers and, as in Paxos, adopts either (a) the
value with the highest proposal number, if it read any non-_L
values, or (b) its own initial value, otherwise.

The leader ¢ then enters the accept phase, in which it tries
to commit its previously adopted value. To do so, ¢ writes
its adopted value to its confirmed followers. If these writes
succeed, then ¢ has succeeded in replicating its value. No new
value or minProposal number could have been written on any
of the confirmed followers in this case, because that would
have involved a loss of write permission for ¢. Since the
confirmed followers set constitutes a majority of the replicas,
this means that ¢’s replicated value now appears in the same
slot at a majority.

Finally, ¢ increments its own FUO to denote successfully
replicating a value in this new slot. If the replicated value
was £’s own proposed value, then it returns from the propose
call; otherwise it continues with the prepare phase for the new
FUO.

Listing 2: Basic Replication Algorithm of Mu

6 | Propose (myValue) :
7 done = false

8 If I just became leader or I just aborted:
9 For every process p in parallel:

10 Request permission from p

11 If p acks: add p to confirmedFollowers
12 Until this has been done for a majority
13 While not done:

14 Execute Prepare Phase

15 Execute Accept Phase

17 | Prepare Phase:

18 For every process p in confirmedFollowers:

19 Read minProposal from p’s log

20 Pick a new proposal number, propNum, higher
<~ than any minProposal seen so far

21 For every process p in confirmedFollowers:

2 Write propNum into LOG[p].minProposal

23 Read LOG[p].slots[myFUO]

24 Abort if any write fails

25 If all entries read were empty:

26 value = myValue

27 Else:

28 value = entry value with the largest

— proposal number of slots read

30 | Accept Phase:

31 For every process p in confirmedFollowers:
32 Write propNum,value to p in slot myFUO
33 Abort if any write fails

34 If value == myValue:

35 done = true

36 Locally increment myFUO

4.2 Extensions

The basic algorithm described so far is clear and concise, but
it also has downsides related to functionality and performance.
We now address these downsides with some extensions, all of
which are standard for Paxos-like algorithms; their correctness
is discussed in the Appendix.

Bringing stragglers up to date. In the basic algorithm, if a
replica r is not included in some leader’s confirmed followers
set, then its log will lag behind. If r later becomes leader,
it can catch up by proposing new values at its current FUO,
discovering previously accepted values, and re-committing
them. This is correct but inefficient. Even worse, if r never
becomes leader, then it will never recover the missing values.
We address this problem by introducing an update phase for
new leaders. After a replica becomes leader and establishes
its confirmed followers set, but before attempting to replicate
new values, the new leader (1) brings itself up to date with its
highest-FUO confirmed follower (Listing 3) and (2) brings
its followers up to date (Listing 4). This is done by copying
the contents of the more up-to-date log to the less up-to-date
log.



Listing 3: Optimization: Leader Catch Up

For every process p in confirmedFollowers
Read p’s FUO
Abort 1if any read fails

F = follower with max FUO

if F.FUO > myFUO:
Copy F.LOG[myFUO: F.FUO] into my log
myFUO = F.FUO
Abort 1f the read fails

® 9 U A W —

Listing 4: Optimization: Update Followers

For every process p in confirmed followers:
Copy myLog[p.FUO: myFUO] into p.LOG
p.FUO = myFUO
Abort if any write fails

S

Followers commit in background. In the basic algorithm,
followers do not know when a value is committed and thus
cannot replay the requests in the application. This is easily
fixed without additional communication. Since a leader will
not start replicating in an index i before it knows index i — 1
to be committed, followers can monitor their local logs and
commit all values up to (but excluding) the highest non-empty
log index. This is called commit piggybacking, since the
commit message is folded into the next replicated value. As
a result, followers replicate but do not commit the (i—1)-st
entry until either the i-th entry is proposed by the current
leader, or a new leader is elected and brings its followers up
to date, whichever happens first.

Omitting the prepare phase. Once a leader finds only
empty slots at a given index at all of its confirmed follow-
ers at line 23, then no higher index may contain an accepted
value at any confirmed follower; thus, the leader may omit
the prepare phase for higher indexes (until it aborts, after
which the prepare phase becomes necessary again). This opti-
mization concerns performance on the common path. With
this optimization, the cost of a Propose call becomes a single
RDMA write to a majority in the common case.

Growing confirmed followers. In the algorithm so far, the
confirmed followers set remains fixed after the leader initially
constructs it. This implies that processes outside the leader’s
confirmed followers set will miss updates, even if they are
alive and timely, and that the leader will abort even if one of
its followers crashes. To avoid this problem, we extend the
algorithm to allow the leader to grow its confirmed followers
set by briefly waiting for responses from all replicas during
its initial request for permission. The leader can also add
confirmed followers later, but must bring these replicas up
to date (using the mechanism described above in Bringing
stragglers up to date) before adding them to its set. When its

confirmed follower set is large, the leader cannot wait for its
RDMA reads and writes to complete at all of its confirmed
followers before continuing, since we require the algorithm
to continue operating despite the failure of a minority of the
replicas; instead, the leader waits for just a majority of the
replicas to complete.

Replayer. Followers continually monitor the log for new
entries. This creates a challenge: how to ensure that the fol-
lower does not read an incomplete entry that has not yet been
fully written by the leader. We adopt a standard approach: we
add an extra canary byte at the end of each log entry [50, 70].
Before issuing an RDMA Write to replicate a log entry, the
leader sets the entry’s canary byte to a non-zero value. The
follower first checks the canary and then the entry contents.
In theory, it is possible that the canary gets written before the
other contents under RDMA semantics. In practice, however,
NICs provide left-to-right semantics in certain cases (e.g., the
memory region is in the same NUMA domain as the NIC),
which ensures that the canary is written last. This assump-
tion is made by other RDMA systems [20, 21, 32, 50, 70].
Alternatively, we could store a checksum of the data in the
canary, and the follower could read the canary and wait for
the checksum to match the data.

S Background Plane

The background plane has two main roles: electing and moni-
toring the leader, and handling permission change requests.
In this section, we describe these mechanisms.

5.1 Leader Election

The leader election component of the background plane main-
tains an estimate of the current leader, which it continually
updates. The replication plane uses this estimate to determine
whether to execute as leader or follower.

Each replica independently and locally decides who it con-
siders to be leader. We opt for a simple rule: replica i decides
that j is leader if j is the replica with the lowest id, among
those that i considers to be alive.

To know whether a replica has failed, we employ a pull-
score mechanism, based on a local heartbeat counter. A
leader election thread continually increments its own counter
locally and uses RDMA Reads to read the counters (heart-
beats) of other replicas and check whether they have been
updated. It maintains a score for every other replica. If a
replica has updated its counter since the last time it was read,
we increment that replica’s score; otherwise, we decrement it.
The score is capped by configurable minimum and maximum
values, chosen experimentally to be 0 and 15, respectively.
Once a replica’s score drops below a failure threshold, we
consider it to have failed; if its score goes above a recovery



threshold, we consider it to be active and timely. To avoid
oscillation, we have different failure and recovery thresholds,
chosen experimentally to be 2 and 6, respectively, so as to
avoid false positives.

