

It’s Time for a New Old Language

Guy L. Steele Jr.
Software Architect, Oracle Labs

PPoPP Keynote
Monday, February 6, 2017

Copyright © 2017 Oracle and/or its affiliates (“Oracle”). All rights are reserved by Oracle except as ex-
pressly stated as follows. Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted, provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers, or to redistribute to lists, requires prior specific written permission of Oracle.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved.

We Begin with a Digression

Why do these slides have a strange aspect ratio?

If my slides are 4:3 but the projector is 16:9, 25% of the screen is wasted:

My 4:3 slide

25% wasted

And if my slides are 16:9 but the projector is 4:3, 25% of the screen is wasted:

My 16:9 slide

25% wasted

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 4

These Slides Have a 20:13 Aspect Ratio

The optimal compromise ratio is 8:3
p
3 = 1 + 1

1 + 1

1 + 1

5 + 1

1 + 1

4 + · · ·

.

Sucessive truncations of this continued fraction
produce approximants 1:1, 2:1, 3:2, 17:11, 20:13, 97:63, . . .

Using 20:13 with either 16:9 or 4:3 projection, less than 13.5% is wasted:

My 20:13 slide

13.46% wasted

My 20:13 slide

13.33% wasted

You may want to give this a try. If you can’t be bothered with 20:13,
try 3:2—at least until 16:9 projectors become ubiquitous.

(End of digression.)
Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 5

The most popular

programming language

in computer science

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 6

Some Early Contributors

Gerhard John Peter Alonzo
Gentzen Backus Naur Church

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 7

Computer Science Metanotation (CSM)

• Built-in datatypes: boolean, integer, real, complex, sets, lists, arrays

• User-declared datatypes: record / ADT / symbolic expression (BNF)

• Code: Inference rules (Gentzen notation)

• Conditionals: rule dispatch via nondeterministic pattern-matching

• Repetition: overlines and/or ellipsis notations, and sometimes iterators

• Primitive expressions: logic and mathematics

• Special operation: capture-free substitution within a symbolic expression

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 8

Example of CSM Data Declarations (BNF)

Adapted from Eisenberg, Vytiniotis, Peyton Jones, and Weirich,
Closed Type Families with Overlapping Equations, ACM POPL 2014, Figure 2

Expressions:
e ::= x Variable

| �x : ⌧.e Abstraction
| e1 e2 Application
| ⇤↵ : .e Type abstraction
| e ⌧ Type application

Types:
⌧, �, , � ::= x Type variable

| ⌧1 ! ⌧2 Function type
| 8↵ : .⌧ Polymorphic type
| ⌧1 ⌧2 Application
| F (⌧) Saturated type family

 ::= ? | 1 ! 2 Kind

� ::= [↵:]. F (⇢) ⇠ � Axiom equation

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 9

Example of CSM Code (Nondeterministic?) (1 of 2)

Adapted from Eisenberg, Vytiniotis, Peyton Jones, and Weirich,
Closed Type Families with Overlapping Equations, ACM POPL 2014, Figure 4

no conflict(, i, ⌧ , j) Check for equation conflicts

 = [↵:]. F (⇢) ⇠ � apart

�
⇢
j

, ⇢
i

[⌧/↵
i

]
�

no conflict(, i, ⌧ , j)
[NC APART]

compat

�
 [i], [j]

�

no conflict(, i, ⌧ , j)
[NC COMPATIBLE]

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 10

Example of CSM Code (Nondeterministic?) (2 of 2)

Adapted from Eisenberg, Vytiniotis, Peyton Jones, and Weirich,
Closed Type Families with Overlapping Equations, ACM POPL 2014, Figure 4

no conflict(, i, ⌧ , j) Check for equation conflicts

 = [↵:]. F (⇢) ⇠ � apart

�
⇢
j

, ⇢
i

[⌧/↵
i

]
�

no conflict(, i, ⌧ , j)
[NC APART]

compat

�
 [i], [j]

�

no conflict(, i, ⌧ , j)
[NC COMPATIBLE]

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 11

Another Example of CSM Code (Deterministic?) (1 of 3)

Adapted from Muroya, Hoshino, and Hasuo,
Memoryful Geometry of Interaction II, ACM POPL 2016, Figure 1

� ` xi : ⌧i

�, x : � `M : ⌧

� ` �x : �.M : � ! ⌧

� `M : � ! ⌧ � ` N : �

� `MN : ⌧

� `Mi : ⌧
�
i = 1, . . . , ar(op)

�

� ` op
�
M1, . . . ,Mar(op)

�
: ⌧

� `M : ⌧ ⇥ �

� ` fst(M) : ⌧

� `M : ⌧ ⇥ �

� ` snd(M) : �

� `M : ⌧ � ` N : �

� ` hM,Ni : ⌧ ⇥ �

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 12

Another Example of CSM Code (Deterministic?) (2 of 3)

Adapted from Muroya, Hoshino, and Hasuo,
Memoryful Geometry of Interaction II, ACM POPL 2016, Figure 1

� ` xi : ⌧i

�, x : � `M : ⌧

� `
input

�x : �.M :
output
� ! ⌧

� `M : � ! ⌧ � ` N : �

� `MN : ⌧

� `Mi : ⌧
�
i = 1, . . . , ar(op)

