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ABSTRACT
JavaScript is one of the most dominant programming languages.
However, despite its popularity, it is a challenging task to correctly
understand the behaviors of JavaScript programs because of their
highly dynamic nature. Researchers have developed various static
analyzers that strive to conform to ECMA-262, the standard specifi-
cation of JavaScript. Unfortunately, all the existing JavaScript static
analyzers require manual updates for new language features. This
problem has become more critical since 2015 because the JavaScript
language itself rapidly evolves with a yearly release cadence and
open development process.

In this paper, we present JSAVER, the first tool that automatically
derives JavaScript static analyzers from language specifications.
The main idea of our approach is to extract a definitional interpreter
from ECMA-262 and perform a meta-level static analysis with the
extracted interpreter. A meta-level static analysis is a novel tech-
nique that indirectly analyzes programs by analyzing a definitional
interpreter with the programs. We also describe how to indirectly
configure abstract domains and analysis sensitivities in a meta-level
static analysis. For evaluation, we derived a static analyzer from
the latest ECMA-262 (ES12, 2021) using JSAVER. The derived ana-
lyzer soundly analyzed all applicable 18,556 official conformance
tests with 99.0% of precision in 590 ms on average. In addition, we
demonstrate the configurability and adaptability of JSAVER with
several case studies.
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(a) A compiler-based approach (existing)

(b) An interpreter-based approach (ours)

Figure 1: Two approaches of static analysis for a language 𝐿1
using a static analyzer of another language 𝐿2

Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE 2022). ACM, New York, NY, USA, 12 pages. https:
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1 INTRODUCTION
Researchers have presented JavaScript static analyzers to rea-

son about the complex behaviors of JavaScript programs. Exist-
ing JavaScript static analyzers, such as JSAI [22], SAFE [27, 44],
TAJS [21], and WALA [51], over-approximate the semantics de-
scribed in ECMA-262, the standard specification of ECMAScript
(the official name of JavaScript) written in English. Moreover, vari-
ous JavaScript static analysis techniques have been presented and
implemented on these tools: loop sensitivity [33], advanced string
domains [4, 32], analysis based on property relations [25, 31, 51],
on-demand backward analysis [52], and combined analysis with
dynamic analysis [41, 45, 47, 55].

Existing JavaScript static analyzers take a compiler-based ap-
proach with intermediate representations (IRs). To reduce the bur-
den of handling numerous language features, most analyzer de-
velopers design an IR with a compiler that translates a program-
ming language to its IR to indirectly represent the language seman-
tics [15, 53, 54]. For example, Figure 1(a) depicts a compiler-based
approach for static analysis of a source-language 𝐿1 using a static
analyzer of a target-language 𝐿2. It first compiles an 𝐿1 program
to an 𝐿2 program using an 𝐿1-𝐿2 compiler that conforms to the
semantics described in the specification of 𝐿1. Then, it analyzes the
compiled 𝐿2 program using a static analyzer of 𝐿2. For a JavaScript
static analyzer, JavaScript and its own IR are 𝐿1 and 𝐿2, respectively.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(a) Evaluation algorithm for the logical OR assignment

1 syntax def AssignmentExpression [8]. Evaluation(
2 this , LeftHandSideExpression , AssignmentExpression
3 ) { /* entry */
4 let lref = (LeftHandSideExpression.Evaluation)
5 let lval = [? (GetValue lref)]
6 let lbool = [! (ToBoolean lval)] /* #1 */
7 if (= lbool true) { /* #2 */ return lval } else {} /* #3 */
8 if (&& (IsAnonymousFunctionDefinition AssignmentExpression)
9 (LeftHandSideExpression.IsIdentifierRef)) { /* #4 */
10 let rval = (AssignmentExpression.NamedEvaluation
11 lref.ReferencedName)
12 } else { /* #5 */
13 let rref = (AssignmentExpression.Evaluation)
14 let rval = [? (GetValue rref)]
15 } /* #6 */
16 [? (PutValue lref rval)]
17 return rval
18 } /* exit */

(b) Extracted IRES function for the logical OR assignment

Figure 2: Evaluation algorithm for the eighth alternative of AssignmentExpression in ES12 and its extracted IRES function

However, static analyzers with the compiler-based approach
are unable to keep up with fast-evolving JavaScript because they
requiremanual updates for new language semantics. The JavaScript
language itself is rapidly evolving nowadays. Since 2015, the Ecma
Technical Committee 39 (TC39) has maintained the specification
as an open-source GitHub project and released its official versions
annually. The specification size has been getting bigger as well, and
the latest version of ECMA-262 (ES12, 2021) [20] is 879 pages. Since
existing JavaScript static analyzers cannot update JavaScript-IR
compilers automatically, they still focus on ES5.1 and only support
a few ES6 features manually. Because recent JavaScript programs
often use new features like arrow functions, and promises, the lack
of their support becomes increasingly problematic.

To alleviate this problem, we present JSAVER, a JavaScript Static
Analyzer via ECMAScript Representations. It is the first tool that
automatically derives JavaScript static analyzers from language
specifications. The main idea of JSAVER is to shift the paradigm
from compiler-based approaches to interpreter-based ones to uti-
lize “the interpreter-based nature” of JavaScript. The history of
JavaScript [56] testifies that the working group designing JavaScript
in the 1990s defined the semantics using reference interpreters:

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case. If
they got the same answer, that became the specified
behavior.

The interpreter-based nature also affects the writing style of the
specifications. ECMA-262 describes the language semantics with
pseudocode algorithms consisting of sequentially numbered steps to
represent program executions. To fully utilize this interpreter-based
nature of JavaScript, JSAVER derives a static analyzer by 1) extracting
a definitional interpreter [46] from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

First, JSAVER extracts definitional interpreters from ECMAScript
language specifications. A definitional interpreter provides a way
to represent the language semantics of a defined-language using its
interpreter written in a defining-language. We extract a JavaScript
definitional interpreter from ECMA-262 using JISET [42], which

automatically extracts a definitional interpreter from ECMA-262
taking advantage of its writing style. In the extracted definitional
interpreter, the defined-language is JavaScript, and the defining-
language is IRES, which is an intermediate representation for EC-
MAScript language specifications. JISET shows its adaptability by
extracting definitional interpreters from future versions of ECMA-
262 without extending IRES.

