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Abstract11

Building sound and precise static call graphs for real-world JavaScript applications poses an12

enormous challenge, due to many hard-to-analyze language features. Further, the relative importance13

of these features may vary depending on the call graph algorithm being used and the class of14

applications being analyzed. In this paper, we present a technique to automatically quantify the15

relative importance of different root causes of call graph unsoundness for a set of target applications.16

The technique works by identifying the dynamic function data flows relevant to each call edge missed17

by the static analysis, correctly handling cases with multiple root causes and inter-dependent calls.18

We apply our approach to perform a detailed study of the recall of a state-of-the-art call graph19

construction technique on a set of framework-based web applications. The study yielded a number20

of useful insights. We found that while dynamic property accesses were the most common root cause21

of missed edges across the benchmarks, other root causes varied in importance depending on the22

benchmark, potentially useful information for an analysis designer. Further, with our approach, we23

could quickly identify and fix a recall issue in the call graph builder we studied, and also quickly24

assess whether a recent analysis technique for Node.js-based applications would be helpful for25

browser-based code. All of our code and data is publicly available, and many components of our26

technique can be re-used to facilitate future studies.27
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1 Introduction38

Effective call graph construction is critically important for JavaScript static analysis, as39

JavaScript analysis tools often need to reason about behaviors that span function boundaries40

(e.g., security vulnerabilities [26, 27] or correctness of library updates [40]). Unfortunately, call41

graph construction for real-world JavaScript programs poses significant challenges, particularly42

for client-side code in web applications. Modern web applications are increasingly built using43
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Figure 1 Overview of our methodology.

sophisticated frameworks like React [4] and AngularJS [6].1 Sophisticated recent JavaScript44

static analysis frameworks [32, 33, 36, 52] often focus on sound and precise handling of45

complex JavaScript constructs. While these systems have advanced significantly, they cannot46

yet scale to handle modern web frameworks. There are also a growing number of unsound47

but pragmatic call graph analyses designed primarily to give useful results for real-world48

code bases [8, 25, 40, 44]. While these techniques have been shown effective in certain49

domains, their unsoundness can lead to missing many edges when analyzing framework-50

based applications [27], i.e., the analyses can have low recall. For bug-finding and security51

analyses, these missing edges are of key concern as they can lead to false negatives like missed52

vulnerabilities.53

To guide development of better call graph builders, it would be highly useful to know54

which language constructs are contributing most to reducing recall for a set of benchmarks of55

interest. JavaScript has many different constructs that are typically ignored or only partially56

handled by pragmatic static analyses, due to their dynamic nature [49]. Further, there57

are complex tradeoffs involved in adding support for these constructs, as a more complete58

handling may lead to scalability and precision problems. Analysis designers aiming to improve59

results for a set of benchmarks would be helped by quantitative guidance on the relative60

importance of different unhandled language features.61

This paper presents a novel technique for automatic root cause quantification for missing62

edges in JavaScript call graphs. figure 1 gives an overview of our technique. Given a program,63

a static call graph builder enhanced to also export static flow graphs (see Section 2.2), and a64

harness for exercising the program, our technique automatically finds missing flows, data65

flows of function values that occur at runtime but are not modeled by the static analysis.66

1 A recent Stack Overflow developer survey shows popularity of these frameworks is growing, with total
usage surpassing older libraries like jQuery [56].
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Our technique associates a set of missing flows with each missed call graph edge, thereby67

indicating which data flows must be handled by the static analysis to discover the missed68

edge. The technique correctly accounts for inter-dependent calls, where a call graph edge is69

missing due to the absence of other call graph edges.70

We further observe that given a missing flow, one can often automatically determine a root71

cause label for the flow, indicating which unhandled language construct(s) were responsible72

for the flow being missed. Such labeling can be performed at different levels of granularity,73

depending on what level of detail is desired by the analysis designer. Given logic to map74

missing flows to root cause labels, our technique automatically quantifies the prevalence of75

each root cause for the desired benchmarks.76

We have implemented our techniques, and we used them to study the recall of two variants77

of the approximate call graphs (ACG) algorithm of Feldthaus et al. [25], as implemented in78

the WALA framework [58], on a suite of modern web applications. We found the root cause79

quantification to provide useful insights, in particular:80

To our surprise, a large initial cause of low recall was the lack of models in WALA for a81

variety of built-in library functions. By adding models, we were able to increase recall by82

up to 5 percentage points.83

After fixing the native models, dynamic property accesses were the largest root cause84

of low recall, at 70%. The second-largest root cause varied significantly across the85

benchmarks.86

We applied a finer-grained root cause labeling for dynamic property accesses, and found87

that their property names are computed in a wide variety of ways, with no single dominant88

pattern. We studied the potential of a recently-described recall-improving technique for89

dynamic property accesses in Node.js programs [44], and found that it would at best have90

a small impact for our web-based benchmarks.91

Our dynamic call graph and flow trace analyses were challenging to implement due to92

