
Design Tradeoffs in Modern Software Transactional Memory Systems∗

Virendra J. Marathe, William N. Scherer III, and Michael L. Scott
Department of Computer Science

University of Rochester
Rochester, NY 14627-0226

{vmarathe, scherer, scott}@cs.rochester.edu

ABSTRACT
Software Transactional Memory (STM) is a generic non-
blocking synchronization construct that enables automatic
conversion of correct sequential objects into correct concur-
rent objects. Because it is nonblocking, STM avoids tradi-
tional performance and correctness problems due to thread
failure, preemption, page faults, and priority inversion.

In this paper we compare and analyze two recent object-
based STM systems, the DSTM of Herlihy et al. and the
FSTM of Fraser, both of which support dynamic transac-
tions, in which the set of objects to be modified is not
known in advance. We highlight aspects of these systems
that lead to performance tradeoffs for various concurrent
data structures. More specifically, we consider object own-
ership acquisition semantics, concurrent object referencing
style, the overhead of ordering and bookkeeping, contention
management versus helping semantics, and transaction vali-
dation. We demonstrate for each system simple benchmarks
on which it outperforms the other by a significant margin.
This in turn provides us with a preliminary characterization
of the applications for which each system is best suited.

1. INTRODUCTION
A concurrent object is a data object shared by multiple
threads of control within a concurrent system. Classic lock-
based implementations of concurrent objects suffer from sev-
eral important drawbacks, including deadlocks, priority in-
version, convoying, and lack of fault tolerance. Due to these
drawbacks, the last two decades have seen an increasing in-
terest in nonblocking synchronization algorithms, in which
the temporary or permanent failure of a thread can never
prevent the system from making forward progress.

∗This work was supported in part by NSF grant num-
bers EIA-0080124, CCR-9988361, and CCR-0204344, by
DARPA/AFRL contract number F29601-00-K-0182, and by
financial and equipment grants from Sun Microsystems Lab-
oratories.

Software Transactional Memory (STM) [16] is a particu-
larly attractive approach to the construction of nonblock-
ing objects, allowing highly concurrent (fine grain) imple-
mentations to be created in a purely mechanical way from
correct sequential code. Use of an STM system signifi-
cantly simplifies the task of implementing concurrent ob-
jects. Those of us working in the field envision a day when
STM mechanisms are embedded in compilers for languages
like Java and C#, providing nonblocking implementations of
synchronized methods “for free”. There are several chal-
lenges involved in achieving that vision, however, includ-
ing simple (no-contention) overhead, and arbitration among
competing transactions when contention is high.

Transactional Memory was originally proposed by Herlihy
and Moss as a novel architectural support mechanism for
nonblocking synchronization [10]. A similar mechanism was
proposed concurrently by Stone et al. [17]. A transaction
is defined as a finite sequence of instructions (satisfying the
linearizability [11] and atomicity properties) that is used to
access and modify concurrent objects. Herlihy and Moss
[10] proposed the implementation of transactional memory
by simple extensions to multiprocessor cache coherence pro-
tocols. Their transactional memory provides an instruction
set for accessing shared memory locations by transactions.
Several groups subsequently proposed software-only mech-
anisms with similar semantics [1, 2, 3, 12, 16, 18]. Shavit
and Touitou [16] coined the term “software transactional
memory”.

Early STM systems were essentially academic curiosities,
with overheads too high to be considered for real-world sys-
tems. More recent systems have brought the overhead down
to a level where it may be considered an acceptable price
for automation, fault tolerance, and clean semantics. The
execution overhead of STM comes from the bookkeeping
required for transactions. In our experiments, the IntSet

benchmark (to be discussed later) runs a decimal order of
magnitude slower than a version with a global lock, in the
absence of contention. At the same time, it scales much bet-
ter with contention. Herlihy et al. [9] and Fraser [5] show
that their STMs are highly scalable, and outperform coarse-
grain locks for complex data structures like search trees.