Large network delays. Mu employs two timeouts: a small
timeout in our detection algorithm (scoring), and a longer
timeout built into the RDMA connection mechanism. The
small timeout detects crashes quickly under common failures
(process crashes, host crashes) without false positives. The
longer RDMA timeout fires only under larger network delays
(connection breaks, counter-read failures). In theory, the
RDMA timeout could use exponential back-off to handle
unknown delay bounds. In practice, however, that is not
necessary, since we target datacenters with small delays.

Fate sharing. Because replication and leader election run
in independent threads, the replication thread could fail or be
delayed, while the leader election thread remains active and
timely. This scenario is problematic if it occurs on a leader,
as the leader cannot commit new entries, and no other leader
can be elected. To address thie problem, every X=10000
iterations, the leader election thread checks the replication
thread for activity; if the replication thread is stuck inside a
call to propose, the replication thread stops incrementing the
local counter, to allow a new leader to be elected.

5.2 Permission Management

The permission management module is used when changing
leaders. Each replica maintains the invariant that only one
replica at a time has write permission on its log. As explained
in Section 4, when a leader changes in Mu, the new leader
must request write permission from all the other replicas;
this is done through a simple RDMA Write to a permission
request array on the remote side. When a replica r sees a
permission request from a would-be leader ¢, r revokes write
access from the current holder, grants write access to £, and
sends an ack to /.

During the transition phase between leaders, it is possible
that several replicas think themselves to be leader, and thus
the permission request array may contain multiple entries. A
permission management thread monitors and handles permis-
sion change requests one by one in order of requester id by
spinning on the local permission request array.

RDMA provides multiple mechanisms to grant and revoke
write access. The first mechanism is to register the consen-
sus log as multiple, completely overlapping RDMA memory
regions (MRs), one per remote replica. In order to grant or
revoke access from replica r, it suffices to re-register the MR
corresponding to r with different access flags. The second
mechanism is to revoke r’s write access by moving r’s QP
to a non-operational state (e.g., init); granting r write access
is then done by moving r’s QP back to the ready-to-receive
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Figure 2: Performance comparison of different permission
switching mechanisms. QP Flags: change the access flags
on a QP; OP Restart: cycle a QP through the reset, init, RTR
and RTS states; MR Rereg: re-register an RDMA MR with
different access flags.

(RTR) state. The third mechanism is to grant or revoke access
from replica r by changing the access flags on r’s QP.

We compare the performance of these three mechanisms
in Figure 2, as a function of the log size (which is the same
as the RDMA MR size). We observe that the time to re-
register an RDMA MR grows with the size of the MR, and
can reach values close to 100ms for a log size of 4GB. On
the other hand, the time to change a QPs access flags or
cycle it through different states is independent of the MR
size, with the former being roughly 10 times faster than the
latter. However, changing a QPs access flags while RDMA
operations to that QP are in flight sometimes causes the QP
to go into an error state. Therefore, in Mu we use a fast-
slow path approach: we first optimistically try to change
permissions using the faster QP access flag method and, if
that leads to an error, switch to the slower, but robust, QP
state method.

5.3 Log Recycling

Conceptually, a log is an infinite data structure but in practice
we need to implement a circular log with limited memory.
This is done as follows. Each follower has a local log head
variable, pointing to the first entry not yet executed in its copy
of the application. The replayer thread advances the log head
each time it executes an entry in the application. Periodi-
cally, the leader’s background plane reads the log heads of
all followers and computes minHead, the minimum of all log
head pointers read from the followers. Log entries up to the
minHead can be reused. Before these entries can be reused,
they must be zeroed out to ensure the correct function of the
canary byte mechanism. Thus, the leader zeroes all follower
logs after the leader’s first undecided offset and before min-
Head, using an RDMA Write per follower. Note that this
means that a new leader must first execute all leader change



actions, ensuring that its first undecided offset is higher than
all followers’ first undecided offsets, before it can recycle
entries. To facilitate the implementation, we ensure that the
log is never completely full.

5.4 Adding and Removing Replicas

Mu adopts a standard method to add or remove replicas: use
consensus itself to inform replicas about the change [39].
More precisely, there is a special log entry that indicates that
replicas have been removed or added. Removing replicas
is easy: once a replica sees it has been removed, it stops
executing, while other replicas subsequently ignore any com-
munication with it. Adding replicas is more complicated
because it requires copying the state of an existing replica
into the new one. To do that, Mu uses the standard approach of
check-pointing state; we do so from one of the followers [70].

6 Implementation

Mu is implemented in 7157 lines of C++17 code (CLOC [18]).
It uses the ibverbs library for RDMA over Infiniband. We
implement all features and extensions in sections 4 and 5,
except adding/removing replicas and fate sharing. Moreover,
we implement some standard RDMA optimizations to reduce
latency. RDMA Writes and Sends with payloads below a
device-specific limit (256 bytes in our setup) are inlined: their
payload is written directly to their work request. We pin
threads to cores in the NUMA node of the NIC.

Our implementation is modular. We create several modules
on top of the ibverbs library, which we expose as Conan [16]
packages. Our modules deal with common practical problems
in RDMA-based distributed computing (e.g., writing to all
and waiting for a majority, gracefully handling broken RDMA
connections etc.). Each abstraction is independently reusable.
Our implementation also provides a QP exchange layer, mak-
ing it straightforward to create, manage, and communicate
QP information.

7 Evaluation

Our goal is to evaluate whether Mu indeed provides viable
replication for microsecond computing. We aim to answer
the following questions in our evaluation:

e What is the replication latency of Mu? How does it
change with payload size and the application being repli-
cated? How does Mu compare to other solutions?

¢ What is Mu’s fail-over time?

* What is the throughput of Mu?

Table 1: Hardware details of machines.

CPU 2x Intel Xeon E5-2640 v4 @ 2.40GHz
Memory 2x 128GiB
NIC Mellanox Connect-X 4
Links 100 Gbps Infiniband
Switch Mellanox MSB7700 EDR 100 Gbps
0S Ubuntu 18.04.4 LTS
Kernel 4.15.0-72-generic

RDMA Driver Mellanox OFED 4.7-3.2.9.0

‘We evaluate Mu on a 4-node cluster, the details of which
are given in Table 1. All experiments show 3-way replication,
which accounts for most real deployments [27].

We compare against APUS [70], DARE [60], and Her-
mes [35] where possible. The most recent system, Hov-
ercRaft [37], also provides SMR but its latency at 30—60
microseconds is substantially higher than the other systems,
so we do not consider it further. For a fair comparison, we dis-
able APUS’s persistence to stable storage, since Mu, DARE,
and Hermes all provide only in-memory replication.

