
Adaptive Integration of Hardware and Software Lock
Elision Techniques

Dave Dice
Oracle Labs

dave.dice@oracle.com

Alex Kogan
Oracle Labs

alex.kogan@oracle.com

Yossi Lev
Oracle Labs

yossi.lev@oracle.com

Timothy Merrifield
University of Illinois at Chicago

tmerri4@uic.edu

Mark Moir
Oracle Labs

mark.moir@oracle.com

ABSTRACT

Transactional Lock Elision (TLE) and optimistic software
execution can both improve scalability of lock-based pro-
grams. The former uses hardware transactional memory
(HTM) without requiring code changes; the latter involves
modest code changes but does not require special hardware
support. Numerous factors affect the choice of technique,
including: critical section code, calling context, workload
characteristics, and hardware support for synchronization.

The ALE library integrates these techniques, and collects
detailed, fine-grained performance data, enabling policies
that decide between them at runtime for each critical sec-
tion execution. We describe an adaptive policy and present
experiments on three platforms, two of which support HTM,
showing that—without tuning for specific platforms or
workload—the adaptive policy is competitive with and often
significantly better than hand-tuned static policies.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming; E.1 [Data Structures]

Keywords

Lock elision; transactional memory; sequence locks

1. INTRODUCTION
Effectiveness of techniques for improving concurrent pro-

grams’ scalability depends on factors such as the workload,
hardware platform, and synchronization support. Some tech-
niques that are well-suited to some use cases are ineffective—
sometimes even harmful—for others; some techniques de-
pend on hardware support not available on all systems, and
others use software techniques that are difficult or impos-
sible to apply in some cases. Selecting (combinations of)
techniques and tuning them for a particular context is often
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impractical because these choices depend on numerous fac-
tors including the workload, which may change over time,
even for a given application on a given platform.

Adaptive Lock Elision (ALE) provides pragmatic support
for improving scalability of legacy lock-based applications.
Lock elision techniques can improve scalability without us-
ing finer-grained locking or non-blocking synchronization,
both of which significantly complicate applications and may
harm performance for some platforms and workloads.

Transactional Lock Elision (TLE) [3, 11] allows critical
sections protected by the same lock to execute concurrently,
exploiting hardware transactional memory (HTM) to detect
conflicts between them and retry if necessary. Optimistic
software techniques behave similarly, but use software tech-
niques (e.g., seqlocks [1]) to detect conflicts. The required
changes to critical sections can be achieved via compiler sup-
port in some cases [13], but are manual in this paper.

Our ALE library can execute a given critical section in
one of three modes: HTM (i.e., TLE), SWOpt (i.e., software
optimistic execution), and Lock (i.e., acquiring the lock).
Integrating these techniques enables the choice of mode for
a given critical section to be made heuristically at runtime.

The library collects statistics and profiling information
that provide guidance for programmers about which modes
should be enabled for which critical sections, and further-
more are used by pluggable policies that determine at run-
time how to execute each critical section. This approach is
preferable to programmers determining execution modes in
advance, as the choices can be made based on factors such
as the platform, workload, and calling context.

Section 3 describes in detail a HashMap implemented us-
ing the proposed approach, which enables all three execution
modes, and uses the ALE library to decide between them at
runtime. Section 4 describes the implementation of the li-
brary and two simple policies: a static one based on fixed pa-
rameters, and an adaptive one that chooses execution modes
and retry parameters based on observed runtime behavior.

Section 5 describes experiments on three platforms, two
of which support HTM. (Experiments on additional plat-
forms are not shown due to lack of space.) We use a simple
HashMap microbenchmark, as well as a more complex Kyoto
Cabinet [8] benchmark that demonstrates use of ALE with
a readers-writer lock and nesting. Experiments with sim-
ple static policies demonstrate the importance of choosing
execution modes based on observed runtime behavior. Our
adaptive policy is almost always competitive with the best
static policy, without tuning for the platform and workload.



2. BACKGROUND
In the Transactional Lock Elision (TLE) technique [3, 11],

critical sections are executed atomically using HTM, while
confirming that the lock is not held. If no data conflicts be-
tween two critical sections occur, then they can execute in
parallel, even if using the same lock. If hardware transac-
tions fail often (e.g., due to conflicts or HTM limitations),
performance can degrade. Reasons for transactions failing
and the best retry strategy both depend on numerous fac-
tors, including the HTM implementation, the workload, etc.