JavaScript’s hard-to-analyze language features. JavaScript includes many difficult-to-analyze93

features, including (but not limited to) reflective call mechanisms, “native” library methods,94

getter/setter methods, and dynamic code evaluation. Pragmatic static analyses often ignore95

most of these features, as they do not aim for sound results. However, since we aimed to96

study which calls were missed by such analyses and why those calls were missed, our dynamic97

analyses had to faithfully capture the behavior of these features, and thereby incurred98

significant additional complexity (see section 4.2).99

All of our code and data is publicly available in an artifact [21]. Our infrastructure is100

reusable and could be applied to study other static analyses, other benchmarks, and other101

platforms (e.g., Node.js). Together, our infrastructure, methodology, and results can help102

guide the design of future analyses targeting real-world JavaScript code.103

Contributions This paper makes the following contributions:104

We present a novel approach to quantifying the importance of language features causing105

low recall in JavaScript call graphs. The approach properly handles missing call graph106

edges with multiple root causes, and also inter-dependent calls, where an edge is missing107

due to the absence of another edge.108

We describe implementations of a dynamic call graph and dynamic flow trace analysis of109

function values for JavaScript, both of which handle several hard-to-analyze JavaScript110

features.111

We present results and key observations from applying our techniques for the ACG112

algorithm [25] and a suite of framework-based web applications.113

ECOOP 2022
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The remainder of this paper is organized as follows. Section 2 provides background, and114

Section 3 describes our dynamic analyses. Section 4 presents our technique for automatically115

discovering root causes for missing edges. Section 5 gives details of our implementation.116

Section 6 describes the setup of our study, and Section 7 presents our results. Section 8117

discusses related work, and Section 9 concludes.118

2 Background119

We first give some background on challenges for JavaScript static analysis and on call graph120

construction.121

2.1 JavaScript analysis challenges122

JavaScript programs often pose particularly difficult challenges for static analysis. JavaScript123

includes numerous dynamic and reflective language features that are difficult to analyze, and124

unfortunately these features are used often in practice [49]. We briefly present such features125

here; see previous work for detailed discussions (e.g., [30, 46, 49, 55]). Tricky features include:126

Dynamic Property Accesses: JavaScript object fields, or properties, can be accessed127

using the syntactic form x[e], where e is an arbitrary expression evaluating to a string128

property name. Determining what memory locations may be accessed by an expression129

x[e] (fundamental to tracking data flow) can be a significant analysis challenge. Further,130

if e evaluates to a property name that does not exist on x, a write to x[e] creates the131

property rather than failing, making precise analysis even more challenging.132

Eval: JavaScript allows for evaluating arbitrary strings as code at runtime, most com-133

monly via its eval construct or the Function constructor. This dynamically-evaluated134

code is known to pose significant problems for static analysis [30, 48].135

With: The with construct enables adding arbitrary variable bindings with a dynamically-136

constructed map [2]. As with eval, with usage complicates static analysis [46].137

Getters and Setters: A JavaScript property may be defined such that accessing the138

property actually invokes a getter or setter method with custom logic [12]. This feature139

makes it difficult to precisely identify the program locations where a function call can140

occur.141

Reflective Calls: JavaScript provides reflective methods to pass function parameters142

in flexible ways, e.g., binding the this parameter explicitly or passing arguments in an143

array [13]. Also, any function may read its formal parameters via a special arguments144

array, enabling variadic functions. Finally, any function may be legally invoked with any145

number of parameters, independent of how many formal parameters it declares. Together,146

these features complicate tracking of inter-procedural data flow.147

Native Methods: JavaScript and the web platform provide a large standard library148

whose implementation is typically opaque to static analysis; hence, models must be149

constructed for a large number of these “native” methods.150

While these root causes of difficult analysis are well known, our techniques enable151

measurement of their relative impact on call graph recall for a set of target benchmarks.152
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2.2 Call graph construction153

In a static call graph, nodes represent program methods, and an edge from a to b means that154

a may invoke b at runtime.2 The utility of a computed call graph CG can be measured in155

terms of precision and recall. Precision measures the number of infeasible edges in CG (edges156

for calls that cannot occur in any execution), while recall measures the number of feasible157

call edges (those that can occur in some execution) missing from CG. Recall will be 100%158

for any sound call graph construction technique, but as noted in Section 1, many practical159

techniques sacrifice soundness for improved scalability and precision. It is undecidable to160

compute the “ground truth” of possible calls for an arbitrary program, required to measure161

precision and recall perfectly. Our evaluation (and previous work [25, 44, 51, 57]) proceeds162

by exercising benchmarks using a best-effort process and then studying recall using the163

measured dynamic behaviors.164

Static Flow Graphs Our technique also relies on obtaining a static flow graph from the165

static call graph analysis, to determine what dynamic data flow of function values was missed166