We measure time using the POSIX clock_gettime func-
tion, with the CLOCK_MONOTONIC parameter. In our deploy-
ment, the resolution and overhead of clock_gettime is
around 16—20ns [19]. In our figures, we show bars labeled
with the median latency, with error bars showing 99-percentile
and 1-percentile latencies. These statistics are computed over
1 million samples with a payload of 64-bytes each, unless
otherwise stated.

Applications. We use Mu to replicate several microsecond
apps: three key-value stores, as well as an order matching
engine for a financial exchange.

The key-value stores that we replicate with Mu are Re-
dis [65], Memcached [53], and HERD [32]. For the first
two, the client is assumed to be on a different cluster, and
connects to the servers over TCP. In contrast, HERD is a
microsecond-scale RDMA-based key-value store. We repli-
cate it over RDMA and use it as an example of a microsecond
application. Integration with the three applications requires
183, 228, and 196 additional lines of code, respectively.

The other app is in the context of financial exchanges, in
which parties unknown to each other submit buy and sell
orders of stocks, commodities, derivatives, etc. At the heart
of a financial exchange is an order matching engine [4], such
as Liquibook [49], which is responsible for matching the
buy and sell orders of the parties. We use Mu to replicate
Liquibook. Liquibook’s inputs are buy and sell orders. We
created an unreplicated client-server version of Liquibook
using eRPC [31], and then replicated this system using Mu.
The eRPC integration and the replication required 611 lines
of code in total.
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Figure 3: Replication latency of Mu integrated into different
applications [Memcached (mcd), Liquibook (LiQ), Redis
(rds), HERD] and payload sizes. Bar height and numerical
labels show median latency; error bars show 99-percentile
and 1-percentile latencies.

7.1 Common-case Replication Latency

We begin by testing the overhead that Mu introduces in nor-
mal execution, when there is no leader failure. For these
experiments, we first measure raw replication latency and
compare Mu to other replication systems, as well as to itself
under different payloads and attached applications.

Effect of Payload and Application on Latency We first
study Mu in isolation, to understand its replication latency
under different conditions.

We evaluate the raw replication latency of Mu in two set-
tings: standalone and attached. In the standalone setting,
Mu runs just the replication layer with no application and
no client; the leader simply generates a random payload and
invokes propose () in a tight loop. In the attached setting,
Mu is integrated into one of a number of applications; the
application client produces a payload and invokes propose ()
on the leader. These settings could impact latency differently,
Mu and the application could interfere with each other.

Figure 3 compares standalone to attached runs as we vary
payload size. Liquibook and Herd allow only one payload
size (32 and 50 bytes), so they have only one bar each in the
graph, while Redis and Memcached have many bars.

We see that the standalone version slightly outperforms the
attached runs, for all tested applications and payload sizes.
This is due to processor cache effects; in standalone runs,
replication state, such as log and queue pairs, are always in
cache, and the requests themselves need not be fetched from
memory. This is not the case when attaching to an appli-
cation. Additionally, in attached runs, the OS can migrate
application threads (even if Mu’s threads are pinned), lead-
ing to additional cache effects which can be detrimental to
performance.
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Mu supports two ways of attaching to an application, which
have different processor cache sharing effects. The direct
mode uses the same thread to run both the application and the
replication, and so they share L1 and L2 caches. In contrast,
the handover method places the application thread on a sepa-
rate core from the replication thread, thus avoiding sharing
L1 or L2 caches. Because the application must communicate
the request to the replication thread, the handover method
requires a cache coherence miss per replicated request. This
method consistently adds ~400ns over the standalone method.
For applications with large requests, this overhead might be
preferable to the one caused by the direct method, where
replication and application compete for CPU time. For lighter
weight applications, the direct method is preferable. In our
experiments, we measure both methods and show the best
method for each application: Liquibook and HERD use the
direct method, while Redis and Memcached use the handover
method.

We see that for payloads under 256 bytes, standalone la-
tency remains constant despite increasing payload size. This
is because we can RDMA-inline requests for these payload
sizes, so the amount of work needed to send a request remains
practically the same. At a payload of 256 bytes, the NIC must
do a DMA itself to fetch the value to be sent, which incurs
a gradual increase in overhead as the payload size increases.
However, we see that Mu still performs well even at larger
payloads quite well; at 512B, the median latency is only 35%
higher than the latency of inlined payloads.

Comparing Mu to Other Replication Systems. We now
study the replication time of Mu compared to other replica-
tion systems, for various applications. This comparison is not
possible for every pair of replication system and application,
because some replication systems are incompatible with cer-
tain applications. In particular, APUS works only with socket-
based applications (Memcached and Redis). In DARE and
Hermes, the replication protocol is bolted onto a key-value
store, so we cannot attach it to the apps we consider—instead,
we report their performance with their key-value stores.

Figure 4 shows the replication latencies of these systems.
Mu’s median latency outperforms all competitors by at least
2.7x, outperforming APUS on the same applications by 4 x.
Furthermore, Mu has smaller tail variation, with a difference
of at most 500ns between the 1-percentile and 99-percentile
latency. In contrast, Hermes and DARE both varied by more
than 4us across our experiments, with APUS exhibiting 99-
percentile executions up to 20us slower (cut off in the figure).
We attribute this higher variance to two factors: the need to
involve the CPU of many replicas in the critical path (Hermes
and APUS), and sequentializing several RDMA operations
so that their variance aggregates (DARE and APUS).
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Figure 4: Replication latency of Mu compared with other
replication solutions: DARE, Hermes, Apus on memcached
(mcd), and Apus on Redis (rds). Bar height and numerical
labels show median latency; error bars show 99-percentile
and 1-percentile latencies.

7.2 End-to-End Application Latency

Figure 5 shows the end-to-end latency of our tested applica-
tions, which includes the latency incurred by the application
and by replication (if enabled). We show the result in three
graphs corresponding to three classes of applications.

In all three graphs, we first focus on the unreplicated la-
tency of these applications, so as to characterize the workload
distribution. Subsequently, we show the latency of the same
applications under replication with Mu and with competing
systems, so as to exhibit the overhead of replication.

The leftmost graph is for Liquibook. The left bar is the
unreplicated version, and the right bar is replicated with Mu.
We can see that the median latency of Liquibook without
replication is 4.08us, and therefore the overhead of replica-
tion is around 35%. There is a large variance in latency, even
in the unreplicated system. This variance comes from the
client-server communication of Liquibook, which is based
on eRPC. This variance changes little with replication. The
other replication systems cannot replicate Liquibook (as noted
before, DARE and Hermes are bolted onto their app, and
APUS can replicate only socket-based applications). How-
ever, extrapolating their latency from Figure 4, they would
add unacceptable overheads—over 100% overhead for the
best alternative (Hermes).