�

� ` op
�
M1, . . . ,Mar(op)

�
: ⌧

� `M : ⌧ ⇥ �

� ` fst(M) : ⌧

� `M : ⌧ ⇥ �

� ` snd(M) : �

� `M : ⌧ � ` N : �

� ` hM,Ni : ⌧ ⇥ �

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 13

Another Example of CSM Code (Deterministic?) (3 of 3)

Adapted from Muroya, Hoshino, and Hasuo,
Memoryful Geometry of Interaction II, ACM POPL 2016, Figure 1

� ` xi : ⌧i

�, x : � `M : ⌧

� ` �x : �.M : � ! ⌧

� `M : � ! ⌧ � ` N : �

� `MN : ⌧

� `Mi : ⌧
� iterator
i = 1, . . . , ar(op)

�

� ` op
�

sequence
M1, . . . ,Mar(op)

�
: ⌧

� `M : ⌧ ⇥ �

� ` fst(M) : ⌧

� `M : ⌧ ⇥ �

� ` snd(M) : �

� `M : ⌧ � ` N : �

� ` hM,Ni : ⌧ ⇥ �

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 14

Popularity of Computer Science Metanotation (1 of 2)

Analysis of 43 years of POPL conferences (1,401 papers / 17,160 pages)

No use of inference rules
Inference rules

Nu
m

be
r o

f p
ap

er
s

0

50

100

150

200

250

1973,
1975,
1976

1977
to

1981

1982
to

1986

1987
to

1991

1992
to

1996

1997
to

2001

2002
to

2006

2007
to

2011

2012
to

2016

Use of inference rules in POPL papers (five-year intervals)

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 15

Popularity of Computer Science Metanotation (2 of 2)

Analysis of 3 years of PLDI, OOPSLA, and ICFP, and 6 years of PPoPP (567 papers / 8,012 pages)

N
um

be
r o

f p
ap

er
s

0

10

20

30

40

50

60

2014–2016
PLDI
~37%

2014–2016
OOPSLA
~36%

2014–2016
ICFP
~63%

2012–2017
PPOPP
~5%

Use of inference rules: other recent SIGPLAN conferences

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 16

Structure of This Talk

• Examine history and variety of five aspects of the notation:

– Inference rules

– BNF

– Substitution

– Overline

– Ellipsis

• Identify problems that have arisen with the last three

– In some cases I propose possible solutions

• Discuss how to formalize it (and eventually mechanize it)

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 17

INFERENCE RULES

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 18

Gentzen Notation (Natural Deduction)

Gerhard Gentzen. Untersuchungen über das logische Schließen I.
Mathematische Zeitschrift 39, 1 (1935), 176–210.

1935 Gerhard Gentzen creates a rule notation for natural deduction:

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 19

Today’s Computer Science Inference Rule Notation

Not really a problem!

premise premise premise

premise premise

conclusion

[OPTIONAL LABEL]

Wide variations in labels:

• Placement: left, right, upper left, upper center, lower right, . . .
• Separation: adjacent to rule, or against the margin?
• Capitalization: lowercase, title caps, all caps, small caps, caps + small caps
• Mathematical symbols, or just alphanumeric?
• Size and style: normalsize, small, footnotesize; roman, italic, boldface
• Word separator: space, hyphen, period, CamelCase
• Enclosers: parentheses, brackets, none

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 20

BNF

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 21

BNF: Historical Background on Grammars

6th–4th century BCE Pān. ini writes the As. t.ādhyāyı̄, a Sanskrit grammar
containing numerous concise, technical rules that describe Sanskrit
morphology unambiguously and completely.

1914 Axel Thue studies string-rewriting systems defined by rewrite rules.

1920s Emil Post studies “tag systems” in which symbols are repeatedly
replaced by associated strings (this work is not published until 1943).

1947 Andrey Markov and Emil Post independently prove that the word
problem for semigroups (a problem posed by Thue) is undecidable.

1956 Noam Chomsky publishes “Three Models for the Description of
Language,” which describes grammars with production rules and what
we now call the “Chomskian hierarchy of grammars”.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 22

History of Regular Expressions in One Slide

1951 Stephen Kleene develops regular expressions to describe
McCulloch-Pitts (1943) nerve nets (uses _ for choice; considers postfix ⇤,
but decides to make it a binary operator to avoid empty strings).

1956 Journal publication of Kleene’s technical report: binary ⇤ only.
1958 Copi, Elgot, and Wright formulate REs using · and _ and postfix ⇤.
1962 Janusz Brzozowki uses binary + for _ and introduces postfix +.
1968 Ken Thompson’s paper “Regular Expression Search Algorithm” uses |.
1973 Thompson creates grep from ed editor for use by Doug McIlroy.
1975 Alfred Aho creates egrep (includes (), |, *, +, ?).
1978 CMU Alphard project uses regular expressions with *, +, and #.
1981 CMU FEG and IDL use regular expressions with *, +, and ?.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 23

Development of BNF: Perlis and Samelson

A. J. Perlis and K. Samelson. Preliminary report: International Algebraic Language.
CACM 1, 12 (December 1958), 8–22.

1958 Alan Perlis and Klaus Samelson report on the International Algebraic
Language, including “forms” for various language features.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 24

Development of BNF: Backus

J. W. Backus. The Syntax and Semantics of the Proposed International Algebraic Language
of the Zurich ACM-GAMM Conference. International Business Machines Corp., New York, page 14.