Then, we present ameta-level static analysis to analyze JavaScript
programs indirectly using the extracted interpreters. A meta-level
static analysis is an interpreter-based approach for static analy-
sis of a defined-language 𝐿1 using a static analyzer of a defining-
language 𝐿2 as depicted in Figure 1(b). Since an 𝐿1 interpreter is an
𝐿2 program, it indirectly analyzes an 𝐿1 program by analyzing the
interpreter using a static analyzer of 𝐿2 with the 𝐿1 program as the
input. Thus, we develop a static analyzer of IRES for a meta-level
static analysis for JavaScript and experimentally show that it can
indirectly analyze JavaScript programs effectively. Moreover, for
its expressivenss, we present ways to indirectly configure abstract
domains and analysis sensitivities for JavaScript in the static analysis
of IRES. First, we provide a method to configure abstract domains
for JavaScript values and structures. Second, we present the AST
sensitivity to express analysis sensitivities for JavaScript such as
flow-sensitivity and 𝑘-callsite-sensitivity.

The contributions of this paper are as follows:

• We propose a novel meta-level static analysis technique. It
indirectly analyzes a defined-language program by analyz-
ing its definitional interpreter using a static analyzer of the
defining-language with the program as the input.

• We present JSAVER, the first tool that derives JavaScript static
analyzers from language specifications by 1) extracting a
definitional interpreter from ECMA-262 and 2) performing a
meta-level static analysis with the extracted interpreter.

• We derive a static analyzer JSAES12 from the latest ECMA-
262, ES12, to evaluate JSAVER. The derived analyzer JSAES12

soundly analyzes all applicable 18,556 official conformance
tests with 99.0% of precision in 590 ms on average. More-
over, we demonstrate the configurability and adaptability of
JSAVER with several case studies.
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1 let f = /* a random integer from 0 to 99 */;

2 f ||= x => x; // f: {name: "f", ...} or [1, 99]

3 let y = f.name; // x: "f" or undefined

Figure 3: JavaScript code using the logical OR assignment

2 BACKGROUND
In this section, we briefly explain ECMA-262 and introduce JISET,

which extracts a definitional interpreter from ECMA-262. Since we
perform meta-level static analysis for JavaScript using extracted
definitional interpreters, it is essential to understand how ECMA-
262 describes the JavaScript semantics and how JISET extracts a
definitional interpreter from it.

As a running example, we use the “logical OR assignment” in-
troduced in ES12. Figure 2(a) shows its semantics described as an
algorithm in English, Figure 2(b) shows an IRES function extracted
from the algorithm, and Figure 3 presents an example JavaScript
program using a logical OR assignment.

2.1 JavaScript Semantics in ECMA-262
ECMA-262 is the official specification of JavaScript, which describes
its syntax in a variant of the extended Backus–Naur form (EBNF)
and its semantics as algorithms in English. For example, consider
the example code in Figure 3. It uses the logical OR assignment
newly introduced in ES12. Its syntax is defined by the eighth of
nine alternatives of the syntactic production of AssignmentExpression,
and their semantics is defined by the algorithm in Figure 2(a). The
algorithm first evaluates LeftHandSideExpression to get a reference lref
and its value lval in steps 1 and 2, respectively. Then, it checks its
boolean value lbool for short-circuiting in steps 3-4. In step 5, if the
left- and right-hand-side is an identifier and an anonymous function,
it defines the name of the function as the identifier name in step 5-a.
In step 6, otherwise, the algorithm evaluates the right-hand-side
expression to the value rval. It then puts rval to the reference lref
and returns rval.

While the operator seems to be the same as combining the log-
ical OR operator (||) with the assignment operator (=), they have
different semantics. Consider the example code. It first defines a
variable f with a random integer from 0 to 99. Then, it uses a logical
OR assignment to update f with an arrow function whose name
becomes "f" only if f’s value is 0 because 0 represents false, but the
other integers represent true. Finally, it defines a variable y with
f.name, whose value is "f" if f’s value is the arrow function, but
undefined, otherwise. If the statement on line 2 is f = f || (x => x);,
the value of y is undefined or "" instead of "f". Thus, to construct a
sound static analyzer, one should consider such detailed semantics
by referring to all the algorithms in ECMA-262.

ECMA-262 uses two kinds of algorithms: syntax-directed algo-
rithms and normal algorithms. A syntax-directed algorithm consists
of 1) its corresponding alternative of a syntactic production, 2) its
name, 3) parameters, and 4) body steps. For example, the algo-
rithm in Figure 2(a) is a syntax-directed algorithm consisting of the
eighth alternative of AssignmentExpression, Evaluation as its name, no
parameters, and the body consisting of eight steps. Unlike syntax-
directed algorithms, a normal algorithm is defined with only its
name, parameters, and body steps. Their invocations are like func-
tion calls with parentheses: GetValue(lref ) in step 2. Finally, each

Figure 4: Result of f ||= x => x in a definitional interpreter

algorithm always returns a completion record to handle different
kinds of JavaScript control flows. The prefixes “?” or “!” converts
them to their containing values with or without checking for abrupt
completions, respectively.

2.2 JavaScript Definitional Interpreter
Several researchers have presented JavaScript definitional inter-
preters [2, 3, 6, 7, 17, 42] instead of the compiler-based approaches [14,
16, 21, 27, 35]. A definitional interpreter is written in a defining-
language to describe the language semantics of a defined-language.
Among them, we utilize JISET [42] to automatically extract a defi-
nitional interpreter from a given version of ECMA-262. The tool
JISET 1) generates a parser for syntax and 2) transforms algorithms
to corresponding IRES functions for semantics. For example, when
JISET takes ES12 as an input, it generates a parser that supports
logical OR assignments according to the syntactic production of As-
signmentExpression. It then transforms the syntax-directed algorithm
in Figure 2(a) into the IRES function in Figure 2(b).

The defining-language of a definitional interpreter often treats
abstract syntax trees (ASTs) of the defined-language as values. The
defining-language IRES also treats ASTs of the defined-language
JavaScript as its values. For example, the parser generated from
ES12 parses the second statement in Figure 3 and produces an AST
shown at the bottom of Figure 4. Then, the extracted IRES function
in Figure 2(b) takes the AST and its left and right subtrees as its
arguments and defines three local variables as shown at the top of
Figure 4.

3 OVERVIEW
In this section, we explain the overall structure of JSAVER as depicted
in Figure 5. It performs a meta-level static analysis with JavaScript
as its defined-language and IRES as its defining-language. Thus,
JSAVER indirectly analyzes a JavaScript program by analyzing IRES
functions with the AST of the program as an argument. For a more
detailed explanation, we describe how it performs a meta-level
static analysis for the code in Figure 3 with ES12.