The middle graph in Figure 5 shows the client-to-client
latency of replicated and unreplicated microsecond-scale key-
value stores. The first bars in orange show HERD unreplicated
and HERD replicated with Mu. The green bar shows DARE’s
key-value store with its own replication system. The median
unreplicated latency of HERD is 2.25us, and Mu adds 1.34us.
While this is a significant overhead (59% of the original la-
tency), this overhead is lower than any alternative. We do not
show Hermes in this graph since Hermes does not allow for a
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separate client, and only generates its requests on the servers
themselves. HERD replicated with Mu is the best option for
areplicated key-value store, with overall median latency 2 x
lower than the next best option, and a much lower variance.

The rightmost graph in Figure 5 shows the replication of
the traditional key-value stores, Memcached and Redis. The
two leftmost bars show the client-to-client latencies of unrepli-
cated Memcached and Redis, respectively. The four rightmost
bars show the client-to-client latencies under replication with
Mu and APUS. Note that the scale starts at 100us to show
better precision.

Mu incurs an overhead of around 1.5us to replicate these
apps, which is about Sus faster than replicating with APUS.
For these TCP/IP key-value stores, client-to-client latency
under replication with Mu is around 5% lower than client-
to-client latency under replication with APUS. With a faster
client-to-app network, this difference would be bigger. In
either case, Mu provides fault-tolerant replication with essen-
tially no overhead for these applications.

Tail latency. From Figures 4 and 5, we see that applications
replicated with DARE and APUS show large tail latencies
and a skew towards lower values (the median latency is closer
to the 1-st percentile than the 99-th percentile). We believe
this tail latency occurs because DARE and APUS must handle
several successive RDMA events on their critical path, where
each event is susceptible to delay, thereby inflating the tail.
Because Mu involves fewer RDMA events, its tail is smaller.

Figure 5 shows an even greater tail for the end-to-end la-
tency of replicated applications. Liquibook has a large tail
even in its unreplicated version, which we believe is due to its
client-server communication, since the replication of Liqui-
book with Mu has a small tail (Figure 4). For Memcached
and Redis, additional sources of tail latency are cache effects
and thread migration, as discussed in Section 7.1. This ef-
fect is particularly pronounced when replicating with APUS
(third panel of Figure 5), because the above contributors are
compounded.

7.3 Fail-Over Time

We now study Mu’s fail-over time. In these experiments, we
run the system and subsequently introduce a leader failure.
To get a thorough understanding of the fail-over time, we
repeatedly introduce leader failures (1000 times) and plot a
histogram of the fail-over times we observe. We also time
the latency of permission switching, which corresponds to
the time to change leaders after a failure is detected. The
detection time is the difference between the total fail-over
time and the permission switch time.

We inject failures by delaying the leader, thus making it
become temporarily unresponsive. This causes other replicas
to observe that the leader’s heartbeat has stopped changing,
and thus detect a failure.
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Figure 6: Fail-over time distribution.

Figure 6 shows the results. We first note that the total fail-
over time is quite low; the median fail-over time is 873us and
the 99-percentile fail-over time is 947us, still below a mil-
lisecond. This represents an order of magnitude improvement
over the best competitor at ~10 ms (HovercRaft [37]).

The time to switch permissions constitutes about 30% of
the total fail-over time, with mean latency at 244us, and 99-
percentile at 294us. Recall that this measurement in fact
encompasses two changes of permission at each replica; one
to revoke write permission from the old leader and one to
grant it to the new leader. Thus, improvements in the RDMA
permission change protocol would be doubly amplified in
Mu’s fail-over time.

The rest of the fail-over time is attributed to failure de-
tection (=600us). Although our pull-score mechanism does
not rely on network variance, there is still variance intro-
duced by process scheduling (e.g., in rare cases, the leader
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process is descheduled by the OS for tens of microseconds)—
this is what prevented us from using smaller timeouts/scores
and it is an area under active investigation for microsecond
apps [8,57,62,64].

7.4 Throughput

While Mu optimizes for low latency, in this section we eval-
uate the throughput of Mu. In our experiment, we run a
standalone microbenchmark (not attached to an application).
We increase throughput in two ways: by batching requests
together before replicating, and by allowing multiple out-
standing requests at a time. In each experiment, we vary the
maximum number of outstanding requests allowed at a time,
and the batch sizes.

Figure 7 shows the results in a latency-throughput graph.
Each line represents a different max number of outstanding
requests, and each data point represents a different batch size.
As before, we use 64-byte requests.

We see that Mu reaches high throughput with this simple
technique. At its highest point, the throughput reaches 47
Ops/us with a batch size of 128 and 8 concurrent outstanding
requests, with per-operation median latency at 17us. Since the
leader is sending requests to two other replicas, this translates
to a throughput of 48Gbps, around half of the NIC bandwidth.

Latency and throughput both increase as the batch size
increases. Median latency is also higher with more concurrent
outstanding requests. However, the latency increases slowly,
remaining at under 10us even with a batch size of 64 and 8
outstanding requests.

There is a throughput wall at around 45 Ops/us, with la-
tency rising sharply. This can be traced to the transition
between the client requests and the replication protocol at the
leader replica. The leader must copy the request it receives
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Figure 7: Latency vs throughput. Each line represents a
different number of allowed concurrent outstanding requests.
Each point on the lines represents a different batch size. Batch
size shown as annotation close to each point.

into a memory region prepared for its RDMA write. This
memory operation becomes a bottleneck. We could optimize
throughput further by allowing direct contact between the
client and the follower replicas. However, that may not be
useful as the application itself might need some of the network
bandwidth for its own operation, so the replication protocol
should not saturate the network.

Increasing the number of outstanding requests while keep-
ing the batch size constant substantially increases throughput
at a small latency cost. The advantage of more outstanding
requests is largest with two concurrent requests over one. Re-
gardless of batch size, this allows substantially higher through-
put at a negligible latency increase: allowing two outstanding
requests instead of one increases latency by at most 400ns for
up to a batch size of 32, and only 1.1us at a batch size of 128,
while increasing throughput by 20-50% depending on batch
size. This effect grows less pronounced with higher numbers
of outstanding requests.

Similarly, increasing batch size increases throughput with a
low latency hit for small batch sizes, but the latency hit grows
for larger batches. Notably, using 2 outstanding requests and
a batch size of 32 keeps the median latency at only 3.4us, but
achieves throughput of nearly 30 Ops/gs.

8 Related Work

SMR in General. State machine replication is a common
technique for building fault-tolerant, highly available ser-
vices [39, 67]. Many practical SMR protocols have been
designed, addressing simplicity [7,9,27,43,55], cost [38,42],
and harsher failure assumptions [10, 11,23, 38]. In the orig-
inal scheme, which we follow, the order of all operations is
agreed upon using consensus instances. At a high-level, our
Mu protocol resembles the classical Paxos algorithm [39],
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but there are some important differences. In particular, we
leverage RDMA’s ability to grant and revoke access permis-
sions to ensure that two leader replicas cannot both write a
value without recognizing each other’s presence. This allows
us to optimize out participation from the follower replicas,
leading to better performance. Furthermore, these dynamic
permissions guide our unique leader changing mechanism.