1959 John Backus, influenced by “Post productions” of Emil Post, uses a
specific syntax to write production rules for a context-free grammar for the
International Algorithmic Language.

A single production may contain multiple alternatives.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 25

Development of BNF: Naur

1960 The “Report on Algol 60,” edited by Peter Naur, appears in CACM. It
uses a slightly prettier (and easier to typeset) variant of the Backus notation.

Naur introduces use of ::= and |, and makes names of nonterminals
identical to equivalent English phrases used in the text.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 26

An Alternative: COBOL Metanotation
1960 COBOL report uses a 2-D notation. Choices are stacked vertically

within braces, brackets indicate optional items, and ellipsis indicates
repetition of the preceding item. The uses of braces and brackets are
documented, but the use of the ellipsis is taken for granted.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 27

A Synthesis: PL/I Metanotation

IBM Operating System/360: PL/I: Language Specifications. C28-6571-1 (July 1965), pages 37, 39, and 82.

1965 IBM’s PL/I specification combines BNF with COBOL metanotation.

An ellipsis indicates a nonzero number of repetitions of the preceding item;
“[item] ...” indicates zero or more (not “[item ...]”).

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 28

Parameterized BNF

Niklaus Wirth. PL360, a Programming Language for the 360 Computers.
Stanford Computer Science Technical Report CS-TR-65-33, June 1965.

Later published in J. ACM 15, 1 (January 1968), 37-74.
A. Van Wijngaarden, B. J. Mailloux, J. E. L. Peck, and C. H. A. Koster.

Draft Report on the Algorithmic Language ALGOL 68. Supplement to ALGOL Bulletin 26 (March 1968), 1–84.

1965 Niklaus Wirth’s PL360 used a parameterized form of BNF:

1968 Adriaan van Wijngaarden et al. describe Algol 68 using a two-level
grammar: one grammar has an infinite set of productions, which are
generated by another grammar.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 29

BLISS

W. A. Wulf, D. Russell, A. N. Habermann, C. Geschke, J. Apperson, and D. Wile.
BLISS Reference Manual: A Basic Language for Implementation of System Software for the PDP-10.

Computer Science Department, Carnegie-Mellon University (January 15, 1970), page 1.2.
Digital Equipment Corporation. BLISS Language Guide, Second Edition, AA-H275B-TK (January 1980).

1970 The BLISS language (William Wulf et al.) is described using BNF, but
with a right-arrow instead of “::=”. This notation is taken for granted.

1980 The DEC BLISS documentation uses PL/I-style syntax descriptions.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 30

Syntax Charts (Railway Diagrams)

Burroughs Corporation. Burroughs B 6700 / C 7700 Command and Edit (CANDE) Language Information Manual. 5000318 (2 October 1972).
Kathleen Jensen and Niklaus Wirth. PASCAL User Manual and Report. Springer-Verlag (1974), page 116.

Draft proposed ANS FORTRAN BSR X3.9 X3J3/76. SIGPLAN Notices 11, 3 (March 1976), 1-212.
John Nestor and Mary Van Deusen. RED Language Reference Manual. IR-310-2, Intermetrics (8 March 1979).

1972 Burroughs CANDE language manual uses syntax charts only.

1974 PASCAL book uses both syntax charts and ALGOL 60–style BNF.

1978 Draft of FORTRAN 78 standard uses syntax charts plus PL/I-style BNF.

1979 The RED language (GREEN became Ada) uses syntax charts only.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 31

Wirth Syntax Notation (WSN)

1977 Niklaus Wirth publishes ‘What can we do about the unnecessary
diversity of notation for syntactic definitions?” in CACM, solving the problem
of having too many BNF variants by proposing yet another. It catches on.

1996 ISO/IEC Standard 14977:1996 Extended BNF (very similar to WSN).

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 32

Other BNF Variants

1976 Stanford’s SAIL language uses BNF with repeated “::=” and no “|”.
1978 CMU Alphard project uses regular expressions in BNF with *, +, and #.
1980 Ada specification uses BNF, but with “is” for “::=” and “or” for “|”.
1981 CMU FEG and IDL use regular expressions in BNF with *, +, and ?.
1984 C: A Reference Manual (Harbison and Steele) uses REs in BNF.
1984 Common Lisp: The Language (Steele et al.) uses REs in BNF.
1995 Python Reference Manual (Release 1.2) uses * and + in BNF,

but brackets (rather than ?) for optional items.
1998 Haskell 98 Report uses BNF, with -> for ::=, and also uses ellipsis.
1998 Ruby Language Reference Manual (1.4.6) uses * and + in “pseudo

BNF” (somewhat like WSN), but brackets (rather than ?) for optional items.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 33

C-style BNF
1978 Brian Kernighan and Dennis Ritchie publish The C Programming

Language, which uses yet another format for grammar rules.