This paper is a comparative analysis of two promising recent
object-based realizations of STM: the DSTM [9] of Herlihy
et al. and the FSTM [5] of Fraser. Our comparison high-
lights the key design aspects that differ significantly in these
systems, and are mainly responsible for their differing per-

 Start

 Old Locator

New Locator

CAS

Transaction

New Object

Old Object

Transaction

New Object

Old Object

Committed
Transaction

Shared Object −

Shared Object −

New Active
Transaction

Shared Object −
New Version

Copy
New Version

Old Version

TMObject

Figure 1: Opening a TMObject recently modified

by a committed transaction

formance on various benchmarks. In Sections 2 and 3 we
briefly describe the design of DSTM and FSTM respectively.
Our comparative evaluation appears in Section 4. We fo-
cus in particular on object ownership acquisition semantics,
concurrent object referencing style and its effects, the extra
overhead of ordering and bookkeeping, contention manage-
ment versus helping semantics, and transaction validation.
The comparison uses experimental results from Java-based
implementations to quantify our findings. In Section 5 we
present related work. We conclude in Section 6.

2. DSTM
Dynamic Software Transactional Memory (DSTM) [9] sup-
ports obstruction-free [8] transactions on dynamically se-
lected sets of objects. Obstruction freedom simplifies the im-
plementation by guaranteeing progress only in the absence
of contention. Arbitration among competing transactions is
handled “out of band” by a separate contention management
system [15]. To further reduce contention, DSTM also intro-
duces the concepts of early release, in which a transaction
can drop a previously “opened” object from its atomicity
set, and invisible reads, which allow a transaction to access
an object in read mode in such a way that other transactions
that access the same object do not detect a conflict.

Figure 1 depicts the architecture of a Transactional Mem-
ory Object (TMObject) in DSTM. The TMObject acts as
a wrapper around a concurrent data object. It contains a
pointer to a locator object. The locator stores a pointer
to a descriptor of the most recent transaction that tried to
modify the TMObject, together with pointers to old and
new versions of the data object. A transaction descriptor
pointed to by a locator may be in any of the three states:
ACTIVE, ABORTED, or COMMITTED. If the transaction is COM-

MITTED, the new version referred to by the locator is the most
recent valid version of the concurrent object; otherwise the
old version is the valid version.

A transaction must access a data object via its wrapper
TMObject using the open operation. A transaction may
open a TMObject in read mode or write mode. If the ob-
ject is opened in write mode, the transaction first acquires
that TMObject. To do so, the transaction creates a new
locator object that points to the transaction descriptor, the
most recent valid version of the data object, and a newly cre-

ated copy of the most recent valid version. The transaction
then performs an atomic Compare and Swap (CAS) on the
pointer in the TMObject, to swing it to the new locator. A
failure of this CAS implies that some other transaction has
opened (acquired) the TMObject in-between, in which case
the current transaction must retry the acquire. Figure 1
depicts the open operation of a TMObject after a recent
commit.

In the presence of contention, a transaction that wishes to
acquire a given object may find that the most recent previ-
ous transaction to do so (pointed to by the locator of the
TMObject) is still ACTIVE. The current transaction can
then choose to wait, to abort, or to force the competitor
to abort. To make this decision it queries the contention
manager. Scherer and Scott have shown that the choice of
contention management policy can have a major effect on
performance [15].

For read-only access to TMObjects, a full-fledged acquire
operation would cause unnecessary contention between trans-
actions. To avoid this contention, each transaction main-
tains a private list (the read-list) of objects it has opened
in read-only mode. Because these objects may be modi-
fied by other transactions, the current transaction must re-
check their validity before attempting to commit. If the use
of stale data during a not-yet-committed transaction may
lead to incorrect behavior (addressing errors, infinite loops,
divide-by-zero, etc.), then a transaction may need to reval-
idate all open read-only objects whenever it opens another
object. The current version of the DSTM performs this val-
idation automatically as part of the open operation. The
DSTM designers are currently experimenting with a version
of the DSTM in which reads are visible to competing trans-
actions. For visible reads, a TMObject typically contains
a reader transaction list as well. A reader needs to add it-
self in this list during the read operation. The acquirer in
turn has to traverse this reader list of the target TMOb-
ject for resolving read-write conflicts. This version avoids
the cost of revalidation, but increases the overhead of the
acquire operation; the readers, on the other hand, have to
add and remove themselves from the reader list of a target
TMObject.