With optimistic execution, critical sections can be exe-
cuted concurrently provided they do not conflict; if a critical
section experiences a conflict, no harm is done, and it can be
retried. (The lock can be acquired if this occurs repeatedly.)
In this paper, conflict detection is achieved using a variant
on sequence locks (seqlocks). A seqlock [1, 9] is a lock that
has an associated sequence number that is initially zero and
is incremented on each acquire and release. Data protected
by a seqlock can be read without acquiring the lock, pro-
vided the sequence has the same even value—implying that
the lock is never held—during reading.

Optimistic execution and TLE can both be viewed as
forms of lock elision. For both techniques, operations may
be attempted concurrently, and may fail and need to be re-
tried depending on a number of factors, including aspects
of the workload that may change over time. Despite these
similarities, different situations favor different techniques.
Optimistic execution can be highly scalable in read-heavy
workloads but less effective with more frequent mutating
operations. TLE can greatly improve scalability even in the
face of frequent mutating operations, but depends on HTM
and its effectiveness for the given workload.

Together, TLE and optimistic execution can benefit a
wide variety of workloads. However, they do not interop-
erate effectively if combined naively: mutating operations
can succeed concurrently using TLE, but incrementing the
sequence number as required for optimistic software execu-
tion causes concurrent operations using TLE to conflict with
each other, defeating TLE’s benefit. We demonstrate that
these conflicts can be reduced, and even eliminated in some
cases, significantly improving performance and scalability.

We combine TLE and optimistic execution so that either
technique can be used effectively, and the choice of which one
to use can be made dynamically, depending on the availabil-
ity and behavior of each option for the current platform and
workload. Thus, we show that programmers can get the
“best of both worlds” of TLE and optimistic execution.

The idea of dynamically selecting between multiple inte-
grated synchronization techniques is not new. For example,
Lim’s reactive locking algorithm [10] can switch between fast
and scalable alternatives for locking depending on the work-
load. It can adapt differently for different locks, but it does
not support concurrent use of different techniques for differ-
ent critical sections for the same lock, and does not exploit
techniques such as TLE or optimistic execution.

Another example is Adaptive Transactional Memory [12],
which is similar in spirit, using profiling and machine learn-
ing techniques to adapt between a number of software TM
(STM) implementations. Our approach applies to an estab-
lished lock-based programming model that does not require
new compiler and language support, and is thus more prag-
matic and more immediately practical.

Other work (e.g., [5, 7, 14]) explores adapting TLE retry

parameters, but we are not aware of previous attempts to
integrate it with software optimistic execution. Further-
more, to our knowledge, ALE provides more detailed and
finer-grained reporting and adaptation than prior efforts.

3. USING THE ALE LIBRARY
Next, we describe the use of the ALE library with a simple

HashMap example. The HashMap supports three opera-
tions. An Insert operation inserts a new key-value pair if
the key is not already present and overwrites the value asso-
ciated with the key otherwise; a Remove operation removes
the specified key if it is present and has no effect otherwise;
and a Get operation copies the value associated with the
specified key to a specified memory area and returns true if
the key is present, or returns false otherwise.

In the base implementation, the HashMap is protected by
a single lock, tblLock, and every operation is executed in a
single critical section that holds this lock. In Section 3.1, we
describe how to integrate this implementation with ALE, and
how to enable the use of HTM mode with it. In Section 3.2,
we explain how to add a SWOpt execution alternative.

3.1 Basic use of ALE
Integrating a lock with ALE is achieved by macros via two

simple changes. The first, in the same scope as the lock’s
declaration, associates a label with the lock and causes meta-
data to be declared for the lock. The second, in the same
scope as the lock initialization code, causes the library to
initialize this metadata. The type and name of the meta-
data are transparent to the programmer: All communication
with the library for a given lock uses the lock’s label.

Next, the BEGIN_CS and END_CS macros are used to replace
locking and unlocking code for each critical section to be
enabled for ALE (see example in Section 3.2).

The library can now collect statistics and profiling infor-
mation for these critical sections. Even without using the
HTM or SWOpt modes, ALE’s reports provide valuable insights
to guide optimization efforts. This is particularly useful in
larger and more complex examples. Enabling HTM mode for
ALE-integrated critical sections is as simple as using appro-
priate compilation flags for the application and library.