by the static analysis (see Figure 1 and further discussion in Section 4). In a flow graph,167

each node represents either a memory location (variables, object properties, etc.), a function168

value, or a call sites. Edges in the flow graph are defined as follows: if the call graph analysis169

determines that a function value may be read from (abstract) memory location m1 and170

then written to location m2 (i.e., it may be directly copied from m1 to m2), the static flow171

graph should include an edge from m1 to m2. So, flow graph edges should capture observed172

assignments of function values into variables and object properties, and passing of function173

values as parameters or return values to capture inter-procedural data flow. Additionally, for174

a call mi(...), the flow graph should contain an edge from mi to a “callee” node for the call175

site (see example below). With this construction, the static call graph should have an edge176

from call site s to function f iff there is a path from f to the callee node for s in the flow177

graph.178

Graph representations are standard in analyses that track data flow [54]. Further, any179

realistic JavaScript call graph construction algorithm must track function data flow, as180

JavaScript provides no basis for a cheaper technique (functions cannot be coarsely matched181

to possible call sites using types or even function arity). Hence, we expect extraction of flow182

graphs from JavaScript call graph analyses will be straightforward.183

Example Figure 2 gives a small running example for illustrative purposes. Line 4 creates an184

object with two fields MyName and MyPhone, respectively holding functions f1 and f2. Line 5185

reads and invokes f1 using a static property access (the property name is syntactically186

evident), whereas line 6 reads and invokes f2 using a dynamic property access.187

Figure 3 shows the flow graph constructed by a variant of the call graph builder we188

study [25] for the Figure 2 example. Edges represent the possible flow of function f1 to the189

variable v1, then the object property MyName, and finally the call at line 5. Given this path,190

the static call graph includes an edge from main to f1. In contrast, the edge from the MyPhone191

property node to the call on line 6 is missing in Figure 3, due to the dynamic property access.192

Our approach can determine that this missing flow graph edge leads to a missing main-to-f2193

edge in the call graph, and further reason that a dynamic property access is the root cause194

of the missed edge.195

2 The call graph also includes information on which instruction in a, or call site, may invoke b.

ECOOP 2022
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1 function main() {
2 var v1 = function f1() { return "John"; }
3 var v2 = function f2() { return "555-1234"; }
4 var obj = { MyName: v1, MyPhone: v2 };
5 obj.MyName();
6 obj["My" + "Phone"]();
7 }
8 main();

Figure 2 Small example to illustrate our techniques.

Func(f2)

Var(v2)

Prop(MyPhone)

Callee(6)

Func(f1)

Var(v1)

Prop(MyName)

Callee(5)

Figure 3 Flow graph for Figure 2. The red dashed edge is missing from the graph.

3 Dynamic Analyses196

Our technique uses dynamic analyses to determine calls and data flows of function values197

occurring in executions of a program; this information is then compared with that in the198

static call graph and flow graph to detect missing flows (see Section 4). Here we describe the199

dynamic analyses at a high level; we discuss implementation challenges related to complex200

JavaScript language constructs (such as those listed in Section 2.1) in Section 5.201

Dynamic Call Graphs A dynamic call graph captures the calls that occurred in an execution202

(or set of executions) of a program. As with static call graphs, nodes represent program203

methods and edges represent invocations between methods. At a high level, constructing dy-204

namic call graphs only requires recording the actual functions invoked at each call instruction205

in some suitable data structure, and this type of analysis has been built many times before,206

including for JavaScript [29]. However, our analysis goes further by exposing call-related207

behaviors of some of the tricky JavaScript constructs outlined in Section 2.1, crucial for a208

more complete understanding of static call graph recall.209

Dynamic Flow Traces Beyond dynamic call graphs, our technique requires dynamic flow210

traces to find gaps in the data flow reasoning of static call graph builders. A dynamic flow211

trace logs all data flow and invocation operations performed on function values. The trace212

includes an entry for each creation of a function value (e.g., an expression function () { ...213

}) and for each function call. It also includes an entry for each read or write of a function214

value to or from a variable or object property.215

As an example, here is an excerpt of the dynamic flow trace for the code in Figure 2216

(some details elided):217

Create(f1,2); VarWrite(v1,f1,2);218

Create(f2,3); VarWrite(v2,f2,3);219

VarRead(v1,f1,4); PropWrite(MyName,f1,4);220
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VarRead(v2,f2,4); PropWrite(MyPhone,f2,4);221

PropRead(MyName,f1,5); Invoke(f1,5);222

PropRead(MyPhone,f2,6); Invoke(f2,6);223

224

Each entry includes information on the function value being accessed and the location of225

the access (here, line numbers). For property accesses, our traces only record the accessed226

property name, as the call graph techniques we studied in our evaluation do not distinguish227

base objects of accesses. The trace could easily be extended to include base object identifiers228

if needed to study other analyses.229

For handling of higher-order functions, the trace includes entries for parameter passing230

and returns of function values. A call passing a function as a parameter is treated as a231