Early release serves to shrink the window of time during
which transactions may be recognized as competitors. The
consistency of transactions, however, must then be guar-
anteed by the application programmer, based on object-
specific semantics.

3. FSTM
The FSTM system, named after its author, was developed
by Keir Fraser at the University of Cambridge as part of
his doctoral research [5]. (In more recent work [6], Fraser
and Harris refer to the system as OSTM, for Object-based
Software Transactional Memory.) Unlike DSTM, FSTM
is lock-free, meaning that it guarantees forward progress
(though not livelock freedom) for the system as a whole:
within a bounded number of steps, from any thread’s point
of view, some thread is guaranteed to complete a trans-
action. To make this guarantee, FSTM employs recursive
helping. When a transaction A detects a conflict with an-

UNDECIDEDstatus

read−only list

read−write list

ob
je

ct
 r

ef

ol
d

da
ta

ne
w

 d
at

a

ne
xt

 h
an

dl
e

Object Handles

Concurrent
Object

Shadow
Copy

Object Header

Transaction Descriptor

Figure 2: The basic Transactional Memory Struc-

ture in FSTM

other transaction B, A uses B’s transaction descriptor to
make B’s updates on its behalf and then typically aborts
and restarts itself. Consequently, even if B’s owner thread
terminates or stalls halfway through completion of B, other
threads may help complete transaction B.

Each concurrent object in FSTM is wrapped in an object
header. A transaction gains access to objects by opening
their corresponding headers. Each transaction uses a trans-
action descriptor to maintain a list of in-use objects. Along
with a transaction status flag, the transaction descriptor
contains a read-only list for the objects opened in read mode
and a read-write list for the objects opened in write mode.
Both lists contain object handles. An object handle con-
tains references to the object header, the object itself, and
a shadow copy of the object. The transaction performs all
its updates on the shadow copy, which is local to the trans-
action. In contrast to the conventions of DSTM, multiple
transactions may open the same object in write mode; each
has its own shadow copy.

A transaction may be in any of four states: UNDECIDED,
ABORTED, COMMITTED, or READ-CHECKING. A transaction al-
ways begins in the UNDECIDED state. Figure 2 depicts an
example transaction descriptor used by a transaction to ac-
cess an object in write mode. The object header is a simple
pointer to the concurrent object, through which any other
interested transaction would attempt to access the object.
What is not clear from the figure is that the object header
may also point to a transaction descriptor when the corre-
sponding transaction acquires the object header.

A transaction opens object headers while in the UNDECIDED

state, creating object handles and adding them to the read-
only or read-write list, as appropriate. The fact that the
objects are open does not become visible to other transac-
tions, however, until the current transaction enters its com-
mit phase. If a conflict is detected, the transaction recur-
sively helps the conflicting transaction.

A transaction in commit phase first acquires all objects it
has opened in write mode, in some global total order (typi-
cally based on virtual address—this requires a sorting step)
using atomic CASes. Each CAS replaces the pointer in the
object header with a pointer to the acquiring transaction’s
descriptor. Pointers are tagged in a low-order bit1 to indicate

1Our Java implementation uses the instanceof operator to
identify the pointer type.

whether they refer to an object or a transaction descriptor.
If an acquiring transaction discovers a conflict (the pointer
it is attempting to change already points to the descriptor
of some competing transaction), the acquiring transaction
recursively helps the competitor. Global total ordering en-
sures that there will be no helping cycles.