1985 The C++ Programming Language (Bjarne Stroustrup) uses C-style BNF.
1996 The Java Language Specification (Gosling et al.) uses C-style BNF.
2000 C# Language Specification (Hejlsberg et al.) uses C-style BNF.
2012 The F# 2.0 Language Specification (Don Syme) uses C-style BNF but

with special treatment of ellipsis (curiously defined as postfix).

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 34

We have seen a huge variety

of BNF variations

in the last six decades.

It hasn’t been a problem.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 35

Example of CSM Data Declarations [Again]

Adapted from Eisenberg, Vytiniotis, Peyton Jones, and Weirich,
Closed Type Families with Overlapping Equations, ACM POPL 2014, Figure 2

Expressions:
e ::= x Variable

| �x : ⌧.e Abstraction
| e1 e2 Application
| ⇤↵ : .e Type abstraction
| e ⌧ Type application

Types:
⌧, �, , � ::= x Type variable

| ⌧1 ! ⌧2 Function type
| 8↵ : .⌧ Polymorphic type
| ⌧1 ⌧2 Application
| F (⌧) Saturated type family

 ::= ? | 1 ! 2 Kind

� ::= [↵:]. F (⇢) ⇠ � Axiom equation

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 36

The “Consistent Substitution” Convention

If we took the definition of BNF literally—every nonterminal can be replaced
by a string derived from that nonterminal—then a sentence such as

A value of type ⌧ may be assigned to any variable of type ⌧ .

could be expanded to

A value of type int may be assigned to any variable of type bool.

which is nonsense. Instead, we require consistent substitution: within a given
context, if a nonterminal is mentioned more than once, the same expansion
must be used for each occurrence:

A value of type int may be assigned to any variable of type int.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 37

The “Decorated Nonterminals” Convention

If we took the definition of BNF literally—every nonterminal can be replaced
by a string derived from that nonterminal—then a sentence such as

If ⌧1 = ⌧2, then ⌧1 <: ⌧2.

would be expanded (for example, with ⌧ ! int) to

If int1 = int2, then int1 <: int2.

which is nonsense. Instead, we recognize a decorated nonterminal as being a
distinct nonterminal having the same productions as the undecorated form:

If int = bool, then int <: bool.

If int = int, then int <: int.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 38

SUBSTITUTION

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 39

Substitution Notation

Alonzo Church. A Set of Postulates for the Foundation of Logic.
Annals of Mathematics Second Series 33, 2 (April 1932), 346–366.

Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press (1941), page 12.

1932 Alonzo Church uses the notation SXY U| for substitution in a formula:

Note: the variable to be

substituted for is on top,

and the replacing term is

on the bottom!

1941 Alonzo Church publishes The Calculi of Lambda-Conversion.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 40

28 Varieties of Substitution Notation: POPL 1973–2016

⇤ Used by H. P. Barendregt in The Lambda Calculus: Its Syntax and Semantics (1980).

Most popular during 1973–2016 are highlighted. Usage has grown over time;
substitution used in over 1/3 of POPL papers 2012–2016.

e v
x 1

e v
x

1 e[v/x] 133 e(v/x) 1
[v/x]e 67 e[v/x] 6 e{v/x} 25
[v/x]e 1 e[v/

x

] 2 e{v/x} 5
[x := v]e 2 e[v\x] 1 e{v/

x

} 4
[x 7! v]e 9 e[x/v] 5 e{x v} 4
[x! v]e 1 e[x := v] ⇤ 21 e{x 7! v} 1
[[v/x]]e 2 e[x v] 7 e{x! v} 1
{v/x}e 6 e[x 7! v] 17 e{|v/x|} 2

{x 7! v}e 4 e[x! v] 2 e{{x v}} 1

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 41

Substitution: POPL 2012–2016 and Others 2014–2016

Of these 31, 15 were used at POPL in the last 5 years;
5 more were used at other SIGPLAN conferences in the last 3 years.

e v
x 1

e v
x

1 e[v/x] 133 37 e(v/x) 1
[v/x]e 67 17 e[v/x] 6 e{v/x} 25 7
[v/x]e 1 e[v/

x

] 2 2 e{v/x} 5
[x := v]e 2 e[v\x] 1 e{v/

x

} 4
[x 7! v]e 9 2 e[x/v] 5 1 e{x v} 4 1
[x! v]e 1 e[x := v] 21 3 e{x 7! v} 1
[[v/x]]e 2 e[x v] 7 1 e{x! v} 1
{v/x}e 6 e[x 7! v] 17 8 e{|v/x|} 2

{x 7! v}e 4 e[x! v] 2 1 e{{x v}} 1
[v/

x

]e 1 e{v/
x

} 1 e{x := v} 1

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 42

Substitution: A Small Problem

It’s sort of weird to have in live use both
e[x! v] and e[x v].

You would think that, if anything, it would be
e[x! v] and e[v x]

or maybe
.e[v ! x] and e[x v].

Same thing for e{x! v} and e{x v}.

But it’s only a small problem, because these uses are rare.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 43

Substitution: A Moderate Problem

By far the most popular form is
e[v/x]

but about every once every five years we see
e[x/v]

which gets it backwards.

You can’t count on the variable names to tip you off,
because different authors use different names.