“write” of a parameter variable, which can be read via the formal parameter in the callee.232

For returns, a return statement “writes” a special variable associated with the function’s233

return value, which is “read” at the corresponding call site.234

4 Missing Flow Detection235

In this section, we describe our technique for discovering the missing flows explaining why a236

static call graph is missing an observed dynamic call graph edge. See Figure 1 for our overall237

architecture. Given a dynamic flow trace for a program, we first post-process the trace to238

discover the relevant dynamic copies for a function call (Section 4.1). Then, our technique239

matches these dynamic copies to the static flow graph, and automatically computes the240

missing flows relevant to each missing call edge (Section 4.2).241

4.1 Finding Relevant Dynamic Copies for a Call242

Given a dynamic flow trace and an invocation of function f at a call site, our technique243

computes the dynamic copies by which f was invoked at the site. Dynamic copies capture244

data flow of function values at runtime—they are the dynamic analogue of the possible data245

flow captured in a static flow graph (Section 2.2). A dynamic copy captures one of three246

operations on function values: (1) the value is created and then stored in some memory247

location; (2) the value is copied from one memory location to another; and (3) the value is248

read from a location and invoked. By computing the relevant dynamic copies for a particular249

call, our technique can expose which data flows may have been missed by the static analysis.250

Pseudocode for finding relevant dynamic copies appears in Algorithm 1. We use sub-251

scripted t variables for trace entries. Given an entry tc for a call invoking function f in trace252

T , FindDynamicCopies computes a list C of the relevant dynamic copies, starting at the253

creation of f and ending at the call. Each dynamic copy is represented in the form tr′
tw−→ tr,254

read as: the function was read from memory by tr′ , and then copied to the memory location255

read by tr, via write tw. The algorithm proceeds backwards through the trace, starting at tc256

and reconstructing step-by-step how f was copied through memory to reach the call site.257

Algorithm 1 first finds the read or create operation tr for f most closely preceding tc258

in the trace (line 3), corresponding to evaluation of e in an invocation e(...).3 C is then259

initialized with tr
invoke−−−−→ tc, with the invoke label indicating this is not a true copy, but260

instead the invocation of f .261

3 In certain corner cases, the closest preceding operation may not be the correct one; we discuss further
under Limitations.

ECOOP 2022



3:8 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

Algorithm 1 Finding dynamic copies for a call.

1: procedure FindDynamicCopies(T , tc)
2: f ← function invoked by tc

3: tr ← PrecedingReadOrCreate(T, tc, f)
4: C ← [(tr

invoke−−−−→ tc)]
5: while tr is not a Create operation do
6: tw ←MatchingWrite(T, tr, f)
7: tr′ ← PrecedingReadOrCreate(T, tw, f)
8: C ← (tr′

tw−−→ tr) :: C

9: tr ← tr′

10: end while
11: return C

12: end procedure
13: procedure MatchingWrite(T , tr, f)
14: if tr reads variable x then
15: return PrecedingVarWrite(T, tr, f, x)
16: else if tr reads property prop then
17: return PrecedingPropWrite(T, tr, f, prop)
18: else if tr reads formal p of function f ′ then
19: // preceding invoke of f ′ passing f to p

20: return PrecedingInvoke(T, tr, f ′, f, p)
21: else if tr is return value of call to f ′ then
22: // preceding return of f from f ′

23: return PrecedingReturn(T, tr, f ′, f)
24: end if
25: end procedure

The loop at lines 5–10 discovers relevant dynamic copies by matching writes and reads262

backward in the trace. First, Line 6 finds the closest-preceding write operation tw that263

updated tr’s location, using the MatchingWrite procedure. MatchingWrite’s logic264

proceeds in cases, handing variables, object properties, formal parameters, and return values265

in turn. For a read of property prop, the pseudocode matches with the most recent write to266

prop on any object, matching the heap abstraction used by the call graph builder variants267

we study (see Section 6.1). For more precise call graph algorithms, the logic could easily be268

updated to also match the exact base object used in the property read operation. Once the269

matching write tw is discovered, line 7 finds the closest-preceding read or create tr′ , which270

“produced” f for the write, and prepends a dynamic copy tr′
tw−→ tr to C.271

As an example, consider the call to f2 on line 6 in Figure 2. Here are the relevant trace272

entries for that call visited by Algorithm 1:273

Create(f2,3); VarWrite(v2,f2,3);274

VarRead(v2,f2,4); PropWrite(MyPhone,f2,4);275

PropRead(MyPhone,f2,6); Invoke(f2,6);276

277 Starting from the Invoke entry, the closest preceding read of f2 is the PropRead of MyPhone278

on line 6. So, C is initialized with PropRead(MyPhone,f2,6) invoke−−−−→ Invoke(f2,6). The279

matching PropWrite for the read occurs on line 4, and its closest preceding read of f2280

is the VarRead on line 4. Hence, we prepend a dynamic copy VarRead(v2,f2,4)
tw1−−→281