After a successful acquire phase, the transaction atomically
switches (via CAS) to the READ-CHECKING state and vali-
dates the objects in its read-only list. Validation consists of
verifying that the object header still refers to the version of
the object that it did when the object handle in the read-
only list was created. If it refers to a different version, the
transaction must abort. If it refers to the descriptor of a
competing transaction, the current transaction may again
perform recursive helping. Recursive helping proceeds only
if the competitor transaction precedes the potential helper
in some global total order (e.g., based on thread and trans-
action ids). Additionally, the competitor must also be in its
READ-CHECKING state. If the potential helper precedes the
competitor, the competitor is aborted. The current trans-
action then proceeds (even in the case where the competitor
is in UNDECIDED state) if the competitor’s old version of the
object was the same as the one in the current transaction’s
object handle; otherwise the current transaction must also
abort.

After successful validation in the READ-CHECKING state, the
transaction atomically switches to the COMMITTED state and
releases the acquired objects by swinging their object han-
dles to refer to the new version of the data.

4. COMPARATIVE EVALUATION
In the preceding two sections we sketched designs of re-
cent object-based STM systems, the DSTM and the FSTM.
While both have significant constant overhead, they are
substantially simpler than previous approaches—enough to
make them serious candidates for practical use, particularly
given the semantic and software engineering advantages of
nonblocking algorithms relative to lock-based alternatives.
In this section we highlight the design tradeoffs embodied
by the two designs, and their impact on the performance
of various concurrent data structures. A more detailed but
qualitative comparison can be found in our earlier technical
report [14].

Our experimental results were obtained on a 16-processor
SunFire 6800, a cache-coherent multiprocessor with 1.2GHz
UltraSPARC III processors. The testing environment was
Sun’s Java 1.5 beta 1 HotSpot JVM, augmented with a
JSR166 update from Doug Lea [13].

We report results for four simple benchmarks (a stack and
three variants of a list-based set) and one slightly more
complex benchmark (a red-black tree). In the list and red-
black benchmarks, threads repeatedly but randomly insert
or delete integers in the range 0. . . 255 (keeping the range
small increases the probability of contention).

We measured the total throughput over 10 seconds for each
benchmark varying the number of worker threads between
1 and 48. Results were averaged over a set of six test runs.
In all the experiments we have used the Polite contention

manager for DSTM, which performs reasonably well [15] on
the benchmarks we have chosen. Except where stated oth-
erwise, we perform incremental validation in both DSTM
and FSTM, rechecking the consistency of previously opened
objects when opening something new.

4.1 Object Acquire Semantics
In DSTM, a transaction acquires exclusive (though abort-
able) access to an object when it first opens it for write
access. Because this strategy makes the transaction visible
to potential competitors early in its lifetime, we call it ea-
ger acquire. In FSTM, transactions acquire exclusive access
only when they enter their commit phase. This strategy
makes the transaction visible to potential competitors much
later in its lifetime; we call it lazy acquire. Eager acquire en-
ables earlier detection and resolution of conflicts than lazy
acquire; lazy acquire may cause transactions to waste signifi-
cant computational resources on doomed transactions before
detecting a conflict. Another advantage of eager acquire is
that unrelated threads can make progress faster if the thread
detecting an early conflict decides to yield the processor. On
the flip side, lazy acquire tends to minimize the window dur-
ing which transactions may be identified as competitors; if
application semantics allow both transactions to commit,
lazy acquire may result in significantly higher concurrency.

DSTM could in principle be modified to use lazy acquire.
The open operation would not contain a CAS, but the com-
mit operation would require a heavyweight “multi-word
CAS” like that of FSTM. FSTM, however, could not be
modified to use eager acquire without abandoning the dy-
namic selection of objects to be modified. Lock freedom
in FSTM requires that objects be acquired in global total
order, to avoid cyclic helping. Only after all objects have
been opened can a transaction in general know which ob-
jects it will need; only then can it acquire them in order. In
short, lazy acquire is necessary to the lock-free semantics of
dynamic transactions in FSTM; DSTM is able to use eager
acquire because it is merely obstruction-free.