One paper published in the last year used both forms.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 44

Substitution: A Huge Problem

The forms e[x 7! v] and e[x := v]
(and variants that are prefix and/or use braces)

are frequently used for substitution
(about 1/6 of all POPL papers).

But they are also widely used for another purpose:
function update (also called map update and storage update)!

(f [x 7! v])(z) = if z = x then v else f (z)

Use of both in one paper can make it very hard to read.
And lately most authors are taking all these notations for granted.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 45

An (Unpublished) Paper I Read Just Last Month

(Slightly modified for purposes of anonymization.)

labore et dolore magna aliqua. Substitution of a term t

for variable y in e is denoted e{y 7! t}.

Now consider the function

f = {p0 7! q0, p1 7! q1}

Lorem ipsum dolor sit amet, consectetur adipiscing elit,

(The substitution notation was not used until six pages later.)

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 46

Substitution: My Recommendations
• Use postfix forms (clearly more popular).
• Use either / (most popular) or! (arguably clearer). Never use .
• If you use /, do not make names smaller (it only makes them less readable).
• Reserve 7! for function/map update and := for storage update.
• Use brackets [] for operators; use braces { } for collections.

applications operators (singleton) collections

substitution e[v/x] a substitution � = [v/x]
substitution e[x! v] a substitution � = [x! v]
map update �[x 7! v] a map update u = [x 7! v] a map � = {x 7! v}
heap update H[x := v] a heap update u = [x := v] a heap H = {x := v}

• Mnemonic for e[v/x]: “Within e, v supersedes (‘sits over’) x.”
• Mnemonic for e[x! v]: “Within e, x becomes v.”

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 47

OVERLINE

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 48

Overline Notation (and Dots and Parentheses) (1 of 2)

1484 Nicolas Chuquet uses an underline for mathematical grouping.
1525 Christoff Rudolff uses the sign

p
to indicate taking a square root, and

also uses dots to indicate grouping:
p
.12 +

p
140 means

p
12 +

p
140.

1556 Niccolò Tartaglia uses parentheses () for mathematical grouping.
1631 William Oughtred uses double dots : to indicate grouping.
1631 Thomas Harriott uses a long overbrace with

p
for grouping.

1637 René Descartes attaches an overline to
p

, producing
p

.

1640 Jan Stampioen uses all three together : “
p
.(aaa+ 6aab+ 9bba)”.

1646 Frans van Schooten, editing Vieta’s works, uses overline for grouping.
1702 Gottfried Leibniz begins using parentheses in preference to overline.
1708 Acta eruditorum officially adopts the Leibnizian symbolism.
1709 Pierre Louis Maupertuis uses square brackets [].

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 49

Overline Notation (and Dots and Parentheses) (2 of 2)

Three notations for grouping duking it out for five centuries!

1728– Leonhard Euler, Johann Bernoulli, and Daniel Bernoulli use
parentheses and brackets in their publications.

“The constant use of parentheses in the stream of articles from the

pen of Euler that appeared during the eighteenth century contributed

vastly toward accustoming mathematicians to their use.”

—Florian Cajori, A History of Mathematical Notations

1857 Giuseppe Peano reintroduces dots (after a century and a half of disuse),
letting dot count indicate “binding weakness”: “a:bc.d” means “a((bc)d)”.

1881 Josiah Willard Gibbs notates a vector as AB.
1910 Russell and Whitehead (Principia Mathematica) adopt Peano’s dots.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 50

A Little Bit about Vectors

1813 Jean-Robert Argand graphs complex numbers, speaks of i =
p
�1 as

a rotation in the plane, and proposes the notation
�!
ab for vectors.

1833 William Rowan Hamilton recasts the theory of complex numbers as an
algebra on pairs of reals (a1, a2).

1833–43 Hamilton seeks an algebra for triplets and polyplets (that is, tuples).
1843 Hamilton discovers the quaternions a+ bi+ cj+ dk.
1844–46 Hamilton reformulates quaternions without ijk coordinates,

describing a quaternion as the sum of a scalar and an (imaginary) vector.
1873 James Maxwell uses quaternions to describe electricity and magnetism.
1881 Josiah Willard Gibbs establishes · and⇥ for dot and cross product.
1882 Oliver Heaviside advocates ditching scalars and simply using vectors.
1890–94 Big fight between “quaternionists” and “vectorists”!

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 51

Vectors and Overlines at POPL (1 of 3)

1975–1981 Both ~a and a are used to denote a vector, list, sequence, or set
that is enclosed: ~a = ha1, a2, . . . , ami or x = {x1, . . . , xk}.

1978 One paper defines x : ⌧ to be a sequence of variable declarations.

1981 For the first time at POPL, overline notation is taken for granted.

1989 For the first time at POPL, ~X indicates an unenclosed sequence.

So far, the semantic model is that an overline marks a variable as representing
a vector or sequence, and the obvious syntactic model is that you can make
copies of the overlined variable name and attach sequential subscripts starting
from 1. (These copies may be enclosed and may be comma-separated.)

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 52

Vectors and Overlines at POPL (2 of 3)

1990 First explicit claim that the elements may be metasyntactic variables:
“we use the notation �, for some metasyntactic variable � to stand for some
finite, comma-separated list of the form (�1, . . . ,�n

).”