Several implementations of Multi-Paxos avoid repeating
Paxos’s prepare phase for every consensus instance, as long as
the same leader remains [12,40, 52]. Piggybacking a commit
message onto the next replicated request, as is done in Mu, is
also used as a latency-hiding mechanism in [52,70].

Aguilera et al. [1] suggested the use of local heartbeats in a
leader election algorithm designed for a theoretical message-
and-memory model, in an approach similar to our pull-score
mechanism. However, no system has so far implemented such
local heartbeats for leader election in RDMA.

Single round-trip replication has been achieved in several
previous works using two-sided sends and receives [22, 35,
36,38,42]. Theoretical work has shown that single-shot con-
sensus can be achieved in a single one-sided round trip [2].
However, Mu is the first system to put that idea to work and
implement one-sided single round trip SMR.

Alternative reliable replication schemes totally order only
non-conflicting operations [15,26,35,41,58,59,68]. These
schemes require opening the service being replicated to iden-
tify which operations commute. In contrast, we designed Mu
assuming the replicated service is a black box. If desired,
several parallel instances of Mu could be used to replicate
concurrent operations that commute. This could be used to
increase throughput in specific applications.

It is also important to notice that we consider “crash” fail-
ures. In particular, we assume nodes cannot behave in a
Byzantine manner [10, 14, 38].

Improving the Stack Underlying SMR. While we pro-
pose a new SMR algorithm adapted to RDMA in order to
optimize latency, other systems keep a classical algorithm but
improve the underlying communication stack [31,47]. With
this approach, somewhat orthogonal to ours, the best reported
replication latency is 5.5 us [31], almost 5x slower than Mu.
HovercRaft [37] shifts the SMR from the application layer to
the transport layer to avoid IO and CPU bottlenecks on the
leader replica. However, their request latency is more than
an order of magnitude more than that of Mu, and they do not
optimize fail-over time.

Some SMR systems leverage recent technologies such as
programmable switches and NICs [28, 30, 48, 51]. How-
ever, programmable networks are not as widely available
as RDMA, which has been commoditized with technologies
such as RoCE and iWARP.

Other RDMA Applications. More generally, RDMA has
recently been the focus of many data center system designs,



including key-value stores [20,32] and transactions [34,71].
Kalia et al. provide guidelines on the best ways to use RDMA
to enhance performance [33]. Many of their suggested opti-
mizations are employed by Mu. Kalia et al. also advocate the
use of two-sided RDMA verbs (Sends/Receives) instead of
RDMA Reads in situations in which a single RDMA Read
might not suffice. However, this does not apply to Mu, since
we know a priori which memory location should be read, and
we rarely have to follow up with another read.

Failure detection. Failure detection is typically done using
timeouts. Conventional wisdom is that timeouts must be large,
in the seconds [46], though some systems report timeouts as
low as 10 milliseconds [37]. It is possible to improve detec-
tion time using inside information [44, 46] or fine-grained
reporting [45], which requires changes to apps and/or the in-
frastructure. This is orthogonal to our score-based mechanism
and could be used to further improve Mu.

Similar RDMA-based Algorithms

A few SMR systems have recently been designed for
RDMA [29, 60, 70], but used RDMA differently from Mu.

DARE [60] is the first RDMA-based SMR system. Similarly
to Mu, DARE uses only one-sided RDMA verbs executed by
the leader to replicate the log in normal execution, and makes
use of permissions when changing leaders. However, unlike
Mu, DARE requires updating the tail pointer of each replica’s
log in a separate RDMA Write from the one that copies over
the new value, which leads to more round-trips for replication.
DARE’s use of permissions does not lead to a light-weight
mechanism to block concurrent leaders, as in Mu. DARE has
a heavier leader election protocol than Mu’s, similar to that
of RAFT, in which care is taken to ensure that at most one
process considers itself leader at any point in time.

APUS [70] improves upon DARE’s throughput. However,
APUS requires active participation from the follower replicas
during the replication protocol, resulting in higher latencies.
Thus, it does not achieve the one-sided common-case com-
munication of Mu. Similarly to DARE and Mu, APUS uses
transitions through queue pair states to allow or deny RDMA
access. However, like DARE, it does not use this mechanism
to achieve a single one-sided communication round.

Derecho [29] provides durable and non-durable SMR, by
combining a data movement protocol (SMC or RDMC) with
a shared-state table primitive (SST) for determining when it is
safe to deliver messages. This design yields high throughput
but also high latency: a minimum of 10us for non-durable
SMR [29, Figure 12(b)] and more for durable SMR. This
latency results from a node delaying the delivery of a message
until all nodes have confirmed its receipt using the SST, which
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takes additional RDMA communication steps compared to
Mu. It would be interesting to explore how Mu’s protocol
could improve Derecho.

Aguilera et al [2] present a one-shot consensus algorithm
based on RDMA that solves consensus in a single one-sided
communication round in the common case. They model
RDMA’s one-sided verbs as shared memory primitives which
operate only if granted appropriate permissions. Their one-
round communication complexity relies on changing permis-
sions, an idea we use in Mu. While that work focuses on
a theoretical construction, Mu is a fully fledged SMR sys-
tem that needs many other mechanisms, such as logging,
managing state, coordinating instances, recycling instances,
handling clients, and permission management. Because these
mechanisms are non-trivial, Mu requires its own proof of cor-
rectness (see Appendix). Mu also provides an implementation
and experimental evaluation not found in [2].

9 Conclusion

Computers have progressed from batch-processing systems
that operate at the time scale of minutes, to progressively
lower latencies in the seconds, then milliseconds, and now
we are in the microsecond revolution. Work has already
started in this space at various layers of the computing stack.
Our contribution fits in this context, by providing generic
microsecond replication for microsecond apps.

Mu is a state machine replication system that can replicate
microsecond applications with little overhead. This involved
two goals: achieving low latency on the common path, and
minimizing fail-over time to maintain high availability. To
reach these goals, Mu relies on (a) RDMA permissions to
replicate a request with a single one-sided operation, as well
as (b) a failure detection mechanism that does not incur false
positives due to common network delays—a property that
permits Mu to use aggressively small timeout values.
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A Appendix: Proof of Correctness

A.1 Pseudocode of the Basic Version

Propose (myValue) :

1
2 done = false
3 If I just became leader or I just aborted
4 For every process p in parallel:
5 Request permission from p
6 If p acks, add p to

< confirmedFollowers
7 Until this has been done for a

— majority of processes

8 While not done:
9 Execute Prepare Phase
10 Execute Accept Phase
11 | struct Log {
12 log[] = L for all slots
13 minProposal = 0
14 FUO = 0 }

16 | Prepare Phase:

17 Pick a new proposal number, propNum, that
< is higher than any seen so far

18 For every process p in confirmedFollowers:

19 Read minProposal from p’s log

20 Abort if any read fails

21 If propNum < some minProposal read, abort

2 For every process p in confirmedFollowers:

23 Write propNum into LOG[p].minProposal

24 Read LOG[p].slots[myFUO]

25 Abort 1if any write or read fails

26 if all entries read were empty:

27 value = myValue

28 else:

29 value = entry value with the largest

— proposal number of slots read

31 | Accept Phase:

32 For every process p in confirmedFollowers:

33 Write value,propNum to p in slot myFUO
—

34 Abort if any write fails

35 If value == myValue:

36 done = true

37 Locally increment myFUO

Note that write permission can only be granted at most
once per request; it is impossible to send a single permission
request, be granted permission, lose permission and then
regain it without issuing a new permission request. This is
the way that permission requests work in our implementation,
and is key for the correctness argument to go through; in
particular, it is important that a leader cannot lose permission
between two of its writes to the same follower without being
aware that it lost permission.