In this subsection we present performance results of the red-
black tree benchmark (RBTree) as a plausible candidate ex-
ample of the direct impact of acquire semantics. Red-black
trees provide a beautiful illustration of STM’s software engi-
neering benefits: using DSTM or FSTM we can construct a
correct, highly concurrent red-black tree via simple mechan-
ical transformation of correct sequential source. A compa-
rable implementation using explicit fine-grain locks is noto-
riously difficult to write.

Figure 3 plots throughput (in transactions/sec.) against con-
currency for DSTM and FSTM versions of RBTree. We con-
jecture that the higher performance of FSTM here is a direct
result of lazy acquire semantics. As illustrated in Figure 4,
DSTM’s wider contention window significantly increases the
number of times that transactions are judged to be in con-
flict; this number climbs steadily with the level of true con-
currency (recall that our machine has 16 processors).

It is conceivable that a better contention manager would
improve the performance of DSTM, but Scherer and Scott
report [15] that the Polite contention manager (used in these
experiments) is among the best performers on RBTree. As a

0 4 8 12 16 20 24 28 32 36 40 44 48
0

1e+05

2e+05

3e+05

4e+05

5e+05

of Threads

Tx
 /

se
c

FSTM
DSTM

Figure 3: RBTree Performance Results

0 4 8 12 16 20 24 28 32 36 40 44 48
0

1e+05

2e+05

3e+05

4e+05

5e+05

of Threads

C
on

te
nt

io
n

In
st

an
ce

s
/ s

ec

FSTM
DSTM

Figure 4: RBTree – Number of Contention Instances

cross check we tested other top contention managers (Karma
and Kindergarten [15]), with similar results.

Fraser [5] also compared the performance of FSTM and
DSTM on a red-black tree benchmark. While he, too, found
that FSTM provided higher throughput, the difference re-
mained more or less constant at all thread counts. We at-
tribute the difference to the implementations of FSTM and
DSTM. Our versions are written in Java and rely on auto-
matic garbage collection, whose performance does not scale
with the number of threads. Fraser’s versions are written
in C and use manual storage reclamation, which parallelizes
nicely.

4.2 Bookkeeping and Indirection
A comparison of Figures 1 and 2 reveals an extra level of in-
direction in DSTM [5]: where an FSTM object header points
to the object data, a DSTM TMObject points to a Locator,
which in turn points to the object data. In effect, FSTM
maintains a locator (object handle) only for objects being
used by some transaction; it chains these off the transaction
descriptor. The extra indirection of DSTM may result in
slower reads and writes of open objects—and thus slower
transactions—when contention is low, particularly if most
transactions are read-only.

At the same time, indirection allows DSTM to commit with
a single CAS on the status field of the transaction’s descrip-
tor. FSTM requires a substantially more complex multi-
word CAS. In the absence of contention, if a transaction
updates N concurrent objects, DSTM requires a total of
N + 1 CAS operations; FSTM requires 2N + 2. Indirec-
tion also eliminates the overhead of inserting object han-

0 4 8 12 16 20 24 28 32 36 40 44 48
0

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

of Threads

Tx
 /

se
c

FSTM
DSTM

Figure 5: Stack Performance Results

0 4 8 12 16 20 24 28 32 36 40 44 48
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

of Threads

Tx
 /

se
c

FSTM
FSTM−NoVal
DSTM

Figure 6: IntSet Performance Results

dles into transaction descriptor chains. Transactions with a
large number of writes may be faster in DSTM. (Our im-
plementation keeps the FSTM write list sorted, so insertion
takes linear time, but we use an auxiliary hash table for
fast lookups.). Here, the eager acquire semantics in DSTM
serve as a foundation to exploit the benefits of the extra
level of indirection for faster writes. Lazy acquire semantics
mandate extra bookkeeping as in FSTM.