1990 First use of an implicit unit of replication: “If m = m1 . . .mk

and
� = �1 . . . �k, we write m : � for m1 : �1 . . . ,mk

: �
k

”

1993 First claim that overline may apply to any syntactic object :
“a list of syntactic objects s1, . . . , sn is abbreviated by s

n

.
For instance, 8↵

n

: �
n

.� is equivalent with 8↵1 : �2, . . . ,↵n

: �
n

.�.”

1994 First use of overline on a syntactic fragment containing an operator
(in this case, a semicolon): “Let c1, c2, d1, etc., be tuples of coercions.
Then . . . ⇢̂(c1; c2, d1; d2) = ⇢̂(c1, c2); ⇢̂(d1, d2).”

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 53

Problem: Unit of Replication versus Subscript Attachment

We have already seen “m : � ” used for “m1 : �1, . . . ,mk

: �
k

”.
(Later we see “T x ” for “T1 x1, . . . , Tn

x
n

” when describing Java-like
languages.) This raises a question: in a general and purely syntactic model of
overline notation, just how large is the implicit unit of syntactic replication?

Others have written “m : � ” for “m1 : �1 . . . ,mk

: �
k

”. Now the unit of
syntactic replication is clear: it is exactly everything covered by one overline.
But this raises a different question: where should subscripts be attached?
Why is the result “m1 : �1, . . . ,mk

: �
k

”
rather than “m : �1, . . . ,m : �

k

”
or “m1 :1 �1, . . . ,mk

:1 �k ” ?

(It’s easy to come up with reasons; but so far no one has stated them!)

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 54

Vectors and Overlines at POPL (3 of 3)

1994 First use of nested overlines.
1996 First explicit definition of ~a as an unenclosed comma-separated list.
1996 Overline notation taken for granted, but first explicit statement of the

“equal-length convention”: “We implicitly assume in [z/y] that the
sequence y is linear and of the same length as z.”

1996 First use of tilde for repetition: “sequences of types are written T̃
instead of T1, . . . , Tn

.” First mention of using an adjacent comma to
concatenate overlined things: “Type environments are extended with
bindings for new variables writing �, x : T or �, x̃ : T̃ .”

1997 Also uses tilde. First statement of general pointwise extension:
“By abuse of notation, operations on singletons are implicitly extended
pointwise to sequences.” But immediately we run into a problem!

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 55

The Problem (1997)

What is the meaning of �(b̃) = [T̃ /X̃]P̃ ?

If we regard substitution “[· / ·] ·” and equality “· = ·” as
operations on singletons, we can certainly extend them pointwise.
Therefore we can replicate the entire equation, so that
�(b̃) = [T̃ /X̃]P̃ stands for this conjunction of assertions:

�(b1) = [T1/X1]P1 and . . . and �(b
n

) = [T
n

/X
n

]P
n

But semantic analysis of the rest of the paper indicates that the authors really
wanted �(b̃) = [T̃ /X̃]P̃ to stand for a different conjunction of assertions:

�(b1) = [T1/X1, . . . , Tm

/x
m

]P1

and . . .
and �(b

n

) = [T1/X1, . . . , Tm

/x
m

]P
n

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 56

A Solution? Nested Overlines (1 of 2)

Instead of p = [v/x]q , some authors write p = [v/x]q .

Superficially, this seems natural. But how do we know that this means

p1 = [v1/x1, . . . , vm/xm]q1
and . . . where v and x are

one-dimensional
and p

n

= [v1/x1, . . . , vm/xm]qn

and not something like

p1 = [v1 1/x1 1, . . . , v1m/x1m]q1
and . . . where v and x are

two-dimensional
and p

n

= [v
n 1/xn 1, . . . , vnm

/x
nm

]q
n

?

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 57

A Solution? Nested Overlines (2 of 2)

Even without nesting, some authors write � ` x : ⌧ , intending

� ` x1 : ⌧1 � ` x2 : ⌧2 . . . � ` x
n

: ⌧
n

How do we know it isn’t supposed to be

�1 ` x1 : ⌧1 �2 ` x2 : ⌧2 . . . �
n

` x
n

: ⌧
n

?

And we would have the same problem with �(b) = [T/X]P :
why should b and T and X and P get subscripts, but not �?

It is possible to do a global dimensional analysis, but it’s difficult,
especially when the language typically does not contain explicit
declarations of vector variables. (And this is a semantic analysis.)

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 58

The Essential Contradiction

With a purely syntactic theory, we can’t have it both ways.

In about the last 15 years, we have found that we want both of these usages:

We want p = [v/x]q to mean

p1 = [v1/X1, . . . , vm/xm]q1
and . . .

where all the
substitutions are
the sameand p

n

= [v1/X1, . . . , vm/xm]qn

but we want case e of K y ! e0 to mean

case e of
K1 y1 1 . . . y1m1 ! e01
. . .

where each case clause may
have different y variables and
indeed a different number of
y variablesK

n

y
n 1 . . . y

nmn ! e0
n

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 59

What Do We Want From Overline Notation? (1 of 2)

• string can expand to any number of copies of string .