A.2 Definitions

Definition 1 (Quorum). A quorum is any set that contains at
least a majority of the processes.



Definition 2 (Decided Value). We say that a value v is de-
cided at index i if there exists a quorum Q such that for every
process p € Q, p’s log contains v at index i.

Definition 3 (Committed Value). We say that a value v is
committed at process p at index i if p’s log contains v at index
i, such that i is less than p’s FUO.

A.3 Invariants
A.3.1 Preliminary

Invariant A.1 (Committed implies decided). If a value v is
commiitted at some process p at index i, then v is decided at
index i.

Proof. Assume v is committed at some process p at index
i. Then p must have incremented its FUO past i at line 37,
therefore p must have written v at a majority at line 33. [

Invariant A.2 (Values are never erased). If a log slot contains
a value at time t, that log slot will always contain some value
after time t.

Proof. By construction of the algorithm, values are never
erased (note: values can be overwritten, but only with a non-
L value). O

A.3.2 Validity

Invariant A.3. If a log slot contains a value v # L, then v is
the input of some process.

Proof. Assume the contrary and let 7 be the earliest time when
some log slot (call it L) contained a non-input value (call it
v). In order for L to contain v, some process p must have
written v into L at line 33. Thus, either v was the input value
of p (which would lead to a contradiction), or p adopted v at
line 29, after reading it from some log slot L at line 24. Thus,
L’ must have contained v earlier than ¢, a contradiction of our
choice of 7. U

Theorem A.4 (Validity). If a value v is committed at some
process, then v was the input value of some process.

Proof. Follows immediately from Invariant A.3 and the defi-
nition of being committed. O

A.3.3 Agreement

Invariant A.5 (Solo detection). If a process p writes to a
process q in line 23 or in line 33, then no other process r
wrote to q since p added q to its confirmed followers set.

Proof. Assume the contrary: p added ¢ to its confirmed fol-
lowers set at time o and wrote to g at time t, > ty; r # p wrote
to g at time #1,fy < t; < tp. Then:
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1. r had write permission on g at #;.
2. p had write permission on g at ;.

3. (From (1) and (2)) p must have obtained write permis-
sion on ¢ between ¢ and #,. But this is impossible, since
p added g to its confirmed followers set at 7y < ¢; and
thus p must have obtained permission on g before #9. By
the algorithm, p did not request permission on g again
since obtaining it, and by the way permission requests
work, permission is granted at most once per request.
We have reached a contradiction. O

Invariant A.6. If some process p1 successfully writes value
v1 and proposal number b to its confirmed followers in slot i
at line 33, then any process p; entering the accept phase with
proposal number by > by for slot i will do so with value v;.

Proof. Assume the contrary: some process enters the accept
phase for slot i with a proposal number larger than by, with
a value vy # vy. Let p; be the first such process to enter the
accept phase.

Let C; (resp. () be the confirmed followers set of p
(resp. p2). Since C; and C, are both quorums, they must
intersect in at least one process, call it g. Since ¢ is in the
confirmed followers set of both p; and p», both must have
read its minProposal (line 19), written its minProposal with
their own proposal value (line 23) and read its ith log slot
(line 24). Furthermore, p; must have written its new value
into that slot (line 33). Note that since p; successfully wrote
value v| on g, by Invariant A.5, p, could not have written on g
between the time at which p; obtained its permission on it and
the time of p;’s write on ¢’s ith slot. Thus, p; either executed
both of its writes on g before p; obtained permissions on
g, or after p; wrote its value in ¢’s ith slot. If p, executed
its writes before py, then p; must have seen p;’s proposal
number when reading ¢’s minProposal in line 19 (since p;
obtains permissions before executing this line). Thus, p;
would have aborted its attempt and chosen a higher proposal
number, contradicting the assumption that b; < b;.

Thus, p» must have executed its first write on g after p;
executed its write of vy in ¢’s log. Since p,’s read of ¢’s slot
happens after its first write (in line 24), this read must have
happened after p;’s write, and therefore p, saw v;,b; in g’s
ith slot. By assumption, p; did not adopt v;. By line 29, this
means p; read v, with a higher proposal number than b; from
some other process in Cy. This contradicts the assumption that
P> was the first process to enter the accept phase with a value
other than v; and a proposal number higher than 5. The figure
below illustrates the timings of events in the execution. [

Theorem A.7 (Agreement). If v is committed at p; at index
i and vy is committed at p; at index i, then vi = v.

Proof. In order for v; (resp. v2) to be committed at p; (resp.
p2) atindex i, p; (resp. p2) must have incremented its FUO



past i and thus must have successfully written vy (resp. vo)
to its confirmed follower set at line 33. Let by (resp. by) be
the proposal number p; (resp. p») used at line 33. Assume
without loss of generality that by < b,. Then, by Invariant A.6,
p> must have entered its accept phase with value v; and thus
must have written v; to its confirmed followers at line 33.
Therefore, vi = vs. O

A.3.4 Termination

Invariant A.8 (Termination implies commitment.). If a pro-
cess p calls propose with value v and returns from the propose
call, then v is committed at p.

Proof. Follows from the algorithm: p returns from the pro-
pose call only after it sees done to be true at line 8; for this
to happen, p must set done to true at line 36 and increment
its FUO at line 37. In order for p to set done to true, p must
have successfully written some value val to its confirmed
follower set at line 33 and val must be equal to v (check at
line 35). Thus, when p increments its FUO at line 37, v
becomes committed at p. O

Invariant A.9 (Weak Termination). If a correct process p
invokes Propose and does not abort, then p eventually returns
from the call.

Proof. The algorithm does not have any blocking steps or
goto statements, and has only one unbounded loop at line 8.
Thus, we show that p will eventually exit the loop at line 8.

Let ¢ be the time immediately after p finishes constructing
its confirmed followers set (lines 4—7). Let i be the highest
index such that one of p’s confirmed followers contains a
value in its log at index 7 at time . Given that p does not
abort, it must be that p does not lose write permission on any
of its confirmed followers and thus has write permission on
a quorum for the duration of its call. Thus, after time ¢ and
until the end of p’s call, no process is able to write any new
value at any of p’s confirmed followers [*].