JSAVER first utilizes JISET to extract a definitional interpreter
from ES12. As explained in Section 2, it generates a JavaScript
parser supporting new language features, including the logical OR
assignment, and extracts IRES functions, including the function in
Figure 2(b), by compiling algorithms. The generated parser parses
the example code to produce anAST, which contains the AST shown
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Figure 5: Overall structure of JSAVER

Figure 6: Control flow graph of the IRES function in Fig-
ure 2(b) with its flow-sensitive analysis results

at the bottom of Figure 4 as a subtree. Then, Analysis Initializer
constructs an initial abstract state with the extracted IRES functions
and the produced AST. Finally, JSAVER computes the fixpoint of
Abstract Transfer Function with the initial abstract state, and the
fixpoint is the analysis result of the example code.

Now, let us explain how we analyze the IRES function in Fig-
ure 2(b). We support view-based analysis sensitivities [24, 40] and
utilize a worklist algorithm to perform view-wise updates of analy-
sis results. In this example, we perform flow-sensitive analysis by
splitting views based on program points annotated in comments of
the IRES function: entry, exit, and from #1 to #6.

Figure 6 shows a control flow graph of the IRES function with
its flow-sensitive analysis results. In the graph, each node and
arrow denotes a program point and a control flow, respectively. If
nodes or arrows are dotted, they are unreachable. In this example,
we use the interval domain [10] for integers. At the entry point,
three parameters point to three ASTs, respectively, as shown at
the top of Figure 4. At point #1, new local variables are defined:
lref, lval, and lbool . Since the variable LeftHandSideExpression

points to the AST of the JavaScript variable f, lref points to its
reference and lval points to the interval [0, 99]. Moreover, lbool
points to the top boolean value ⊤bool because lval contains 0

representing false and [1, 99] representing true. Therefore, both
points #2 and #3 are reachable. At point #2, it returns lval; thus, the
return value @return at the exit point becomes [0, 99]. At point #3,

the condition is always true; thus, only point #4 is reachable, and it
assigns a new variable rval with a JavaScript function object whose
name property is a string "f". At point #6, it updates the reference of
the JavaScript variable f with rval and returns it. Thus, the return
value @return at the exit point is merged with the function object
stored in rval. Finally, the IRES function returns the abstract value
representing both [0, 99] and the JavaScript function object.

Finally, we can automatically derive a JavaScript static analyzer
for a specific version of ECMA-262 using JSAVER. For example, if we
want to derive a JavaScript static analyzer for ES12, it is sufficient
to fix the first argument of JSAVER as ES12 and passes a given
JavaScript program as the second argument.

In the remainder of this paper, we formally define the meta-level
static analysis for JavaScript with abstract domains and analysis
sensitivities (Section 4). Then, we explain how to implement JSAVER
with several optimization and analysis techniques (Section 5). After
evaluating JSAVER (Section 6), we discuss related work (Section 7)
and conclude (Section 8).

4 META-LEVEL STATIC ANALYSIS
In this section, we formalize ameta-level static analysis for JavaScript
as a defined-language with IRES as a defining-language. We first
define a JavaScript definitional interpreter as an IRES program. Then,
we define ameta-level static analysis for JavaScript with the abstract
semantics of IRES in the abstract interpretation framework [9, 11].
In addition, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

4.1 JavaScript Definitional Interpreter
We first define IRES, an Intermediate Representation for ECMA-262,
with its collecting and restricted semantics.

𝔓 ∋ 𝑃 ::= 𝑓 ∗ X ∋ x L ∋ l
F ∋ 𝑓 ::= syntax? def x(x∗) {[l : 𝑖]∗}
I ∋ 𝑖 ::= 𝑟 B 𝑒 | x B {} | x B 𝑒(𝑒∗) | if 𝑒 l l | return 𝑒
E ∋ 𝑒 ::= 𝑣p | op(𝑒∗) | 𝑟 R ∋ 𝑟 ::= x | 𝑒[𝑒] | 𝑒[𝑒]js

4.1.1 Syntax and Notations. An IRES program 𝑃 is a sequence of
functions. A function 𝑓 is defined with its name, parameters, and
body instructions with labels. If it is defined with the prefix syntax,
it is a syntax-directed function, otherwise, a normal function. An
instruction 𝑖 is a reference update, an object allocation, a function
call, a branch, or a return instruction. An expression 𝑒 is a primitive
value, a primitive operation, or a reference expression. A reference
is a variable, an internal field access, or an external field access.
For a given program 𝑃 , three helper functions func : L → F ,
inst : L → I, and next : L → L return the function, instruction,
and next label, respectively, of a given label.

S = L × E × C∗ × H
E = X fin−−→V C = L × E H = A

fin−−→L ×M ×Mjs

M = Vstr
fin−−→V Mjs = Vstr

fin−−→V V = A ⊎ Vp ⊎ T ⊎ F

4.1.2 Concrete States. An IRES state 𝜎 ∈ S consists of a label, an
environment, a stack of calling contexts, and a heap. An environ-
ment 𝜌 ∈ E is a finite mapping from variables to values. A calling
context 𝑐 ∈ C consists of a label and an environment of the caller.
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A heap ℎ ∈ H is a finite mapping from addresses to labels for al-
location sites and two finite mappings from strings to values. The
former mapping represents internal fields accessible by 𝑒[𝑒], and
the latter represents external fields accessible by 𝑒[𝑒]js. A value
𝑣 ∈ V is an address, a primitive value (e.g., a boolean 𝑏, an integer
𝑘 , and a string 𝑠), a JavaScript AST 𝑡 ∈ T, or a function 𝑓 ∈ F .

4.1.3 Restricted Semantics. We first define a collecting semantics
J𝑃K = lim𝑛→∞ 𝐹𝑛 (S𝜄 ) using a transfer function 𝐹 : P(S) → P(S).
While we formally define the transfer function 𝐹 in a companion
report [1], we omit it in this paper for brevity. Then, we define
a restricted semantics J𝑃KR : P(S) → P(S) as a set of reachable
states from the initial states restricted by a given set of states 𝑆 :

J𝑃KR (𝑆) = lim
𝑛→∞

𝐹𝑛 (S𝜄 ∩ 𝑆).

4.1.4 Definitional Interpreter. We define a definitional interpreter
for JavaScript as an IRES program to indirectly represent the col-
lecting semantics J𝑃jsKjs of the JavaScript program 𝑃js using the
restricted semantics J𝑃KR:

Definition 4.1 (JavaScript Definitional Interpreter). An IRES pro-
gram 𝑃 is a JavaScript definitional interpreter if and only if the
following condition holds for each JavaScript program 𝑃js ∈ 𝔓js:

J𝑃jsKjs = decode ◦ J𝑃KR ◦ encode(𝑃js)
where encode : 𝔓js → P(S) encodes a JavaScript program to
IRES states and decode : P(S) → P(Sjs) decodes IRES states to
JavaScript states.