PropRead(MyPhone,f2,6), where tw1 = PropWrite(MyPhone,f2,4). Proceeding similarly,282

we reach the creation point of f2 on line 3, prepend a dynamic copy Create(f2,3)
tw2−−→283

VarRead(v2,f2,4), where tw2 = VarWrite(v2,f2,3), and terminate.284
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Limitations285

Algorithm 1 assumes that the most-closely-preceding read of a function f in the trace matches286

the subsequent write or invocation involving f . In rare cases with parameter passing, this287

assumption may not hold, e.g.:288

289
1 function foo(p, q) { p(); }290

2 function bar() {}291

3 var x = bar;292

4 var y = bar;293

5 foo(x, y);294295

Assume we are trying to discover the dynamic copies for the call to bar on line 1. Here is the296

relevant excerpt of the flow trace:297

...; VarWrite(x,bar,3); VarWrite(y,bar,4); VarRead(x,bar,5);298

VarRead(y,bar,5); Invoke(foo,5); VarRead(p,bar,1); Invoke(bar,1);299

For the final Invoke of bar, the closest-preceding read is of formal parameter p. The matching300

“write” is the Invoke of foo on line 5. From here, the closest-preceding read of bar is from301

variable y, which is not the parameter that gets passed in p’s position. Hence, the analysis302

will discover an infeasible dynamic copy from the read of y to the read of p. This simple case303

could be handled by using source locations during matching, but in cases involving recursion,304

dynamic call stacks would also need to be tracked. We did not observe this behavior in any305

of our benchmarks, so we chose to employ the simpler technique of Algorithm 1.306

In some cases, the dynamic flow trace may be missing entries relevant to dynamic copies,307

due to JavaScript features like native methods and with (Section 2.1) and also implementation308

limitations; see Section 5 for details. In such cases, our algorithm returns the subset of the309

relevant dynamic copies that it is able to reconstruct, and if possible notes a reason for its310

failure to find all copies.311

4.2 Flow Graph Matching312

Given relevant dynamic copies for a call c missed in the static call graph (discovered based313

on comparison with the dynamic call graph), we identify the missing flows for c by matching314

the dynamic copies to the static flow graph extracted from the call graph builder. (Section 2315

described static flow graphs, and Figure 3 gave an example.) Algorithm 2 gives pseudocode316

for finding missing flows in a static flow graph. The routine FindMissingFlows takes as317

inputs a list of dynamic copies C produced by FindDynamicCopies in Algorithm 1, a static318

call graph CG, and the corresponding static flow graph FG. Its result is a set of missing319

flows R, where each missing flow is one of three types: (1) MissingFGNode, indicating a node320

is missing in the flow graph, (2) MissingFGPath, indicating a path is missing in the flow graph,321

and (3) DependentCall, for when the absence of a flow is due to the absence of another call in322

the call graph.323

For a dynamic copy tr′
tw−→ tr, the algorithm first tries to identify corresponding flow324

graph nodes fgSrc and fgDst (lines 4 and 5). In most cases, this matching is straightforward,325

done either by matching code entities or matching an accessed memory location to the flow326

graph node that abstracts it (we elide the details). In some cases, the flow graph may not327

have a matching node, e.g., due to use of eval or due to an unmodelled property name from328

a dynamic property access. In such cases, we record an MissingFGNode entry in the result329

(lines 6–11).330

If flow graph nodes fgSrc and fgDst are discovered, we next check for a path from fgSrc331

to fgDst in the flow graph (line 12). We must check for a path, rather than just an edge,332

ECOOP 2022
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Algorithm 2 Finding missing flows in a flow graph for a call.

1: procedure FindMissingFlows(C,CG,FG)
2: R← ∅
3: for each dynamic copy tr′

tw−−→ tr ∈ C do
4: fgSrc ← FlowGraphNode(FG, tr′ )
5: fgDst ← FlowGraphNode(FG, tr)
6: if fgSrc = null then
7: R← R ∪MissingFGNode(tr′ )
8: end if
9: if fgDst = null then

10: R← R ∪MissingFGNode(tr)
11: end if
12: if fgSrc ̸= null ∧ fgDst ̸= null ∧NoPath(FG, fgSrc, fgDst) then
13: R← R ∪MissingFGPath(fgSrc, fgDst, tr′ , tw, tr)
14: end if
15: if tw is a call then
16: f ← function invoked by tw

17: if MissingFromCG(CG, tw, f) then
18: R← R ∪ DependentCall(tw, f)
19: end if
20: end if
21: end for
22: return R

23: end procedure

since the static analysis may use temporary variables and assignments not present in the333

source code. If no path is discovered, we note a MissingFGPath entry, retaining information334

about the dynamic copy to facilitate root cause labeling.335

As an example, consider again the call to f2 in Figure 2, and the corresponding dy-336

namic copies described in Section 4.1. In the Figure 3 flow graph for the code, there are337

matching nodes for all the copy locations, but there is no path matching the final copy338