We use the Stack, IntSet, and IntSetRelease benchmarks to il-
lustrate the impact of these overheads. Stack illustrates very
high contention for a single word (the top-of-stack pointer).
As shown in Figure 5, DSTM outperforms FSTM by a factor
of more than two. We attribute this difference to the extra
bookkeeping, in FSTM, associated with opening objects in
write mode.

IntSet maintains a sorted list. Every insert or delete op-
eration opens all objects from the beginning of the list in
write mode. As a result, successful transactions are serial-
ized. Figure 6 shows an order of magnitude higher through-
put for DSTM. FSTM suffers from extra bookkeeping over-
head, sorting overhead, and extra CASes, in decreasing or-
der of significance. We initially suspected that incremental
validation might account for much of the performance dif-
ference in IntSet: FSTM must inspect the handle of every
open object, but in the absence of read-only objects, DSTM
need only verify that the current transaction has not yet
aborted. As it turns out, however, this extra overhead in
FSTM is dwarfed by sorting and bookkeeping. The third
curve in Figure 6 reveals less than a two-fold improvement
in throughput when validation is removed from FSTM.

0 4 8 12 16 20 24 28 32 36 40 44 48
0

20000

40000

60000

80000

100000

120000

140000

160000

of Threads

Tx
 /

se
c

FSTM
DSTM

Figure 7: IntSetRelease Performance Results

0 4 8 12 16 20 24 28 32 36 40 44 48
0

10000

20000

30000

40000

50000

60000

70000

of Threads

Tx
 /

se
c

FSTM
FSTM−NoVal
DSTM
DSTM−NoVal

Figure 8: IntSetUpgrade Performance Results

IntSetRelease is a variant of IntSet in which only the object
to be modified is opened in write mode; all other objects are
opened temporarily in read mode and then either released
(when moving on to the next node in the list) or upgraded
to write mode. In this case results strongly favor FSTM:
not only does it outperform DSTM by more than a factor of
two; overall throughput is also higher than that of DSTM
in IntSet by nearly a factor of four due to a higher degree of
concurrency. The explanation appears to lie with DSTM’s
overhead due to the extra level of indirection.

4.3 Contention Management and Helping
FSTM employs recursive helping to ensure lock freedom.
Although lock freedom may be desirable from a semantic
point of view, obstruction freedom tends to simplify the im-
plementation of ad hoc concurrent objects, and may lead
to better performance [8]. In particular, helping has been
shown in some applications to lead to significant thrashing
of cache blocks. Contention management in obstruction-free
algorithms, however, requires nontrivial overhead (5–10% in
our experiments), and must be carefully designed to elimi-
nate livelock. Careful evaluation of these tradeoffs is a sub-
ject for future research. In particular, there may be value in
providing helping as an option (in addition to waiting and
aborting) in a contention management system.

4.4 Transaction Validation
Invisible reads and (in the case of FSTM) lazy acquire may
allow a transaction to enter an inconsistent state during its
execution. Inconsistency in turn may lead to memory access
violations, infinite loops, arithmetic faults, etc. In certain
cases the programmer may be able to reason that consis-

tency is not a problem, but this is not a general-purpose
solution. Herlihy et al. [9] therefore perform incremental
validation automatically at open time in DSTM. As an al-
ternative, Fraser proposes a mechanism based on exception
handling [5] to catch problems when they arise, rather than
prevent them. On a memory access violation, the exception
handler is designed to validate the transaction that caused
the exception. The responsibility of detecting other incon-
sistencies is left to the application programmer.