Since p never aborts, it will repeatedly execute the accept
phase and increment its FUO at line 37 until p’s FUO is larger
than i. During its following prepare phase, p will find all slots
to be empty (due to [x]) and adopt its own value v at line 27.
Since p does not abort, p must succeed in writing v to its
confirmed followers at line 33 and set done to true in line 36.
Thus, p eventually exits the loop at line 8 and returns. O

Theorem A.10 (Termination). If eventually there is a unique
non-faulty leader; then eventually every Propose call returns.

Proof. We show that eventually p does not abort from any
Propose call and thus, by Invariant A.9, eventually p returns
from every Propose call.

Consider a time ¢ such that (1) no processes crash after ¢
and (2) a unique process p considers itself leader forever after
t.
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Furthermore, by Invariant A.9, by some time ¢’ > ¢ all
correct processes will return or abort from any Propose call
they started before ¢; no process apart from p will call Propose
again after ¢’ since p is the unique leader.

Thus, in any propose call p starts after #/, p will obtain
permission from a quorum in lines 4-7 and will never lose any
permissions (since no other process is requesting permissions).
Thus, all of p’s reads and writes will succeed, so p will not
abort at lines 20, 25, or 34.

Furthermore, since no process invokes Propose after ¢/, the
minProposals of p confirmed followers do not change after
this time. Thus, by repeatedly increasing its minProposal at
line 17, p will eventually have the highest proposal number
among its confirmed followers, so p will not abort at line 21.

Therefore, by Invariant A.9, p will eventually return from
every Propose call. O

We consider a notion of eventual synchrony, whereby after
some unknown global stabilization time, all processes become
timely. If this is the case, then Mu’s leader election mecha-
nism ensures that eventually, a single correct leader is elected
forever. This leader is the replica with the lowest id that did
not crash: after the global stabilization point, this replica
would be timely, and therefore would not miss a heartbeat.
All other replicas would see its heartbeats increasing forever,
and elect it as their leader. This guarantees that our algorithm
terminates under this eventual synchrony condition.

A.4 Optimizations & Additions
A4.1 New Leader Catch-Up

In the basic version of the algorithm described so far, it is
possible for a new leader to miss decided entries from its log
(e.g., if the new leader was not part of the previous leader’s
confirmed followers). The new leader can only catch up by
attempting to propose new values at its current FUO, discov-
ering previously accepted values, and re-committing them.
This is correct but inefficient.

We describe an extension that allows a new leader ¢ to
catch up faster: after constructing its confirmed followers
set (lines 4-7), £ can read the FUO of each of its confirmed
followers, determine the follower f with the highest FUO,
and bring its own log and FUO up to date with f. This is
described in the pseudocode below:

Listing 5: Optimization: Leader Catch Up

1 For every process p in confirmedFollowers
2 Read p’s FUO

3 Abort if any read fails

4 F = follower with max FUO

5 if F.FUO > my_FUO:

6 Copy F.LOG[my_FUO: F.FUO] into my log
7 myFUO = F.FUO

8 Abort if any read fails




We defer our correctness argument for this extension to
Section A.4.2.

A.4.2 Update Followers

While the previous extension allows a new leader to catch up
in case it does not have the latest committed values, followers’
logs may still be left behind (e.g., for those followers that
were not part of the leader’s confirmed followers).

As is standard for practical Paxos implementations, we
describe a mechanism for followers’ logs to be updated so
that they contain all committed entries that the leader is aware
of. After a new leader ¢ updates its own log as described in
Algorithm 5, it also updates its confirmed followers’ logs and
FUOs:

Listing 6: Optimization: Update Followers

1 For every process p in confirmed followers
—

2 Copy myLog[p.FUO: my_FUO] into p.LOG

3 p.FUO = my_FUO

4 Abort 1if any write fails

We now argue the correctness of the update mechanisms in
this and the preceding subsections. These approaches clearly
do not violate termination. We now show that they preserve
agreement and validity.

Validity. We extend the proof of Invariant A.3 to also cover
Algorithms 5 and 6; the proof of Theorem A.4 remains un-
changed.

Assume by contradiction that some log slot L does not
satisfy Invariant A.3. Without loss of generality, assume that
L is the first log slot in the execution which stops satisfying
Invariant A.3. In order for L to contain v, either (i) some
process g wrote v into L at line 33, or (ii) v was copied into L
using Algorithm 5 or 6. In case (i), either v was ¢’s input value
(a contradiction), or g adopted v at line 29 after reading it from
some log slot L’ # L. In this case, L' must have contained v
before L did, a contradiction of our choice of L. In case (ii),
some log slot L” must have contained v before L did, again a
contradiction. O

Agreement. We extend the proof of A.7 to also cover Algo-
rithms 5 and 6. Let r be the earliest time when agreement is
broken; i.e., t is the earliest time such that, by time 7, some
process pi has committed v at i and some process p; has
committed vy # vy at i. We can assume without loss of gener-
ality that p; commits vy at#; = and p, commits v, atfp < t1.
‘We now consider three cases:

1. Both p; and py commit normally by incrementing their
FUO at line 37. Then the proof of A.7 applies to p; and

p2-

2. pp commits normally by incrementing its FUO at line 37,
while p, commits with Algorithm 5 or 6. Then some
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process p3 must have committed v, normally at line 37
and the proof of A.7 applies to p; and p3.

3. p1 commits vy using Algorithm 5 or 6. Then v; was
copied to p;’s log from some other process p3’s log,
where v had already been committed. But then, agree-
ment must have been broken earlier than ¢ (v; committed
at p3, v, committed at p;), a contradiction.

O

A.4.3 Followers Update Their Own FUO

In the algorithm and optimizations presented so far, the only
way for the FUO of a process p to be updated is by the leader;
either by p being the leader and updating its own FUO, or
by p being the follower of some leader that executes Algo-
rithm 6. However, in the steady state, when the leader doesn’t
change, it would be ideal for a follower to be able to update its
own FUO. This is especially important in practice for SMR,
where each follower should be applying committed entries
to its local state machine. Thus, knowing which entries are
committed as soon as possible is crucial. For this purpose, we
introduce another simple optimization, whereby a follower
updates its own FUO to i if it has a non-empty entry in some
slot j > i and all slots k < i are populated.

Listing 7: Optimization: Followers Update Their Own FUO

1 if LOG[i] # L1 && my_FUO == i-1

2 my_FUO = 1

Note that this optimization doesn’t write any new values
on any slot in the log, and therefore, cannot break Validity.
Furthermore, since it does not introduce any waiting, it cannot
break termination. We now prove that this doesn’t break
Agreement.

Agreement. Assume by contradiction that executing Algo-
rithm 7 can break agreement. Let p be the first process whose
execution of Algorithm 7 breaks agreement, and let # be the
time at which it changes its FUO to i, thereby breaking agree-
ment.