3.2 Adding a simple optimistic alternative
Enabling HTM mode is simple because changes are required

only at critical section boundaries, not to the critical section
code itself. Adding a SWOpt alternative is more complicated.
In particular, a critical section executed in SWOpt mode can
be executed concurrently with other critical sections pro-
tected by the same lock, and these may cause it to observe
inconsistent data (if they execute in HTM or Lock mode).
The programmer must ensure that the SWOpt path can

detect such interference in order to retry in this case, and
that unsuccessful attempts have no harmful side effects. The
HashMap example illustrates one simple way to achieve this.

A critical section is prepared for SWOpt execution by us-
ing a variant of the BEGIN_CS macro and by adding SWOpt

support code to the critical section that is executed only if
the GET_EXEC_MODE macro (provided by the library) indicates
that the critical section is running in SWOpt mode.
Programmers using ALE to integrate a SWOpt path into a

critical section must follow some simple rules:

• Interference with the SWOpt path should be caused only



by concurrent execution of a critical section protected
by the same lock, while executed not in SWOpt mode.

• Such executions must provide the means for the SWOpt
path to detect any (potential) interference they cause.

• Critical sections executed in SWOpt mode must avoid
any harmful side effects due to such interference. When
interference is detected, the SWOpt execution can be ex-
plicitly retried (if desired), after notifying the library
of the failed attempt.

Many possibilities exist for constructing SWOpt paths. We
have enhanced the simple seqlock-based approach described
earlier to overcome several disadvantages. First, as discussed
in Section 2, the simple seqlock-based approach loses the
benefit of HTM mode. Even if HTM is not available, the entire
critical section is executed between the two increments of
the sequence number when the lock is acquired, preventing
successful execution of any SWOpt path associated with the
same lock for this entire interval. This is unnecessary if
conflicting actions rarely occur, or occur during only a small
fraction of the critical section’s execution. It is thus better to
explicitly identify code regions that may perform conflicting
actions than to conservatively assume that any part of the
critical section may do so.

To illustrate these ideas with our simple HashMap im-
plementation, we first add to the HashMap class a version
number field tblVer, initialized to zero. We also add Be-

ginConflictingAction and EndConflictingAction meth-
ods, both of which simply increment tblVer, and a GetVer

method, which returns the value of tblVer, first waiting un-
til it is even if a boolean argument indicates this is required.
(Concurrency could be improved by using multiple version
numbers, say one for each HashMap bucket. We have not
yet experimented with this option.)

The first two methods are used to bracket part(s) of crit-
ical section code that may interfere with concurrent SWOpt

execution of a critical section protected by the same lock.
The GetVer method is used both for reading the version
number at the beginning of a SWOpt execution of a critical
section (first waiting until tblVer is even), and for checking
whether the version number has since changed.

The obvious first SWOpt candidate is Get, as concurrent
executions of it do not interfere with each other. Conflict-
ing actions can be performed only by concurrent Insert or
Remove operations. A Remove operation that explicitly iden-
tifies its conflicting region might look like this:

1 BEGIN_CS(&LockAPI, &tblLock, md_tblLock);

2 < search a node containing a given key>

3 if ( < node is found > ) {

4 BeginConflictingAction();

5 unlink( < node > );

6 EndConflictingAction();

7 }

8 END_CS(&LockAPI, &tblLock, md_tblLock);

(Here, md_tblLock is the label associated with tblLock,
and LockAPI is a structure that identifies methods used to
acquire and release this lock, as well as an is_lockedmethod
that is used to check and monitor a lock when an associated
critical section is executed in HTM mode. This approach en-
ables the ALE library to be used with any type of lock). Note
that Remove conflicts with concurrent SWOpt executions only
briefly and only if it actually removes a node.

1 template <bool SWOptMode>

2 int32_t HashMap::GetImp(const& key_t key,

3 uint32_t hashedKey, value_t& retVal) {

4 if (SWOptMode) v = GetVer(true);

5 idx = hashedKey % this->numBuckets;

6 Bucket* barr = this->buckets;

7 if (SWOptMode && (v != GetVer(false))) return -1;

8 BucketNode* bP = barr[idx].firstNodeP;

9 if (SWOptMode && (v != GetVer(false))) return -1;

10 while (bP && !keyEqual(bP->key, key)) {

11 bP = bP->next;

12 if (SWOptMode && (v != GetVer(false))) return -1;

13 }

14 if (bp != NULL) {

15 retVal = bp->val;

16 if (SWOptMode && (v != GetVer(false))) return -1;

17 return 1;

18 }

19 return 0;

20 }

Figure 1: Auxiliary method used by the Get method.