We use the IntSet and IntSetUpgrade benchmarks to eval-
uate the cost of incremental validation. We have already
discussed IntSet. IntSetUpgrade, like IntSetRelease, acquires
a write lock on only the nodes that need to be changed. It
does not, however, perform an early release on nodes that
have been passed. The fact that most open nodes are read-
only introduces some concurrency (if transaction A starts
down the list and then transaction B passes it, B can make
a modification toward the end of the list without causing
A to abort). The invisibility of reads in DSTM, however,
means that both DSTM and FSTM require validation over-
head at open time linear in the number of already open
nodes—quadratic time overall.

Figure 8 depicts the performance of IntSetUpgrade under
the two STM systems with and without incremental valida-
tion. FSTM outperforms DSTM in both cases, by roughly
a factor of two, as a result of DSTM’s indirection costs. For
both systems, however, the cost of validation is dramatic:
throughput increases by roughly a factor of five if we forgo
validation. These results suggest substantial potential bene-
fits from using application-specific reasoning to eliminate the
need for (or at least the frequency of) incremental valida-
tion. Unfortunately, the need for such reasoning is strongly
counter to the software engineering goals of STM. More-
over the IntSet benchmark illustrates that simply removing
incremental validation (if possible) may not yield as high
throughput as expected. In fact, since incremental valida-
tion is a tool for early detection of conflicts, the performance
of some benchmarks may degrade with the removal of incre-
mental validation.

5. RELATED WORK
After a flurry of activity in the early to mid 1990s (cited
in Section 1), STM research went largely dormant until the
last few years. We focus here on recent work.

Harris and Fraser [7] have proposed a word-based STM that
hashes shared memory words into ownership records. A
transaction acquires these ownership records before mak-
ing any updates to the corresponding shared words. Con-
tention is resolved by abort the conflicting transaction, so
the system as a whole is obstruction-free. (We conjecture
that one could introduce contention management mecha-
nisms here to increase throughput significantly [15].) Harris
and Fraser also introduce a novel stealing mechanism for
corner cases to avoid the cache thrashing that might result
from recursive helping. Marathe and Scott [14] have pro-
posed an alternative method of stealing and helping, using
the load-linked and store-conditional instructions, that re-
duces the complexity of the word-based STM significantly.
Their method also resolves a scalability issue of the stealing

mechanism proposed by Harris and Fraser.

Cole and Herlihy [4] propose an optimization to the DSTM
to reduce the bookkeeping overhead for objects opened in
read mode. We conjecture that this optimization could be
extended to FSTM as well. Scherer and Scott [15] focus
on the contention management problem in DSTM. They
propose and evaluate several different contention managers,
and show that performance depends critically on choosing
the right one for a given application. Our work in this pa-
per differs from these contributions in that we focus on the
higher level design decisions of DSTM and FSTM, showing
their impact on overall performance for various concurrent
data structures.

6. CONCLUSIONS
In this paper we evaluated tradeoffs in the design of prac-
tical, object-based STM systems [5, 9]. DSTM tends to
do better—potentially much better—for transactions that
open objects mostly in write mode, due to both the early
detection of conflicts and the avoidance of bookkeeping over-
head. For transactions that open objects mostly in read-only
mode, both systems incur significant bookkeeping overhead,
but FSTM does not pay the ordering cost that it does with
writes, while DSTM still has to pay for its extra level of
indirection. For the benchmarks we considered the result is
a roughly two-fold throughput advantage for FSTM. Our
experiments were all conducted with invisible reads. Using
visible reads in DSTM [15] might significantly alter perfor-
mance; this is a topic for future research.

Acquire semantics play a key role in the relative perfor-
mance of DSTM and FSTM. Eager acquire tends to help in
the early detection of conflicts, whereas lazy acquire reduces
the window in which transactions may be seen as competi-
tors. Lazy acquire also permits the use of ordering, allowing
FSTM to offer lock-free semantics. Eager acquire, on the
other hand, helps reap the benefits of the extra level of in-
direction for faster writes in DSTM.

Incremental validation relieves the programmer from the
burden of ensuring intra-transaction consistency, but incurs
significant costs. Automatic techniques to reduce the cost
of validation seem eminently worth pursuing. Other topics
of future interest include experiments with additional data
structures and applications, comparison to lock-based im-
plementations, and the development of compiler support for
the automatic construction of STM-based nonblocking ob-
jects.