PropRead(MyPhone,f2,6) invoke−−−−→ Invoke(f2,6). So, the single missing flow computed for339

this case is a MissingFGPath entry with the details of this dynamic copy. Given this informa-340

tion, a root cause labeler can discover that the flow was missed due to the dynamic property341

access; see Section 6.2.342

Dependent calls Lines 15–20 handle dependent calls, where a path corresponding to a343

parameter passing or return dynamic copy is missing from the flow graph due to some other344

missed call. Consider this example:345

346
1 function f() { ... }347

2 var x = { foo: function f2() { return f; } };348

3 var y = x["fo"+"o"]();349

4 y();350351

For the optimistic ACG call graph algorithm we use in our evaluation (see Section 6.1), the352

calls to f2 at line 3 and to f at line 4 will be missing in the call graph. When finding missing353

flows for the line 4 call, a missing path for the function return dynamic copy at line 3 is354

discovered. However, the issue with the analysis is not that it does not model returns of355

function values; this flow was missed because the call target at line 3 was missed, so no flow356

could be discovered from the appropriate callee. Our discovery of missing flows must account357

for such cases, to enable accurate quantification of root causes.358
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To handle dependent calls, Algorithm 2 checks at line 15 if the “write” operation for the359

copy was a call. (Recall from Section 3 that calls are treated as the writes for parameter360

passing or function returns.) If so, and if the static call graph is missing the relevant target361

for the call (line 17), we add a DependentCall missing flow to the result (line 18).362

When counting the frequency of root causes, for dependent calls, we reuse the root causes363

for one call as the root causes for the other. For the example above, the dynamic property364

access at line 3 is identified as the single root cause for the missing calls at lines 3 and 4. All365

results presented in Section 7 precisely account for dependent calls.366

Root Cause Labeling Given a set of missing flows, quantification of root cause prevalence367

requires attributing a root cause label to each missing flow. The root cause labels may be368

specific to the call graph construction algorithm being studied, and must be developed with369

knowledge of the soundness gaps in the algorithm. Additionally, root cause labeling may be370

performed with different levels of granularity, depending on what information is required by371

the analysis developer. In Section 6.2, we discuss the root cause labeling strategies used in372

our example study of the ACG call graph algorithm [25].373

5 Implementation374

Dynamic analyses We implemented our dynamic call graph (DCG) and dynamic flow375

trace analyses (Section 3) atop the Jalangi framework [53],4 which leverages source code376

instrumentation. While this instrumentation approach is more maintainable and portable377

than the alternatives, a downside is that the semantics of certain language constructs are not378

exposed in a straightforward way at the source level. In spite of source code instrumentation’s379

limitations, one of its primary advantages is that it does not require modification of a380

JavaScript engine. Production JavaScript engines in browsers are challenging to modify, for381

two reasons: (1) they have complex implementations, so any change will require considerable382

engineering effort; and (2) they evolve rapidly, making it difficult to maintain an analysis.383

We use Jalangi2 to instrument JavaScript programs with our analysis code because it is easy384

to maintain and can work across different JavaScript engines. The tool allows us to perform385

analyses even when certain fragments of the source code are not instrumented. Our analyses386

contain significant extra logic to capture the behavior of several hard-to-analyze constructs387

as accurately as possible, despite the limitations of source instrumentation.388

As an example, our DCG analysis exposes many callbacks from “native” library functions.389

Such callbacks occurred regularly in the benchmarks used in our study, e.g., using Function.390

prototype.call, as shown in this small example:391

392
1 function foo() { }393

2 foo.call(this);394395

Line 2 invokes foo via call, but Jalangi does not expose the invocation directly, as it cannot396

instrument call. Instead, Jalangi exposes the invocation of call, followed by the start of397

execution in foo, but with no explicit invocation of foo. To handle such cases, our DCG398

analysis maintains its own representation of the call stack. Upon invocation of a native399

method, a marker for the method is pushed on the call stack. Then, at the entry of a400

(non-native) method, if the top of our call stack is a native method marker, we record the401

fact that a native callback occurred. For the above case, the dynamic call graph will include402

4 We use version 2 of Jalangi, available at https://github.com/Samsung/jalangi2.
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an invocation of the call native method at line 2, and also an invocation of foo from call,403

as desired.5404

Our DCG analysis also exposes getter and setter calls, and calls to and from dynamically-405

evaluated code. For getters and setters, the analysis detects their presence via a library406

API [1]. If a getter or setter is detected at a property access, it is treated as a call site and the407

call edge is recorded. We leverage Jalangi’s built-in support for dynamic code evaluation via408

eval or new Function; the relevant code string gets instrumented at runtime, so our analysis409

has visibility into calls into or out of such code.410

Our dynamic flow trace analysis also includes special handling of some challenging411