4.2 JavaScript Meta-Level Static Analysis
For a JavaScript meta-level static analysis, we define an abstract
semantics of IRES in the abstract interpretation framework with
view-based analysis sensitivities [24, 40].

4.2.1 Abstract Domains. We first define the abstract domain for
each structure. We define an analysis sensitivity as a view abstrac-
tion 𝛿 : Π → P(S), a function from finite views to sets of states.
Thus, a sensitive abstract state is defined as a function from pairs
of labels and views to abstract states:
D̂𝛿 = L × Π → Ŝ Ŝ = Ê × Ĉ × Ĥ Â = L
Ê = X → V̂ Ĉ = P(L × Π) Ĥ = Â→ M̂ × M̂js

M̂ = Vstr → V̂ M̂js = Vstr → V̂ V̂ = P(Â ⊎ Vp ⊎ T ⊎ F )
While we use concrete strings in abstract field maps and sets of
primitive values in abstract values in this formalization for brevity,
we abstract them to bound the height of their lattices as finite in
the implementation. We use allocation-site abstraction [8] to define
abstract addresses Â as partitions of concrete addresses A based on
their allocation sites L. We define a partial order ⊑, a join operator
⊔, a meet operator ⊓, and a concretization function 𝛾 for each
abstract domain using a valuation [12] 𝜂 : A → Â to correctly
concretize abstract addresses.

4.2.2 Restricted Abstract Semantics. We first define the abstract
semantics Ĵ𝑃K = lim𝑛→∞ 𝐹𝑛 (𝑑𝜄

𝛿
) of an IRES program 𝑃 with an

initial sensitive abstract state 𝑑𝜄
𝛿
(i.e., S𝜄 ⊆ 𝛾 (𝑑𝜄

𝛿
)) and an abstract

transfer function 𝐹 : D̂𝛿 → D̂𝛿 . While we formally define the
abstract transfer function 𝐹 in a companion report [1], we omit

them in this paper for brevity. Then, we also define the restricted
abstract semantics �J𝑃KR : D̂𝛿 → D̂𝛿 of an IRES program 𝑃 with a
given sensitive abstract state 𝑑𝛿 :

�J𝑃KR (𝑑𝛿 ) = lim
𝑛→∞

𝐹𝑛 (𝑑𝜄
𝛿
⊓ 𝑑𝛿 )

4.2.3 Meta-Level Static Analysis. Finally, we define a JavaScript
meta-level static analysis using the restricted abstract semantics�J𝑃KR of a JavaScript definitional interpreter 𝑃 :

Definition 4.2 (JavaScriptMeta-Level Static Analysis). A JavaScript
meta-level static analysis is a way to indirectly analyze a JavaScript
program 𝑃js using a restricted abstract semantics�J𝑃KR of a JavaScript
definitional interpreter 𝑃 :

J𝑃jsKjs ⊆ �decode ◦ �J𝑃KR ◦�encode(𝑃js)
where �encode : 𝔓js → D̂𝛿 encodes a JavaScript program to a
sensitive abstract state and �decode : D̂𝛿 → P(Sjs) decodes a
sensitive abstract state to JavaScript states.

4.3 Abstract Domains for JavaScript
Since the configuration of abstract domains in static analyzers
allows fine-tuning the quality of analysis results, we provide a way
to indirectly configure abstract domains for JavaScript values and
data structures in a JavaScript meta-level static analysis.

4.3.1 Values. Since a JavaScript value is also an IRES value 𝑣 ∈ V,
we can configure V̂ for JavaScript values. For example, recall that
Figure 6 shows the flow-sensitive analysis results of the code in
Figure 3 using the interval domain. Assume that we desire to use
the flat domain whose elements are concrete integer values, the
bottom value ⊥int for nothing, and the top value ⊤int for JavaScript
integers. Then, it is sufficient to use the flat domain for integers in
the IRES abstract values V̂. In this setting, the IRES local variable
lval points to ⊤int at point #1. At the exit point, the IRES function
returns ⊤int and the function object whose name property is "f".

4.3.2 Data Structures. In JavaScript, data structures including envi-
ronment records and objects have external fields directly accessible
by JavaScript syntax. For example, an environment record has vari-
ables as external fields, accessible by identifier references. Similarly,
an object has properties as external fields accessible by property
read expressions. However, they also have internal fields, which are
not directly accessible by JavaScript syntax, and one should update
them only indirectly. For example, [[ HasBinding ]] in environment
records or [[ Prototype ]] in objects. While such internal fields are
pre-defined and the number of possible internal fields is finite, the
number of external fields could be infinite. Since internal and ex-
ternal fields are quite different in this regard, we provide a way
to configure them differently. In Section 4.2, we define an abstract
heap ℎ ∈ H as a finite mapping from abstract addresses Â to pairs
of abstract internal field maps M̂ for internal fields and abstract
external field maps M̂js for external fields.
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1 syntax def IdentifierReference [0]. Evaluation(
2 this , Identifier
3 ) { return [? (ResolveBinding (Identifier.StringValue))]

}

(a) Extracted IRES function for identifier references

(b) Result of x + y via a definitional interpreter

Figure 7: A JavaScriptmeta-level static analysis with the flow-
sensitivity for IRES

4.4 Analysis Sensitivities for JavaScript
In a JavaScript meta-level static analysis, analysis sensitivities for
JavaScript are different from those for IRES. Consider the analysis
of the following JavaScript code with the flow-sensitivity for IRES:

let x = 1, y = 2; x + y; // 3

Figure 7 shows (a) its extracted IRES function and (b) the parsing
result of x + y and the initial local environment of the IRES func-
tion. Since the flow-sensitivity merges states on the same labels,
contexts for the evaluation of both identifier references x and y are
merged. Thus, the IRES variable Identifier points to their ASTs as
illustrated at the right of Figure 7(b). Due to the imprecise merge
of contexts, StringValue of Identifier returns "x" and "y", and
ResolveBinding with them returns both 1 and 2. Finally, the analy-
sis result of x + y becomes { 2, 3, 4 }.