Acknowledgment
We are grateful to the Scalable Synchronization Group at
Sun Microsystems Laboratories, Boston, for donating the
SunFire machine, and for providing us with a copy of their
DSTM system.

7. REFERENCES
[1] J. H. Anderson and M. Moir. Universal Constructions

for Large Objects. In Proceedings of the 9th
International Workshop on Distributed Algorithms,
pages 168–182. Springer-Verlag, 1995.

[2] J. H. Anderson and M. Moir. Universal Constructions
for Multi-Object Operations. In Proceedings of the
14th Annual ACM Symposium on Principles of
Distributed Computing, pages 184–193, 1995.

[3] G. Barnes. A Method for Implementing Lock-Free
Shared Data Structures. In Proceedings of the 5th
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 261–270, 1993.

[4] C. Cole and M. P. Herlihy. Snapshots and Software
Transactional Memory. In Proceedings of Workshop on
Concurrency and Synchronization in Java Programs,
2004.

[5] K. Fraser. Practical Lock-Freedom. Technical Report
UCAM-CL-TR-579, Cambridge University Computer
Laboratory, February 2004.

[6] K. Fraser and T. Harris. Concurrent Programming
without Locks. Submitted for publication.

[7] T. Harris and K. Fraser. Language Support for
Lightweight Transactions. In Proceedings of 18th
Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 388–402, 2003.

[8] M. P. Herlihy, V. Luchangco, and M. Moir.
Obstruction Free Synchronization: Double-Ended
Queues as an Example. In Proceedings of 23rd
International Conference on Distributed Computing
Systems, pages 522–529, May 2003.

[9] M. P. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer III. Software Transactional Memory for
Dynamic-sized Data Structures. In Proceedings of
22nd Annual ACM Symposium on Principles of
Distributed Computing, July 2003.

[10] M. P. Herlihy and J. E. B. Moss. Transactional
Memory: Architectural Support for Lock-Free Data
Structures. In Proceedings of the 20th Annual
International Symposium on Computer Architecture,
pages 289–300, May 1993.

[11] M. P. Herlihy and J. M. Wing. Linearizability: a
Correctness Condition for Concurrent Objects. ACM
Transactions on Programming Languages and
Systems, 12(3):463–492, 1990.

[12] A. Israeli and L. Rappoport. Disjoint-Access-Parallel
Implementations of Strong Shared Memory
Primitives. In Proceedings of the 13th Annual ACM
Symposium on Principles of Distributed Computing,
pages 151–160, 1994.

[13] D. Lea. Concurrency JSR-166 Interest Site.
http://gee.cs.oswego.edu/dl/concurrency-interest/.

[14] V. J. Marathe and M. L. Scott. A Qualitative Survey
of Modern Software Transactional Memory Systems.
Technical Report TR 839, Department of Computer
Science, University of Rochester, June 2004.

[15] W. N. Scherer III and M. L. Scott. Contention
Management in Dynamic Software Transactional
Memory. In Proceedings of Workshop on Concurrency
and Synchronization in Java Programs, pages 70–79,
2004.

[16] N. Shavit and D. Touitou. Software Transactional
Memory. In Proceedings of 14th Annual ACM
Symposium on Principles of Distributed Computing,
pages 204–213, 1995.

[17] J. M. Stone, H. S. Stone, P. Heidelberger, and
J. Turek. Multiple Reservations and the Oklahoma
Update. IEEE Parallel and Distributed Technology,
1(4):58–71, November 1993.

[18] J. Turek, D. Shasha, and S. Prakash. Locking without
Blocking: Making Lock Based Concurrent Data
Structure Algorithms Nonblocking. In Proceedings of
the 11th ACM Symposium on Principles of Database
Systems, pages 212–222, 1992.