– More concise than ellipsis notation.

– Question: whether and how copies are separated (comma by default?).

– If we want “x, y ” for concatenation, sequence should be unenclosed.

• Each copy of string may be expanded differently.

– BNF nonterminals may be expanded differently in each copy.

– Nested overlines may be expanded differently in each copy.
? This suggests that nested overlines should be processed outside-in.

• But, if string is mentioned more than once in a given context (such as an
inference rule or a text sentence or paragraph), the expansion of each
occurrence must be the same (similar to treatment of BNF nonterminals).

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 60

What Do We Want From Overline Notation? (2 of 2)

• Within each copy of string , multiple occurrences of the same
BNF nonterminal must be expanded in the same way (as usual).

• If a variable v occurs within string , copy i of the string must refer to v
i

.
• All variables occurring in string must have the same length.

A formal theory of overline expansion must track two kinds of constraints:

• Requirements for identical expansion.
• Requirements that variables be the same length.

Various constraints suggest that:

• Overlines should be expanded before BNF nonterminals.
• Substitutions should be expanded after BNF nonterminals.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 61

Solving the Essential Contradiction

Guy L. Steele Jr. and W. Daniel Hillis.
Connection Machine Lisp: Fine-grained Parallel Symbolic Processing.

Proc. 1986 ACM Conference on LISP and Functional Programming, 279-297.

We propose to borrow an idea from quasiquoting:

• ‘(lambda (,vars) ,body) means “make a copy of the S-expression
(lambda (,vars) ,body), but a comma means ‘except here’: the
value of the expression following the comma is used”.

This idea was also used for parallelism in Connection Machine Lisp (1986):

• ↵(+ (* 9/5 •temps) 32) means “evaluate many copies of the
expression (+ (* 9/5 •temps) 32), but a bullet means ‘except here’:
the value of the expression following the bullet is a vector, so please use a
different vector element in each copy”.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 62

Adding Underlines to Overlines

The dimensionality of each variable is simply
the number of overlines minus the number of underlines.

We propose this modification to overline notation:

• Each copy of string may be expanded differently, but underline means
“except here”: any underlined portion of string must be expanded the
same way in each copy.

Therefore for our examples we can write:

p = [v/x]q same substitution in each outer copy

case e of K y ! e0 as before

�(b) = [T/X]P same � and same substitution in each outer copy

� ` x : ⌧ same � in each copy

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 63

A Simple (?) Formal Model for Overline Expansion
The solution is to integrate the old “subscript attachment” model; the usual
rules for BNF nonterminals will then enforce the necessary same-expansion
constraints. (Length constraints must still be tracked separately.)

To expand an outermost overline:

• Freely choose an integer length n.
• Replaced the overlined string with n copies of the string.
• In copy k (1  k  n), for every (possibly already decorated) single letter

or BNF nonterminal that is not underlined, attach k as a subscript.

– Record the fact that all items to which subscripts are attached are
constrained to have the same length.

• In each copy, from any underlined material remove just one underline.
• Now perform expansions in the replacement material.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 64

A Simple Formal Model for Context Expansion

To expand an entire context (inference rule, right-hand side of a BNF rule,
or text sentence or paragraph):

• Repeatedly expand outermost overlines until none are left.

• Expand all BNF nonterminals, obeying the same-expansion and
decorated-nonterminal rules.

• Expand all substitution notations.

The expansion of an entire context is valid only if the various “free choices” for
overline lengths have been made so that all length constraints are satisfied.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 65

What about Cases Simple Overlines Can’t Handle?

Notations such as m
n

: �
n

(where n is a globally defined length)
or m

i

: �
i

(where i is an implicitly bound index variable) clearly identify
subscript attachment points, but do not extend well to nesting:

�(b
i

) = [T
j

/X
j

]P
i

It takes some analysis to match the indices to the overlines.

Other writers explicitly mark the binding points: �(b
i

) = [T
j

/X
j

j

]P
i

i

and some even explicitly specify ranges: �(b
i

) =
h
T
j

/X
j

1jmi
P
i

0i<n

I endorse these two explicit-binding overline notations for difficult cases.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 66

ELLIPSIS

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 67

The Ellipsis (Dot Dot Dot)

Most readers will have encountered the dotdotdot notation

already. It is a notation that is rarely introduced properly;

mostly, it is just used without explanation as in, for example,

‘1 + 2 + · · · + 20 = 210 ’

—Roland Backhouse, Program Construction (Wiley, 2003), p. 137

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 68

In the Past, We Have Used Ellipsis to Explain Overline

“x” means “x1, . . . , xn”

But what does “x1, . . . , xn” mean?

We propose to explain the ellipsis notation

by providing a formal transformation to overline notation

(whose formal definition need not rely on ellipses).

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 69

Ellipsis Notation Has Many Forms

1, 2, . . . , n

x1, . . . , xn
a1 � · · ·� a

n

x0, . . . , xn
x0, . . . , xn�1

x1, x2, . . . , xn�1, xn
x1, x2, . . .
x1, . . .

x1 + y1 + c, . . . , x
n

+ y
n

+ c

if p1 then e1
else if p2 then e2
else if . . .
else if p

n�1 then e
n�1

else e
n

(e1, . . . , ei, . . . , en)
(e1, . . . , ei�1, this, ei+1, . . . , en)
(. . . , e

i�1, this, ei+1, . . .)