4.4.1 Flow-Sensitivity. To resolve this problem, we present an AST
sensitivity for IRES as a variant of object sensitivity [30, 50] to rep-
resent flow-sensitivity for JavaScript. It utilizes JavaScript ASTs T
stored in this parameter for syntax-directed functions as views
with a view abstraction 𝛿 js-flow : T ⊎ {⊥} → P(S):

𝛿 js-flow (𝑡⊥) = {𝜎 = (_, _, 𝑐, _) ∈ S | ast(𝑐) = 𝑡⊥}
where ast : C∗ → T ⊎ {⊥} denotes the JavaScript AST stored in
this parameter of the top-most syntax-directed function for a given
calling context stack:

ast(𝑐) =


𝑡 if ∃𝑐. 𝑐 = 𝑐1 :: · · · :: 𝑐𝑛 :: 𝑐 :: · · · ∧ 𝑐 = (l , 𝜌)∧

func(l ) = syntax def · · · ∧ 𝜌 (this) = 𝑡∧
∀1≤ 𝑗 ≤𝑛. 𝑐 𝑗 = (l𝑗 , _) ∧ func(l𝑗 ) = def · · ·

⊥ otherwise

Note that the number of views for the AST sensitivity is finite as
well because JavaScript ASTs are finite in a JavaScript program.
We define the flow-sensitivity for JavaScript using the AST sensi-
tivity for IRES. It successfully divides contexts for the evaluation
of JavaScript identifiers x and y in the example even though their
labels in IRES are the same.

4.4.2 Callsite-Sensitivity. We define the callsite-sensitivity [48, 49]
for JavaScript by extending the AST sensitivity for specific nor-
mal IRES functions. In ECMA-262, all explicit and even implicit

JavaScript function calls invoke normal IRES functions Call and
Construct. Thus, we define the callsite-sensitivity for JavaScript by
extending the AST sensitivity with two normal IRES functions with
a view abstraction 𝛿 js-𝑘-cfa : T≤𝑘 → P(S):

𝛿 js-𝑘-cfa ( [𝑡1, · · · , 𝑡𝑛]) = {𝜎 = (_, _, 𝑐, _) ∈ S |
𝑛 ≤ 𝑘 ∧ (𝑛 = 𝑘 ∨ js-ctxt𝑛+1 (𝑐) = ⊥)∧
∀1≤ 𝑖 ≤𝑛. ast ◦ js-ctxt𝑖 (𝑐) = 𝑡𝑖 }

where js-ctxt : C∗ → C∗ ⊎ {⊥} pops out calling contexts until the
function of the top-most context is Call or Construct:

js-ctxt(𝑐) =


𝑐 if 𝑐 = (l , 𝜌) :: _∧

(func(l ) = def Call · · · ∨
func(l ) = def Construct · · · )

js-ctxt(𝑐 ′) if 𝑐 = _ :: 𝑐 ′
⊥ otherwise

Using this callsite-sensitivity for JavaScript, the meta-level static
analyzer can discriminate implicit JavaScript function calls, includ-
ing getters/setters, user-defined implicit conversions, and implicit
function calls in built-in libraries.

We also formally define their abstract semantics 𝛿 js-flowĴ𝑖K and
𝛿 js-𝑘-cfaĴ𝑖K in the companion report [1].

5 IMPLEMENTATION
In this section, we describe the challenges in implementing a meta-
level static analyzer and present our solutions for them. The source
code of JSAVER and the dataset of our study are publicly available
at https://doi.org/10.5281/zenodo.6785678, and the latest version is
maintained as a GitHub repository.1

Layered Abstract States. Unlike traditional JavaScript static anal-
yses, a meta-level static analysis for JavaScript should track analysis
results not only for JavaScript but also for IRES. Thus, the sizes of
abstract states are much larger than those of traditional analyzers.
We implement layered abstract states to maintain only updated anal-
ysis results compared to the initial abstract state. It can reduce the
time to perform the join ⊔, meet ⊓, and partial order ⊑ operations
by considering only the updated parts in abstract states.

Heap Cloning and Abstract Counting. JavaScript Object proper-
ties could be dynamically added, modified, or deleted and even
accessible by first-class property names. Thus, in JavaScript static
analysis, performing strong updates rather than weak updates for
object properties as many as possible is critical for precise analy-
sis results. It becomes more important in our approach because it
should track even internal fields for IRES. Therefore, we implement
heap cloning [26] and abstract counting [29] to increase the chances
of performing strong updates for internal and external fields.

Loop Sensitivity. Since merged loop contexts often cause impre-
cise relations between JavaScript object properties, researchers
presented diverse techniques to resolve this problem [25, 31, 51, 52].
Among them, we implement the loop sensitivity [33, 34] to increase
the analysis precision by discriminating loop contexts. Therefore,
derived analyzers via JSAVER can discriminate contexts for explicit
loops such as for-in and for-of and even implicit loops such as the
assignment of arguments or the length property of arrays.
1https://github.com/kaist-plrg/jsaver

https://doi.org/10.5281/zenodo.6785678
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(a) Analysis results of TAJS (b) Analysis results of SAFE (c) Analysis results of JSAES12

(d) Analysis results of TAJS with Babel (e) Analysis results of SAFE with Babel

Figure 8: Analysis results of TAJS and SAFE without and with Babel and JSAES12 for 18,556 applicable tests

Table 1: Applicable conformance tests in Test262

All Test262 Conformance Tests 41,415

Inapplicable Tests 22,859
Web Browsers / Internationalization 2,036
In-Progress Features 5,719
Non-Strict / Module 2,625
Early Errors 2,949
Inessential Built-in Objects (e.g. JSON, Atomics) 9,530
Applicable Tests 18,556

6 EVALUATION
We evaluate JSAVER using JSAES12, the JavaScript static analyzer de-
rived from ES12 via JSAVER, with the following research questions:

• RQ1: Soundness. Can JSAES12 analyze JavaScript programs
using new language features in a sound way?

• RQ2: Precision. Can JSAES12 precisely analyze JavaScript pro-
grams compared to the existing static analyzers?

• RQ3: Configurability. Can we configure abstract domains
and analysis sensitivities for JavaScript in JSAES12?

• RQ4: Adaptability. Can JSAVER adapt to new language fea-
tures not yet introduced in ES12?

We performed experiments on an Ubuntu machine equipped with
4.2GHz Quad-Core Intel Core i7 and 32GB of RAM.