To integrate a SWOpt path into the Get method, we begin
by creating a utility method GetImp, shown in Figure 1,
which factors out the main functionality of the Get method.

We use a boolean template argument SWOptMode to create
two versions of the GetImpmethod—one for SWOptmode and
one for other modes—that differ only as shown in orange.

The main difference between the two versions is validation
when executing in SWOpt mode; in the absence of compiler
support for this purpose, the programmer adds this vali-
dation manually. The general rule of thumb is to validate
before using any value that was read since the last valida-
tion. However, some validations can be omitted if the use
of the value cannot cause any error even if it is invalid. (In
some systems, optimistically reading could cause an error
if the data has already been deallocated, and the page in
which it resides has been returned to the operating system
and removed from the address space. This issue does not
apply in many cases, including the commercial applications
motivating our work, because the application does not deal-
locate memory during its lifetime, or the operating system
does not deallocate freed pages. In some other contexts, the
issue may be addressed by using non-faulting loads.)

The Get method itself is implemented as a simple wrap-
per method that begins a critical section (using a variant
of the BEGIN_CS macro that specifies that a SWOpt path ex-
ists), and uses GET_EXEC_MODE to determine whether it is in
SWOpt mode and should call GetImp<true>, or otherwise call
GetImp<fasle>. Because GetImp<true> may return -1, indi-
cating that it did not complete successfully due to a conflict,
the Get method is executed inside a loop that only termi-
nates when an execution completes successfully.

3.3 Advanced usage and optimizations
Identifying conflicting regions allows SWOpt executions of

critical sections using the same lock to detect interference.
The COULD_SWOPT_BE_RUNNING library macro returns a (possi-
bly conservative) indication of whether such executions ex-
ist. This allows executions in HTM mode to elide the conflict
indication when no SWOpt path is running, thus avoiding
unnecessary aborts due to modifications of tblver.



Next, as mentioned above, some operations cause conflicts
in some cases, but not in others. This suggests that it might
sometimes be profitable to allow a critical section to be ex-
ecuted in SWOpt mode only in some cases, as determined at
runtime. We describe two ways this can be achieved.

One approach is to use the “self abort” idiom: a critical
section executes in SWOpt mode, and if a conflicting region
is encountered, retries the critical section, indicating that
the SWOpt path should not be used. Self abort is simple
and convenient, but provides less benefit as conflicting op-
erations become more common. We address this case next.

While searching for the specified key, Insert and Remove

do not interfere with SWOpt paths. Therefore, we can pro-
vide a SWOpt path for the first parts of these methods too.
However, when they perform an action that interferes with
other SWOpt executions, this cannot be done in SWOpt mode,
so a nested critical section that has no SWOpt path must be
used to perform such actions. (The ALE library’s support for
nesting is described in Section 4.1.) Some care is required
due to the possibility of the SWOpt execution being invali-
dated before or during the lock acquisition by the nested
critical section. Therefore, the nested critical section must
first check if a conflict has occurred, and if so, the critical
section should be ended without performing the conflicting
action, and the whole operation should be retried (after re-
porting the SWOpt failure to the library).

While additional code can be executed in the outer SWOpt
critical section after the short critical section is completed,
in general code that might be invalidated by concurrent op-
erations should be avoided: the effects of the short critical
section may already be seen by other threads, so retrying in
SWOpt mode after this point is generally undesirable.

3.4 Statistics and profiling information
The ALE library collects statistics and profiling informa-

tion for policies to use when choosing execution modes. Re-
ports based on this information are useful in their own right.
Even without using HTM or SWOpt modes, these reports pro-
vide insights into application behavior on a given platform
or workload. These insights provide guidance about which
critical sections might benefit from a SWOpt path, for exam-
ple. The reports have also been invaluable in understanding
and improving behavior of adaptive policies.

Different executions of a given source-level critical sec-
tion may use different locks, and may be executed in dif-
ferent “contexts” (see below). These factors can affect the
best choice of execution mode. The library therefore col-
lects statistics and profiling information at the granularity
of <lock, context> pairs.