It must be the case that p has all slots up to and including i
populated in its log. Furthermore, since ¢ is the first time at
which disagreement happens, and p’s FUO was at i — 1 before
t, it must be the case that for all values in slots 1 to i — 2 of
p’s log, if any other process p’ also has those slots committed,
then it has the same values as p in those slots. Let p’s value
at slot i — 1 be v. Let ¢ be the leader that populated slot i — 1
for p, and let ¢, be the leader the populated slot i for p. If
{1 = {5, then p’s entry at i — 1 must be committed at ¢ before
time ¢, since otherwise ¢; would not have started replicating
entry i. So, if at time ¢, some process g has a committed value
v in slot i — 1 where V' # v, then this would have violated
agreement with ¢ before ¢, contradicting the assumption that
t is the earliest time at which agreement is broken.



Now consider the case where ¢ # {,. Note that for ¢, to
replicate an entry at index i, it must have a value v/ committed
at entry i — 1. Consider the last leader, /3, who wrote a value
on £p’s i — 1th entry. If /3 = /1, then v/ = v, since a single
leader only ever writes one value on each index. Thus, if
agreement is broken by p at time ¢, then it must have also
been broken at an earlier time by ¢, which had v committed
at i — 1 before time ¢. Contradiction.

If {3 = ¢, we consider two cases, depending on whether
or not p is part of £,’s confirmed followers set. If p is not in
the confirmed followers of ¢», then ¢, could not have written
a value on p’s ith log slot. Therefore, p must have been a
confirmed follower of ¢,. If p was part of ¢,’s quorum for
committing entry i — 1, then ¢, was the last leader to write
p’s i — 1th slot, contradicting the assumption that ¢; wrote it
last. Otherwise, if ¢, did not use p as part of its quorum for
committing, it still must have created a work request to write
on p’s i — 1th entry before creating the work request to write
on p’s ith entry. By the FIFOness of RDMA queue pairs, p’s
i — 1th slot must therefore have been written by ¢, before the
ith slot was written by /5, leading again to a contradiction.

Finally, consider the case where /3 # ¢1 and {3 # {,. Recall
from the previous case that p must be in ¢,’s confirmed fol-
lowers set. Then when /5 takes over as leader, it executes the
update followers optimization presented in Algorithm 6. By
executing this, it must update p with its own committed value
at i — 1, and update p’s FUO to i. However, this contradicts
the assumption that p’s FUO was changed from i — 1 to i by
p itself using Algorithm 7. O

A.4.4 Grow Confirmed Followers

In our algorithm, the leader only writes to and reads from its
confirmed followers set. So far, for a given leader /, this set
is fixed and does not change after ¢ initially constructs it in
lines 4-7. This implies that processes outside of ¢’s confirmed
followers set will remain behind and miss updates, even if
they are alive and timely.

We present an extension which allows such processes to
join £’s confirmed followers set even if they are not part of the
initial majority. Every time Propose is invoked, ¢ will check
to see if it received permission acks since the last Propose
call and if so, will add the corresponding processes to its
confirmed followers set. This extension is compatible with
those presented in the previous subsections: every time £’s
confirmed followers set grows, ¢ re-updates its own log from
the new followers that joined (in case any of their logs is
ahead of (’s), as well as updates the new followers’ logs (in
case any of their logs is behind £’s).

One complication raised by this extension is that, if the
number of confirmed followers is larger than a majority, then
£ can no longer wait for its reads and writes to complete at all
of its confirmed followers before continuing execution, since
that would interfere with termination in an asynchronous
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system.

The solution is for the leader to issue reads and writes to all
of its confirmed followers, but only wait for completion at a
majority of them. One crucial observation about this solution
is that confirmed followers cannot miss operations or have op-
erations applied out-of-order, even if they are not consistently
part of the majority that the leader waits for before continuing.
This is due to RDMA’s FIFO semantics.

The correctness of this extension derives from the correct-
ness of the algorithm in general; whenever a leader ¢ adds
some set S to its confirmed followers C, forming C’' = CUS,
the behavior is the same as if ¢ just became leader and its
initial confirmed followers set was C'.

A.4.5 Omit Prepare Phase

As is standard practice for Paxos-derived implementations,
the prepare phase can be omitted if there is no contention.
More specifically, the leader executes the prepare phase until
it finds no accepted values during its prepare phase (i.e., until
the check at line 26 succeeds). Afterwards, the leader omits
the prepare phase until it either (a) aborts, or (b) grows its
confirmed followers set; after (a) or (b), the leader executes
the prepare phase until the check at line 26 succeeds again,
and so on.

This optimization concerns performance on the common
path. With this optimization, the cost of a Propose call be-
comes a single RDMA write to a majority in the common
case when there is a single leader.

The correctness of this optimization follows from the fol-
lowing lemma, which states that no ‘holes’ can form in the
log of any replica. That is, if there is a value written in slot
of process p’s log, then every slot j < iin p’s log has a value
written in it.

Lemma A.11 (No holes). For any process p, if p’s log con-
tains a value at index i, then p’s log contains a value at every
index j, 0 < j<i

Proof. Assume by contradiction that the lemma does not hold.
Let p be a process whose slot j is empty, but slot j+ 1 has
a value, for some j. Let ¢ be the leader that wrote the value
on slot j+ 1 of p’s log, and let ¢ be the last time at which ¢
gained write permission to p’s log before writing the value
in slot j+ 1. Note that after time ¢ and as long as ¢ is still
leader, p is in £’s confirmed followers set. By Algorithm 6,
¢ must have copied a value into all slots of p that were after
p’s FUO and before ¢’s FUO. By the way FUO is updated,
p’s FUO cannot be past slot j at this time. Therefore, if £’s
FUO is past J, slot j would have been populated by £ at this
point in time. Otherwise, ¢ starts replicating values to all its
confirmed followers, starting at its FUO, which we know is
less than or equal to j. By the FIFO order of RDMA queue
pairs, p cannot have missed updates written by ¢. Therefore,



since p’s j+ Ith slot gets updated by ¢, so must its jth slot.

Contradiction. O

Corollary A.12. Once a leader reads no accepted values
from a majority of the followers at slot i, it may safely skip
the prepare phase for slots j > i as long as its confirmed
followers set does not decrease to less than a majority.

Proof. Let £ be a leader and C be its confirmed follower set
which is a quorum. Assume that ¢ executes line 27 for slot
i; that is, no follower p € C had any value in slot i. Then, by
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Lemma A.11, no follower in C has any value for any slot j > i.
Since this constitutes a majority of the processes, no value
is decided in any slot j > i, and by Invariant A.l, no value
is committed at any process at any slot j > i. Furthermore,
as long as ¢ has the write permission at a majority of the
processes, / is the only one that can commit new entries in
these slots (by Invariant A.5). Thus, £ cannot break agreement
by skipping the prepare phase on the processes in its confirm
followers set. O
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