6.1 Soundness
To evaluate the soundness of JSAES12, we used Test262, the offi-
cial conformance test suite. Since ES12 was officially released in
June 2021, we used Test262 as of June 20212. While it consists of
41,415 tests, it even contains tests using additional features for
2https://github.com/tc39/test262/tree/aaf4402b4ca9923012e6

web browsers, in-progress features, modules, or early errors for
the parsing process. To focus on the core language semantics of
JavaScript in ES12, we excluded 22,859 tests for such features, as
summarized in Table 1 using JISET. Therefore, we analyzed 18,556
applicable Test262 tests, each of which is 235.5 lines on average.
Furthermore, we compared the soundness of JSAES12 with that of
the existing JavaScript static analyzers, TAJS and SAFE. We used
their default context sensitivities: the object sensitivity for TAJS
and 20-callsite-sensitivity for SAFE. For a fair comparison, we used
20-callsite-sensitivity for JSAES12 as well.

In addition, we compared the soundness of JSAES12 with that of
the existing analyzers after transpiling Test262 tests via Babel3,
a hand-written transpiler from ES6+ to ES5.1. We used the latest
Babel v7.17.6 (February 21, 2022). While Babel is often used with
core-js4, a third-party polyfill library implementing ES6+ built-in
functions in ES5.1, we did not use core-js in the evaluation because
it significantly increases code size. For example, the latest core-js
v3.21.1 (February 17, 2022) increases the number of code lines in
harness/sta.js, which is executed before each Test262 test, from 28
to 3,364. Even before analyzing any Test262 test, TAJS and SAFE
failed to analyze harness/sta.js in 60 seconds due to the bloated
code size. As a result, we used Babel without any polyfill libraries;
on average, each transpiled Test262 test is 361.6 lines.

For each test program, we evaluated the soundness of an ana-
lyzer by comparing its analysis result with the final state of the
program in concrete execution. The comparison targets are 1) the
reachability of the exit and the exceptional exit points and 2) prim-
itive values stored in variables and object properties at the exit
point. We checked whether the analyzer over-approximates the ex-
pected values of comparison targets. For example, in the JavaScript

3https://babeljs.io/
4https://github.com/zloirock/core-js
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(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of five analyzers

program, let x = 42; x++;, only the exit point is reachable, and the
variable x points to 43. Thus, the analysis result should cover the
reachability of the exit point and 43 in x for a sound result.

Figure 8 shows the analysis results of existing static analyzers
(TAJS and SAFE) without or with Babel and the derived analyzer
JSAES12 for 18,556 applicable tests. In each chart, the 𝑥-axis denotes
when tests are created, and the 𝑦-axis denotes the number of tests
created before the time. The mark sound (green, filled) denotes a
sound analysis, unsound (red, stripe) an unsound analysis, and error
(white, blank) an unexpected error. Figures 8(a) and 8(b) show that
TAJS and SAFE analyzed most tests created before 2015 in a sound
way. However, the number of tests that they cannot soundly analyze
has consistently increased from 2015. TAJS and SAFE can soundly
analyze only 4,763 (25.7%) and 5,741 (30.9%) programs, respectively.
As depicted in Figures 8(d) and 8(e), Babel mitigates this problem by
transpiling ES6+ features to ES5.1, and it increases the number of
programs soundly analyzed by TAJS and SAFE to 6,942 (37.4%) and
8,462 (45.6%), respectively. However, TAJS and SAFE still cannot
soundly analyze more than half of Test262 test programs. On the
other hand, JSAES12 successfully analyzes all 18,556 applicable test
programs in a sound way, even without Babel.

6.2 Precision
We measured the analysis precision by counting how many com-
parison targets were precisely analyzed. For all applicable 18,556
Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of five analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no effect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

Table 2: Definitions of three string abstract domains String
Set (SS𝑘 ), Character Inclusion (CI), and Prefix-Suffix (PS)

Domain Definition

SS𝑘
SS𝑘 = {⊤} ∪ {𝑆 ⊆ Σ∗ | |𝑆 | ≤ 𝑘 }
𝛾 (𝑆) = 𝑆

𝑆 · 𝑆′ = {𝑠 · 𝑠′ | 𝑠 ∈ 𝑆 ∧ 𝑠′ ∈ 𝑆′ }

CI
CI = {⊥} ∪ {[𝐿,𝑈 ] | 𝐿,𝑈 ⊆ Σ ∧ 𝐿 ⊆ 𝑈 }
𝛾 ( [𝐿,𝑈 ]) = {𝑤 ∈ Σ∗ | 𝐿 ⊆ chars(𝑤) ⊆ 𝑈 }
[𝐿,𝑈 ] · [𝐿′,𝑈 ′ ] = [𝐿 ∪ 𝐿′,𝑈 ∪𝑈 ′ ]

PS
PS = {⊥} ∪ (Σ∗ × Σ∗)
𝛾 ( ⟨𝑝, 𝑠 ⟩) = {𝑝 · 𝑤 | 𝑤 ∈ Σ∗ } ∩ {𝑤 · 𝑠 | 𝑤 ∈ Σ∗ }
⟨𝑝, 𝑠 ⟩ · ⟨𝑝′, 𝑠′⟩ = ⟨𝑝, 𝑠′⟩

1 let x = /* "a" or "b" */;

2 let y = `c${x}d`; // "cad" or "cbd"

3 let z = `${x}e${x}`; // "aea" or "beb"

Figure 10: A JavaScript program using template literals

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of specific language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative infinity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Configurability
We demonstrate the configurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how different abstract domains or analysis sensitivities affect anal-
ysis results of JSAES12 with examples.

6.3.1 Abstract Domains. As explained in Section 4.3, we can config-
ure abstract domains for JavaScript values by configuring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS𝑘 ) domain, the Character Inclusion
(CI) domain, and the Prefix-Suffix (PS) domain. Table 2 summarizes
formal definitions of their elements, concretization functions, and
concatenation operations. In the table, Σ denotes a set of charac-
ters, and the set of strings is Vstr = Σ∗. We analyzed a JavaScript
program in Figure 10 using JSAES12 with different string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (`), allowing embedded expressions called substitutions.
For example, the template literal `c${x}d` on line 2 concatenates
a string "c", the value in the variable x, and a string "d". Since x

points to "a" or "b" on line 1, the variable y points to "cad" or "cbd".
Similarly, z points to "aea" or "beb" by concatenating x, "e", and x.
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Figure 11: The Analysis precision of JSAES12 with different
𝑘-callsite-sensitivities for all 18,556 applicable test programs

First, the String Set (SS𝑘 ) domain represents a set of strings whose
size is bounded by 𝑘 as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x ↦→ {"a", "b"}
y ↦→ {"c"} · {"a", "b"} · {"d"} = {"cad", "cbd"}
z ↦→ {"a", "b"} · {"e"} · {"a", "b"} = {"aea", "aeb", "bea", "beb"}

It produced precise analysis results for x and y. However, the result
for z has spurious values "aeb" and "bea" because it does not keep
the information that the left and right strings of "e" are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x ↦→ [∅, {a, b}]
y ↦→ [{c}, {c}] · [∅, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z ↦→ [∅, {a, b}] · [{e}, {e}] · [∅, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Prefix-Suffix (PS) keeps prefixes and suffixes of
strings. JSAES12 produced the following analysis results with PS:

x ↦→ ⟨"", ""⟩
y ↦→ ⟨"c", "c"⟩ · ⟨"", ""⟩ · ⟨"d", "d"⟩ = ⟨"c", "d"⟩
z ↦→ ⟨"", ""⟩ · ⟨"e", "e"⟩ · ⟨"", ""⟩ = ⟨"", ""⟩

This domain is also cheap but focuses on prefixes and suffixes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with "c" and ends with "d".