Each critical section integrated with the ALE library (us-
ing a library macro such as BEGIN_CS) defines a scope. A
thread’s context is an initially-empty sequence of scopes.
When a thread begins execution of a critical section, its
scope is added to the thread’s context; when the critical
section is completed, the scope is removed.

As described so far, a thread’s context is determined by
the ALE-enabled critical sections within which it is execut-
ing. However, programmers can explicitly create additional
scopes, allowing the library to collect statistics and profiling
information at even finer granularity.

The importance of this ability is shown by the C++“scoped
locking” idiom. A scoped lock is a class that encapsulates a
lock, and whose constructor and destructor are responsible

for acquiring and releasing the lock, respectively. Enabling
critical sections introduced in this way for ALE involves us-
ing the BEGIN_CS and END_CS macros (or variants thereof) in
the constructor and destructor. Thus, there is only a single
critical section at the source level, implying a single set of
statistics for all acquisitions of each lock used this way, so
policies cannot specialize behavior for (effectively) different
critical sections. This issue can be addressed by declaring
additional scopes explicitly, as follows:

1 void foo() {

2 ...

3 BEGIN_SCOPE("foo.CS1");

4 {

5 ScopedLock(&myLock);

6 // CS body
7 }

8 END_SCOPE();

9 }

Here, the BEGIN_SCOPE macro introduces a new scope, with
label “foo.CS1”. The result is that the critical section that
begins in the constructor of ScopedLock will execute in dif-
ferent contexts depending on where the constructor is called
from, allowing the library to distinguish the different cases.

For a given <lock, context> pair, the library may record:
how often a critical section was executed using this lock in
this context; how many times each mode (HTM, SWOpt, or
Lock) was attempted/successful; how much time was spent
in each mode, etc.

Another way to use different contexts for the same critical
section allows for cases in which it is expected that different
execution modes may be best for different cases, as in:

1 if (<condition>)

2 BEGIN_CS_NAMED(&LockAPI, &tblLock,

3 md_tblLock, "condition is true");

4 else

5 BEGIN_CS_NAMED(&LockAPI, &tblLock,

6 md_tblLock, "condition is false");

7 {

8 <CS body>

9 }

10 END_CS(&LockAPI, &tblLock, md_tblLock)

This results in associating a different scope, and thus a
separate context and statistics, with each call to BEGIN_CS_NAMED,
allowing the library to adapt differently depending on whether
the condition holds. The label provided to BEGIN_CS_NAMED

describes the scope, improving readability of reports.

4. LIBRARY IMPLEMENTATION
The ALE library separates common, policy-independent

functionality from a pluggable policy. The policy-independent
code provides two interfaces: one for programs that use the
library (e.g., via the ALE macros described in Section 3), and
one for policy code, which the library uses to determine the
mode for each critical section execution attempt.

Each ALE-enabled lock has associated metadata, which is
allocated and initialized once. In addition, the library asso-
ciates granule metadata with each <lock,context> pair with
which a critical section is executed, which is used to record
information and statistics about these executions. The lock
and granule metadata may be used by the policy code when



determining the mode for an execution attempt, and their
structure may be policy-dependent. The library’s API, how-
ever, abstracts away any dependency on the policy by pro-
viding the macros for defining lock labels and scope IDs that
uniquely identify the associated metadata.

Each time a critical section is attempted, the library in-
vokes the policy to determine the mode in which it should
be executed (HTM, SWOpt, or Lock), and executes appropriate
critical section preamble code accordingly. For Lockmode, it
acquires the lock. For HTM mode, it first waits for the lock to
be free, then begins a hardware transaction, and then checks
that the lock is not held, aborting the transaction and retry-
ing (possibly in a different mode) if the lock is held, and re-
turning to user code to execute the critical section otherwise.
For SWOpt execution, the library returns to user code without
acquiring the lock. The library keeps track of the execution
mode, which can be obtained via the GET_EXEC_MODE macro
(see example in Section 3.2). We also note that using the
is_locked function provided by the lock’s API, the library
estimates whether a hardware transaction has been aborted
due to a concurrent lock acquisition by another thread. To
reduce the chance for a cascade effect, the library accounts
for such aborts in a much lighter way than for others.