(q, x1, . . . , xn, y1, . . . , yn)
(x1, y1, . . . , xn, yn)

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 70

More Difficult Ellipsis Notation Forms

• Not really a series; each “. . . ” is just a list of don’t-cares:
class C { . . . T1 m1(. . .) body1 . . . T2 m2(. . .) body2 . . . }

• Matrix elements m⇥ n listed linearly (nested use of ellipsis notation!):
x11, x12, . . . , x1n, . . . , xm1, xm2, . . . , xmn

• Nested function calls (note use of two ellipses):
f1(f2(. . . (fn(x)) . . .))

• Nested function calls with other arguments:
f1(f2(. . . (fn(x, yn)) . . . , y2), y1)

• Function calls nested the other way:
f
n

(f
n�1(. . . (f2(f1(x, y1), y2), . . . , yn�1), yn)

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 71

The Basic Idea

• Predefine a set of standard usage patterns to be supported.

• For each use of ellipsis, expansion must identify a matching usage pattern.

• Each pattern includes (a) one or more ellipses, (b) some number of copies
of a separator string, and (c) matchable strings.

• Use unification-like matching on the matchable strings to find a
common structure parameterized by one variable (an integer index)
and a set of unifying substitutions for that variable.

• Construct an overline notation using one copy of the common structure
and one copy of the separator string, and use the substitution expressions
to specify the range and/or verify constraints.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 72

Examples

Example 1: “x0, . . . , xn�1”:
the separator is “,”;
the matchable strings are x1 and x

n

;
the common structure is x

i

with substitutions [0/i] and [n� 1/i];
the result is x

i

0in�1.

Example 2: “a1b1 � a2b2 � . . .”:
the separator is “�”;
the matchable strings are a1b1 and a2b2;
the common structure is a

i

b
i

with substitutions [1/i] and [2/i];
the pattern requires verification that 1 and 2 are consecutive integers;

and the result is
�������*
a
i

b
i

�
i

.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 73

Overall Structure of the Approach

• Regard the text to be processed as a horizontally linear string of tokens.

• Repeat the following until some complete pass fails to change the text:

– For every ellipsis in the text (processing as if in some sequential order):
? Attempt a left-and-right single-ellipsis replacement.
? If that fails, attempt a left-only single-ellipsis replacement.
? If that fails, attempt a double-ellipsis replacement.
? If that fails, . . . hthere may be other kindsi.

• Every remaining ellipsis that is both left-delimited and right-delimited is
replaced with “ ” (an overline cluster containing the don’t-care symbol).

• It is an error if there is any remaining ellipsis in the text.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 74

Left-and-Right Single Ellipsis Replacement (a1, . . . , an)

Let i be a fresh variable. Try to identify a substring having pattern ↵0 ↵00

such that the “ ” in the pattern corresponds to the ellipsis in the text and:

• the substring is completely contained by any overline or underline
containing the ellipsis;

• each of ↵0 and ↵00 is maximal, is balanced, and contains no ellipsis; and

• there exist nonempty ↵ and p0 and p00 such that:

– i occurs at least once in ↵, ↵[p0/i] = ↵0, and ↵[p00/i] = ↵00; and

– p0 and p00 are balanced and minimal, and p0 6= p00.

If successful, then if  is “,”, replace the matched substring with ↵ piq ;
otherwise, if  is empty, replace the matched substring with �*↵ piq ;

otherwise replace the matched substring with ���*↵ piq.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 75

Left-only Two-term Single Ellipsis Replacement (a1, a2, . . .)

Similar, but seek a substring of the pattern ↵0↵00 such that:

•  is a single token that is not a left or right encloser;

• each of ↵0 and ↵00 is maximal, is balanced, and contains no ellipsis; and

• there exist nonempty ↵ and p0 and p00 such that:

– i occurs at least once in ↵, ↵0 = ↵[p0/i], and ↵00 = ↵[p00/i];

– p0 and p00 are balanced and minimal;

– p00 = p0 + 1 (as determined by a solver).

If p0 = 1, let ↵000 = ↵; otherwise let ↵000 = ↵[(i� 1 + p0)/i].

If successful, then if  is empty, replace the matched substring with
���*
↵000 ;

otherwise replace the matched substring with
�����*
↵000 .

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 76

Conclusions

• Computer Science Metanotation is a programming language with its own
distinctive syntax, semantics, and idioms.

• CSM should be an explicit object of study in our community.
• CSM is a living language and has changed over the years.
• Some recent changes have caused problems. These can be fixed.
• We should develop a complete formal theory of the language,

including overline notation and ellipsis notation (including nested cases)
and their interaction with BNF and substitution. I have made a start.

• We should apply the techniques developed for other languages to CSM to
build interpreters, compilers, IDEs, correctness checkers, and other tools.

• There are interesting opportunities for parallel execution of CSM
and the use of parallel algorithms in associated tools.

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 77

Questions?

Comments?

Copyright c� 2017 Oracle and/or its affiliates. All rights reserved. 78