Therefore, we showed that one can freely configure string ab-
stract domains for JavaScript in the derived analyzer JSAES12.

6.3.2 Analysis Sensitivities. As explained in Section 4.4, we for-
mally define the flow- and 𝑘-callsite-sensitivity for JavaScript using
the AST-sensitivity for IRES. In JSAES12, we can freely configure
the value 𝑘 of the 𝑘-callsite-sensitivity. In Section 6.2, we showed
that JSAES12 with the 20-callsite-sensitivity can precisely analyze
18,556 applicable tests in Test262 with a high analysis precision of
99.0%. Now, we analyze them with different 𝑘-callsite-sensitivities
to understand how different 𝑘 values affect the analysis results. We
started from the context-insensitive analysis (𝑘 = 0) and increased
𝑘 of the 𝑘-callsite-sensitivity until their analysis precision is sim-
ilar to that of the 20-callsite-sensitivity as depicted in Figure 11.
As expected, the context-insensitive analysis has the lowest anal-
ysis precision of 52.2%. Then, the analysis precision consistently
increases with a higher 𝑘 value, and it reaches 99.0% when 𝑘 = 4.

Therefore, we showed that one can configure the analysis preci-
sion of JSAES12 by using different𝑘-callsite-sensitivities for JavaScript.

(a) Syntactic production for the pipeline operator

1 let add = y => x => x + y;

2 let double = z => z * 2;

3 let n = /* any integer from 0 to 99 */;

4 let a = n |> add(1) // [1, 100]

5 |> double; // [2, 200]

6 let b = n |> add(1n) // TypeError for `+`
7 |> unknown; // unreachable

(b) A JavaScript program using the pipeline operator

Figure 12: Syntax and use of the pipeline operator |>

6.4 Adaptability
We evaluated the adaptability of JSAVER using two case studies
with new language features. TC39 maintains proposals for future
language features in GitHub repositories. In the order of the most
GitHub stars, the top three features are the pipeline operator |>5

with 6.1K stars, the pattern matching6 with 4.1K stars, and the
Observable library7 with 2.8K stars. Because the pattern matching
proposal is in an early stage with only basic concepts without any
detailed semantics, we evaluated the adaptability of JSAVER with
two proposals for the pipeline operator |> and the Observable library.

6.4.1 Pipeline Operator (|>). The pipeline operator is typically sup-
ported in functional programming languages, such as F# and OCaml.
Its behavior is almost the same with a syntactic sugar of a func-
tion call with a single argument. To support this operator, we first
applied its proposal, which contains the syntactic production in
Figure 12(a) and algorithms, to ES12. Then, we derived a JavaScript
static analyzer from the updated ES12 via JSAVER. Finally, we an-
alyzed the example JavaScript program in Figure 12(b) with the
interval domain for integers using the derived analyzer.

First, the derived analyzer successfully analyzes the stored value
in the variable a. The program defines two functions: add receives
a value in y and adds it to the second argument in x, and double

multiplies the argument z by 2. The analyzer first analyzes that the
variable n points to the interval [0, 99] on line 3. Then, the abstract
value is updated to [1, 100] and [2, 200] by analyzing |> add(1) on
line 4 and |> double on line 5, respectively. Therefore, the derived
analyzer successfully analyzes that the variable a stores the interval
[2, 200]. The derived analyzer also correctly analyzes the execution
order of the pipeline operator on lines 6–7. The pipeline operator
first executes the argument part rather than the function part. Thus,
the original program throws a TypeError exception on line 6 because
the addition of the BigInt value 1n with another numeric value
is ill-typed. The derived analyzer successfully analyzes that the
program terminates on line 6 with a TypeError exception by correctly
considering the execution order of the pipeline operator.

6.4.2 Observable Library. JSAVER can support not only a new syn-
tactic feature but also a new built-in library. Using the Observable

library, we can model push-based data sources, such as DOM events,
timer intervals, and sockets. Consider an example program in Fig-
ure 13. On lines 1–2, the program first randomly defines variables x
5https://github.com/tc39/proposal-pipeline-operator
6https://github.com/tc39/proposal-pattern-matching
7https://github.com/tc39/proposal-observable
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1 let x = /* 1 or 2 */;

2 let y = /* any string */;

3 let o = new Observable(subscriber => {

4 subscriber.next (1);

5 subscriber.next (2);

6 subscriber.next (3);

7 });

8 o.subscribe(k => x *= k); // x: 6 or 12

9 o.subscribe(k => y += k); // y: any string + "123"

Figure 13: An example of the Observable built-in library

with 1 or 2 and y with a random string. Then, it registers an arrow
function subscriber => { ... } to a new Observable object and assigns
it to the variable o on lines 3–7. On line 8, it subscribes k => x *= k

via subscribe to invoke the registered arrow function. Then, the
arrow function k => x *= k is synchronously invoked three times
with multiple values 1, 2, and 3. Therefore, the variable x points to 6

or 12 because the initial value of x is 1 or 2, and it is multiplied by 1,
2, and 3. Similarly, the variable y points to any string ending with
"123" because its initial value is a random string, and it is updated
by concatenating string values of 1, 2, and 3, on line 9.

To analyze the example program, we applied the proposal of
the Observable library to ES12 and derived a JavaScript static an-
alyzer from it. We used the interval domain for integers and the
Prefix-Suffix (PS) domain explained in Section 6.3 for strings. On
lines 1–2, the derived analyzer first assigns [1, 2] and ⟨"", ""⟩ to
the variables x and y, respectively. Then, it assigns the new abstract
Observable object with the arrow function subscriber => { ... } to
o by analyzing the invocation of the constructor of Observable on
lines 3–7. On line 8, the analyzer analyzes that an arrow function
k => x *= k is subscribed, and the variable x is updated to the in-
terval [6, 12]. Similarly, it analyzes that another arrow function
k => y += k is subscribed on line 9, and the variable y is updated to
the abstract value ⟨"", "123"⟩. Thus, the derived analyzer success-
fully analyzes the example program and precisely represents the
possible values of x and y at the end of the program.