4.1 Nesting
Nesting of ALE-enabled critical sections may be motivated

by performance, as in Section 3.3, and is also likely to arise
as a natural consequence of modularity. In this section, we
describe the ALE library’s support for nesting.
ALE-enabled critical sections must be properly nested: a

lock released at the end of or within an ALE-enabled critical
section must be the most recently acquired lock that has not
since been released. This requirement is an outcome of our
design choice, whereby per-thread stacks of frames are used
to record information associated with the critical section ex-
ecuted at each nesting level, including the lock accessed and
its associated metadata, the relevant granule, and informa-
tion about the current mode and execution attempt.

For each critical section execution, a frame is pushed onto
the thread’s stack before the first attempt, and removed
after successful completion. (For reasons explained below,
no frame is pushed for a critical section that is nested within
another that is executing in HTM mode.)

If a critical section is not nested within another ALE-enabled
critical section, then the eligible modes for executing the
critical section are determined by the availability of HTM
and of a SWOpt path (unless the programmer explicitly pro-
hibits one or both). For a nested critical section attempt, the
library further restricts the choice of modes in some cases.

First, if a critical section (nested or not) is executed using
HTM, all critical sections nested within it are also executed
using the same hardware transaction, while checking that
their associated locks are not held. (If a nested critical sec-
tion does not allow HTM mode, the hardware transaction is
aborted.) This is because committing a transaction for an
enclosing critical section in order to begin a nested critical
section in another mode would likely violate the atomicity
of the enclosing critical section. To minimize the duration
of hardware transactions, and to reduce the amount of data
written within them, a frame is pushed onto the stack only
for the outermost critical section executed in HTM mode.

Next, if a thread already holds the lock accessed by a
nested critical section, a SWOpt path is not used even if avail-

able. This is because there would be no benefit to doing so,
and allowing this case would complicate the library. In this
case, HTM mode may be chosen but, to avoid an unnecessary
abort, the library does not check whether the lock is held.

Finally, SWOpt mode is not eligible if the thread is already
executing in SWOptmode for a critical section associated with
a different lock. We believe that using the library correctly
in this way would be too difficult and error prone. This
does not imply that programmers cannot nest SWOpt-capable
critical sections, only that the library will not choose SWOpt

mode for the nested critical section in this case.

4.2 Policies
Below we describe two policies we have implemented. These

policies use parameters X (respectively, Y ) for the number
of attempts to use in HTM (respectively, SWOpt) mode before
switching to the next mode in the chosen progression. The
static policy uses fixed parameters, while the adaptive one
“learns” parameters based on observed behavior.

Static policy.
The static policy uses fixed values of X and Y for all

critical section executions. It makes up to X attempts using
HTM (if available). If unsuccessful it then makes up to Y

attempts using the SWOpt path (if available). It resorts to
acquiring the lock if these attempts are also unsuccessful.

Adaptive policy.
The adaptive policy is more flexible and more dynamic

than the static policy, as it may choose a different number
of attempts in each mode for each granule (a combination
of a lock and a context), and it chooses these values based
on a learning mechanism that takes into account the statis-
tics collected by the library for the granule. This allows
the policy to recognize, for example, that the fastest exe-
cution of one critical section in a given context is likely to
be achieved by using HTM, while SWOpt is preferable for an-
other, and determine the number of attempts to be used
for each such context. Finally, adaptive policies can exploit
ALE’s fine-grained statistics to improve performance by con-
trolling concurrency; one example is described next.

Grouping mechanism. Recall that a SWOpt path is caused
to retry only if a critical section protected by the same lock
executes a conflicting region (implying that the latter is ex-
ecuted in either HTM or Lock mode). Thus, if such critical
section executions for that lock are temporarily prevented
from executing, then all SWOpt paths for critical sections as-
sociated with the same lock can execute in parallel without
interference. Therefore, we employ a grouping mechanism
that attempts to run executions of SWOpt paths associated
with the same lock concurrently, while delaying the execu-
tion of critical sections that may conflict with them.

In most cases, this approach is sufficient to guarantee that
any critical section for which a SWOpt path is available can
always complete without acquiring the lock. However, this
is not guaranteed in some complex nesting cases. Thus, the
Adaptive policy still sets Y to a large value to ensure that
(rare) livelocks do not persist indefinitely. However, in our
experience so far, grouping is effective enough that SWOpt

mode always succeeds with much fewer than Y attempts.
The grouping mechanism uses a scalable non-zero indica-

tor (SNZI) [6] to track whether any threads executing SWOpt



are retrying. If so, executions that potentially conflict with
SWOpt executions wait for the SNZI to indicate that all such
SWOpt executions have completed. Though we have not yet
done so, concurrency could be increased by respecting the
SNZI probabilistically, which would still ensure that poten-
tially conflicting executions will eventually defer to concur-
rent SWOpt executions. Grouping can improve performance
significantly when SWOpt executions retry multiple times.