JavaScript features. The analysis distinguishes getters and setter calls using specially-marked412

Invoke entries, to enable tracking getter and setter use as a root cause. For uses of the413

arguments array to access parameters, we generate relevant property write entries at a function414

entry as “synthetic” entries (not corresponding to explicit source code). To handle eval-like415

constructs, any trace entry from the evaluated code includes a special source location marking416

it as from code executed via eval.417

JavaScript has a very broad set of features and native methods requiring special handling,418

and our dynamic analyses still do not model all such features. For the flow trace analysis, in419

certain cases a property write or read occurs in an unmodelled native method, and hence420

is missed in the trace. The analysis generates special entries to model memory accesses421

performed by commonly-used library methods, such as push and pop on arrays. We have not422

fully modeled all reflective constructs like Object.defineProperty [14]. Also, use of the with423

construct can thwart our technique, as it is not fully supported by Jalangi. (We note that all424

relevant uses of with in our benchmarks appeared within an eval construct,6 posing a severe425

challenge for static analysis.)426

In terms of performance, we implemented some optimizations to reduce the size of the427

dynamic flow trace for larger benchmarks. First, we limited tracing to only those function428

values that could be involved in a missing edge in the static call graph, based on the creation429

site of the function. Second, we track a unique identifier for each function value using430

Jalangi’s shadow memory functionality, and once the call site with the missing static call431

graph edge executes, we disable flow tracing for the corresponding value.432

To generate dynamic call graphs and flow traces, we exercised our benchmarks manually433

and recorded the actions as Puppeteer [15] automation scripts to allow for repeatable runs;434

Section 6.3 details the coverage obtained for benchmarks in our study.435

Missing Flow Detection The missing flow detection algorithms of Section 4 are implemented436

in 1154 lines of Python code. For the most part, detecting missing flows in the static flow437

graph given a dynamic flow trace was straightforward. Some effort was required to match438

source locations provided by WALA [58] for JavaScript constructs (our use of WALA is439

detailed in Section 6.1) with what was observed by the dynamic analyses. In the process440

of ensuring this matching was precise, we contributed a couple of fixes to WALA, and also441

found and fixed a longstanding issue with incorrect source locations in the Rhino JavaScript442

parser [5].7443

5 Our technique does not yet precisely handle cases with multiple levels of native calls, such as Array.
prototype.map.call(...); we plan to add further modeling for such cases in the future.

6 For example, see this code from the Knockout framework: https://tinyurl.com/1jxtrpz3
7 https://github.com/mozilla/rhino/pull/809

https://tinyurl.com/1jxtrpz3
https://github.com/mozilla/rhino/pull/809
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6 Study Setup444

Here, we detail the setup of our study of root causes of missed call graph edges for framework-445

based web applications. We describe the ACG call graph algorithm used in our study446

(Section 6.1), describe how we performed root cause labeling for this algorithm (Section 6.2),447

and then present our benchmarks and how they were exercised (Section 6.3).448

We note that the main purpose of our study was to show the potential of our techniques449

to give useful insights on the relative importance of different root causes for missed static450

call graph edges. We do not claim that the results for the benchmarks used in our study will451

generalize to any broad class of framework-based web applications. A study of a wider variety452

of benchmarks, to obtain generalizable insights on root causes across JavaScript applications,453

is beyond the scope of this work.454

6.1 The ACG algorithm455

In our evaluation, we studied variants of the approximate call graph (ACG) algorithm of456

Feldthaus et al. [25]. The ACG algorithm was designed to entirely skip analysis of many457

challenging JavaScript language features, while still providing good precision and recall for458

real-world programs. ACG leverages the insight that many dynamic property accesses in459

JavaScript are correlated [55], with a paired dynamic read and write used to copy a property460

from one object to another. By using a field-based handling of object properties [28] (treating461

each property as a global variable), ACG could ignore dynamic property accesses entirely462

and still provide good recall, assuming most accesses are correlated.463

Feldthaus et al. [25] describe pessimistic and optimistic variants of ACG, differing in their464

handling of inter-procedural flow. Pessimistic ACG only tracks data flow across procedure465

boundaries in limited cases, whereas optimistic ACG performs full inter-procedural tracking.466

We performed root cause quantification for both variants in our study.467

Our study uses the open-source implementation of ACG in WALA [58]. This implemen-468

tation directly builds a flow graph during call graph building, which we serialize alongside469

the computed call graph. The WALA implementation also includes partial handling of the470

call and apply reflective constructs for parameter passing [13]. In the optimistic variant,471

interprocedural flow is handled fully for call, but only return values are handled for apply472