6.5 Discussion
In this section, we discuss promising directions for the improvement
of JSAVER and limitations of JISET, the tool used in the extraction of
definitional interpreters from ECMA-262.

6.5.1 Promising Directions of JSAVER. The analyzer JSAES12 auto-
matically derived from ES12 via JSAVER has two directions for
improvement compared to existing hand-written JavaScript static
analyzers.

First, because our approach considers only the semantics de-
scribed in ECMA-262, JSAES12 does not support host environments
such as DOM and Node.js used in modern JavaScript applications.
However, just like existing analyzers, JSAES12 can utilize manual
modeling of host environments to analyze real-world applications.

Second, as described in Section 6.2, JSAES12 is slower than ex-
isting analyzers. While JSAVER derives precise abstract semantics
for all language features, developers of existing analyzers often
model the abstract semantics of specific language features impre-
cisely or even unsoundly to enhance the analysis performance. A
promising direction is to support host environments efficiently,
possibly semi-automatically, and optimize derived analyzers for
better performance and memory use.

6.5.2 Limitations of JISET. In this work, we utilized another tool
JISET to extract a JavaScript definitional interpreter from ECMA-262.
It has two limitations; it 1) covers only about 95% of the algorithm
steps and 2) generates a JavaScript parser slower than hand-written
parsers. Thus, a manual effort is still required for about 5% of the
steps, and JSAVER slows down because of the longer parsing time.
Nevertheless, we believe that JISET significantly reduces the burden
of manual approaches and could generate a faster parser using more
advanced parsing techniques.

7 RELATEDWORK
JavaScript Static Analysis. Researchers have proposed JavaScript

static analyzers, such as JSAI [22], SAFE [27, 44], TAJS [21], and
WALA [51], to detect program bugs without concrete execution
and to understand program behaviors. They also presented and
implemented various JavaScript static analysis techniques on these
tools. Since string values of arbitrary expressions can be used in
property accesses, a precise string analysis is more critical for
JavaScript than static analysis for other programming languages.
Thus, several advanced string abstract domains [4, 23, 28, 32] have
been presented for JavaScript. Several researchers presented anal-
ysis techniques [25, 31, 33, 51, 52] to increase imprecise relations
between object properties. Moreover, due to the highly dynamic
nature of JavaScript, static analyzers suffer from heavy computa-
tions as well as imprecise analysis results. Hence, combined analy-
ses [41, 43, 45, 47, 55] with dynamic analyses have been proposed
to enhance analysis performance by leveraging highly optimized
commercial JavaScript engines.

However, all of the existing JavaScript static analyzers cannot
support language features of ES6 or later versions, including let

bindings, arrow functions, generators, and promises. JSAVER re-
solves this problem by automatically deriving JavaScript static ana-
lyzers from language specifications. Xu et al. [57] recently presented
a technique to synthesize data-flow analyzers, but they focused on
only Java-like languages, and the technique does not guarantee the
soundness of synthesized analyzers. Note that the soundness of the
meta-level static analysis for JavaScript comes from the soundness
of the static analysis for IRES.

Definitional Interpreter. Reynolds [46] first introduced the con-
cept of definitional interpreters to describe the semantics of defined-
languages using their interpreters written in defining-languages.
Darais et al. [13] extended them to a definitional abstract interpreter,
representing the abstract semantics of a defined-language using its
abstract interpreter written in a defining-language. However, unlike
a meta-level static analysis, it directly describes the abstract seman-
tics of the defined-language without using a static analyzer of the
defining-language. Therefore, it still requires manual updates when
the defined-language evolves. For the JavaScript programming lan-
guage, Herman and Flanagan [17] proposed the first definitional
interpreter written in ML to represent the JavaScript semantics.
Then, Bodin et al. [6] manually defined the JavaScript semantics in
JSCert using the Coq proof assistant and extracted a definitional
interpreter from Coq to OCaml. However, they require manual up-
dates when JavaScript evolves. On the other hand, Park et al. [42]
presented JISET, which automatically extracts a JavaScript defini-
tional interpreter from ECMA-262. Because JISET provides a way to
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deal with the JavaScript semantics mechanically, researchers have
developed several tools on top of it, such as a test synthesizer [38]
and a specification type analyzer [37]. Similarly, we developed
JSAVER by extending JISET to automatically derive a static analyzer
via a meta-level static analysis for JavaScript.

Automatic Modeling. For JavaScript static analysis, modeling the
behaviors of built-in library functions is essential because their im-
plementations are usually in other programming languages, such
as C++, rather than in JavaScript. Because it is labor-intensive to
manually model them, several researchers [5, 36] utilized type infor-
mation to automatically model them. However, they oversimplify
complex behaviors and miss side-effects. On the other hand, sev-
eral researchers utilized concrete executions to model them using
program synthesis [18] or input/output abstractions [39]. However,
they do not guarantee the soundness of the generated abstract
semantics. Unlike existing approaches, JSAVER automatically trans-
lates the abstract algorithms in ECMA-262 to IRES functions and
utilizes them in JavaScript static analysis. Therefore, the analyzer
derived by JSAVER can soundly analyze the built-in library functions
without any manual modeling.

8 CONCLUSION
The fast evolution and massive size of ECMA-262 make it difficult to
develop and update JavaScript static analyzers manually. To resolve
this problem, we present JSAVER, the first tool that automatically
derives JavaScript static analyzers from the language specifications.
The main idea of JSAVER is to shift the paradigm from compiler-
based approaches to interpreter-based approaches to fully utilize
“the interpreter-based nature” of JavaScript. It extracts a definitional
interpreter from ECMA-262 and performs a meta-level static analy-
sis to indirectly analyze JavaScript programs using the extracted
interpreter. We also present how to configure abstract domains and
analysis sensitivities for JavaScript indirectly in the meta-level static
analysis. We evaluated JSAVER by using a derived static analyzer
JSAES12 from the latest ECMA-262, ES12. It soundly analyzes all ap-
plicable 18,556 official conformance tests with 99.0% of precision in
590 ms on average. We also demonstrated the configurability and
adaptability of JSAVER with several case studies. We believe that
JSAVER can reduce the burden of defining the abstract semantics
of numerous language features for static analysis of fast-evolving
JavaScript.
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