Learning mechanism. Each lock goes through one learn-
ing phase for each mode progression (Lock, SWOpt+Lock,
HTM+Lock, HTM+SWOpt+Lock). Phase transitions for lock L
occur when some context of L completes a certain number
of executions. (We do not wait for this to occur for all con-
texts of L as some contexts may be used infrequently.) In
each learning phase, statistics including the average time of
successful and failed attempts in each mode are collected for
each granule, and these are used to choose relevant X and
Y parameters for the granule, as described below.

To choose X parameters, phases for combinations that
include HTM mode comprise three sub-phases. In the first
sub-phase, we start with X set to a large number, and then
adjust its value to the maximal number of attempts so far
required to complete executions of the critical section using
HTM, plus a small constant. In the second sub-phase, using
the value learned in the first, we create a histogram of the
number of attempts required to succeed in HTM mode, and
count the number of executions that did not complete using
HTM. Using the histogram and the timing statistics, we esti-
mate the expected execution time of the critical section for
each possible number of HTM attempts, as explained below,
and set the X parameter for use in the third (performance
measurement) sub-phase to the number of attempts that
yields the lowest estimate.

To estimate the expected execution time for a given num-
ber of HTM attempts, we must estimate the time to execute
the critical section if HTM is unsuccessful. We use as an up-
per bound the time measured during learning when HTM was
not attempted (i.e., in Lock or SWOpt+Lock learning phase),
and as a lower bound the time taken after failing the max-
imum number of HTM attempts. For each number of HTM

attempts, we interpolate between these bounds, i.e., we as-
sume that the non-HTM execution time grows linearly from
the lower bound to the upper bound as we reduce the num-
ber of HTM attempts from the maximum to zero. While this
simple model ignores many practical factors, we have had
good success with it (see Section 5).

Having measured execution times for each mode progres-
sion for each lock, we could choose for each granule the mode
progression that yielded the lowest average execution time
for that granule. However, as different granules associated
with the same lock may choose different mode progressions,
this may result in a combination of mode progressions that
has not been measured. This may or may not result in
performance that is better than any of the measured mode
progressions, because interactions between concurrent use of
different mode progressions for different granules may help
performance or hurt it. For example, executing one granule
with the HTM+Lock progression concurrently with another
granule using SWOpt+Lock may result in many conflicts be-
tween HTM and SWOpt executions that never occurred during
the learning phases. Conversely, some mixtures of mode pro-
gressions can interact beneficially, such as when some lock

acquisitions make it easier for SWOpt executions to run with-
out interference.

For this reason, we run one more “custom” measurement
phase for each lock, based on the per-granule choices, and
only use these local choices if they yield a lower average ex-
ecution time than was measured during the learning phases;
otherwise we choose for all granules of that lock the mode
progression that achieved the lowest average execution time
during the learning phases.

Finally, we note that the custom phase still does not neces-
sarily find the configuration that maximizes the throughput
for critical sections under a particular lock because the per-
granule mode progression choices and the X values used are
based on measurements taken when all granules used the
same mode progression. Evaluating all possible configura-
tions is impractical (exponential in the number of contexts).
Nonetheless, finding more sophisticated learning mechanisms
is part of our future work.

4.3 Statistics counters
Historical summary information recorded by the library

includes counts of events, such as number of attempts and
successes using a given method, and timing information,
such as average lock acquisition time. We use two approaches
to avoid excessive overhead and contention that naive meth-
ods for synchronizing this information would entail.

For time intervals, we measure the time period of inter-
est for approximately 3% of events, and use CAS to update
summary variables. Exponential backoff is employed to mit-
igate any remaining contention, which is typically low due
to the sampling. While this approach is simple and reason-
ably effective, it does not provide a reliable level of accuracy
until many hundreds of events have been measured.

For counting events, a higher level of accuracy, especially
after a relatively smaller number of events, is desirable. For
this purpose, we use a statistical counter algorithm (the BFP
algorithm in [4]), which gradually reduces the probability
of updating shared data, while maintaining high accuracy
even after relatively small numbers of events. This algorithm
supports counters that are incremented only by one, and
thus cannot be used to record time-based statistics.

5. INITIAL EXPERIENCE WITH ALE
We have experimented with ALE using a HashMap mi-

crobenchmark and the wicked benchmark of the Kyoto Cab-
inet [8] on four platforms, including two that support best-
effort HTM: Rock [5], a 1-socket 16-core SPARC system,
and Haswell [14], a 1-socket hyper-threaded 4-core x86 sys-
tem. Below, we present some of our experiments on these
systems, and a 2-socket, 128-thread SPARC T2+ (T2-2).

In all figures, Instrumented denotes a version that is inte-
grated with ALE, so that statistics and profiling information
is available, but only the lock is used to execute critical sec-
tions. Uninstrumented denotes a baseline implementation
that is not integrated with ALE. Other versions are named
by the policy, the techniques used—HTM, SWOpt, or both (de-
noted as All)—and relevant parameters, if any. For exam-
ple, Static-All-10:10 is the static policy that tries with
HTM up to 10 times and then with SWOpt up to 10 times.
Irrelevant parameters are omitted. For example, Static-
HTMLock-2 denotes a version in which SWOpt is disabled and
the static policy attempts HTM at most twice. For readabil-
ity in figures, we abbreviate HTMLock as HL and SWOPTLock as









Figure 5). The statistics of the nomutate variant on T2-2,
showed that 42% of the executions did not find the object
they were seeking, and hence succeeded using SWOpt. The
implication for the trylockspin algorithm is that in 42% of
the cases the RW-lock is not acquired, and hence only the
cost of a single acquisition of a slot lock is paid, while the
remaining 58% of the cases incur an additional acquisition
attempt of the RW-lock, which is usually successful when
the number of threads is low. With HTMLock a relatively
large hardware transaction is executed (and fails in 20% of
the cases) and two lock acquisitions are needed: one of the
RW-lock and the other of the slot lock.

These results led us to explore the case in which we enable
both HTM and SWOpt for the external critical section, and only
HTM for the internal critical section. The results are shown
by the {Static,Adaptive}:All curves in Figure 5.

As the figure shows, except for the single thread case,
the adaptive policy that uses both HTM and SWOpt matches
or outperforms the adaptive policy that uses only SWOpt.
The reason is that using HTM for the external critical section
reduces the number of acquisition trials for the RW-Lock,
which reduces contention at higher thread counts. In this
case, however, both static policies outperform the adaptive
policy at high thread counts. Based on the statistics, this
is primarily because our learning mechanism is not sophisti-
cated enough to deal with nesting. We hope to address this
issue in future work.

These results reinforce two important conclusions from
our work. First, the combination of software and hardware
lock elision techniques achieves considerably better results
than when only one of the techniques is available. Sec-
ond, adaptive policies can perform comparably with the best
static policy, without manual tuning.

6. CONCLUDING REMARKS
The ALE library integrates transactional lock elision using

hardware transactional memory and optimistic execution of
operations in software, so that either technique can be used
to improve performance and scalability. Decisions regarding
whether, when and which technique to use can be made
by a pluggable policy, which can collect various profiling
information and statistics, and can use this information to
guide its decisions. This allows the choice of mechanism to
be made at runtime based on the platform, availability of
hardware features, and workload characteristics.

Using the library with a simple adaptive policy, we have
achieved significant improvements in performance and scala-
bility for a HashMap microbenchmark across a range of plat-
forms and workload parameters, even though different tech-
niques are better for different circumstances. This demon-
strates the potential of our approach and establishes a foun-
dation on which to explore more sophisticated policies, for
example that can adapt to workloads that change over time.

We have further explored the use of our library in a real
example. This effort again showed that we could achieve
significant improvements using the adaptive policy, which is
highly competitive with hand-tuned static policies, none of
which is effective for all cases. Furthermore, the library has
proved valuable simply for analyzing an application’s behav-
ior, and assessing which locks and critical sections are likely
to be most profitable to optimize. Our work also revealed
additional challenges that arise when using such techniques
in realistic code bases, leading us to develop more sophis-

ticated support for nesting, for example. In ongoing work,
we are applying these techniques to a wider range of bench-
marks and applications, and continuing to improve on our
adaptive policy.
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