(as it passes parameters via arrays, which is hard to analyze). We confirmed via inspection473

that the WALA implementation of ACG has no handling of getters and setters, eval, and474

with.475

6.2 Root Cause Labeling476

We implemented root cause labeling for missing flows based on the gaps we observed in477

the WALA implementation [58] of the ACG algorithm [25]. For a different algorithm or478

implementation, some different root causes may be required, but we expect significant overlap,479

as several root causes pertain to challenging language features that many techniques handle480

unsoundly (e.g., eval). The referenced root cause names are also used when discussing their481

prevalence in Section 7.2.482

For MissingFGNode (see section 4.2), in some cases, there is no node representing the483

creation of a function value in the flow graph. If the function was from the standard library,484

we assigned the label “Call to unmodelled native function,” as WALA was likely missing a485

model for the function. In cases where the function was created via a call to new Function486
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(unhandled by the ACG implementation), we assigned the label “Creation via Function487

constructor.”488

In other MissingFGNode cases, the node representing the call site itself is missing. For489

this case, a common root cause label is “Call to getter/setter,” as getters and setters are490

not modeled by ACG. Also, the “Calls from unmodelled native functions” label captures491

cases where an unmodeled native function calls back into application code. Finally, for492

a dynamic property access, if the property name is never used as part of a non-dynamic493

property access, the flow graph may not have a node for the property, in which case we use494

the label “Dynamic Property Access.”495

For MissingFGPath, one possible root cause is “Dynamic Property Access,” which can be496

identified by the corresponding dynamic reads / writes. For the pessimistic ACG variant,497

paths may be missing since the algorithm does not model passing function values as parameters498

or returning function values; we use the labels “Parameter Pass” and “Function return” for499

these scenarios. For both ACG variants, the “Parameter Pass” label is also used to reflect500

passing of parameters in an array via Function.prototype.apply.501

In the case of dynamically-evaluated code (the “Use of Eval” and “Eval via new Function”502

labels), many relevant nodes may be missing from the static flow graph. We assign an503

appropriate root cause in these cases by recording in the flow trace which events occurred in504

dynamically-evaluated code (Section 5). Note that we prioritize the eval-related root causes505

over others; e.g., if there is a relevant dynamic property access in eval’d code, we will assign506

the eval-related root cause, even though it is possible the analysis also could not handle the507

property access. We chose this labeling due to the high difficulty of handling eval constructs508

in static analysis; for an analysis with significant support for eval a different choice may be509

appropriate.510

Finally, as noted in Section 4.1, in certain cases we cannot compute all dynamic copies for511

a call. For these cases, our technique makes a base-effort attempt to assign an appropriate512

root cause label. “Call to bounded function” captures missing handling of the Function513

.prototype.bind feature [13]. The “Multiple levels of native functionality” label captures514

cases where native methods are invoked reflectively (see Footnote 5). Finally, we identify the515

“Use of With” root cause by tracing objects used in with statements and identifying when an516

unmatched variable corresponds to a with object property.517

As Section 7.2 will show, dynamic property accesses are the most frequent root cause518

of missing call graph edges for our benchmarks. To further understand these root-cause519

accesses, we also implemented a finer-grained labeling for them, based on the expression520

used for the property name. This more granular labeling is described in Section 7.3.521

6.3 Benchmarks and Harness522

For benchmarks, our study used several programs from the TodoMVC suite [17]. TodoMVC523

contains many implementations of a simple web-based todo list application, with each524

implementation using a different web framework or language. The suite is designed to help525

developers compare different model-view-controller (MVC) frameworks. Because the suite526

contains idiomatic implementations of the same functionality across frameworks, it provides527

an opportunity to compare sources of missing call graph edges across frameworks.528

To test with a larger web application, we also included OWASP Juice Shop [3], an529

AngularJs-based program that is a standard benchmark for security analyses. Counting the530

size of framework / library code for Juice Shop is difficult, as the code base does not clearly531

separate third-party code used as part of the web site from libraries used only to deploy the532

site; we conservatively estimated the framework / library code to be greater than 50 kLoC.533
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Total
LoC

Application
LoC

Framework/
Library LoC

Application
Stmt.

Coverage
AngularJs 12091 256 11835 81.08%
Backbone 9003 216 8787 99.74%

KnockoutJs 1044 129 915 98.98%
KnockbackJs 15836 199 15637 99.73%

CanJs 11371 129 11242 100%
React 24855 383 24472 99.21%

Mithril 1433 252 1181 99.61%
Vue 7667 124 7543 97.73%

VanillaJs 751 561 190 98.10%
jQuery 9526 171 9355 99.59%

Juice Shop >65000 15092 >50000 36%
Table 1 Benchmark Statistics.

Table 1 gives statistics for our benchmarks. The TodoMVC benchmarks are named based534

on the web framework that they use. The TodoMVC applications range from 751–24,855 lines535

of code, with framework sizes varying widely. We chose all eight of the JavaScript-framework-536

based implementations that worked with our infrastructure.8 We also chose VanillaJS, which537

does not use any framework,9 and jQuery, for comparison purposes.538

To exercise the TodoMVC applications, we wrote a harness to cover as much application539

code as possible, and in the end our script achieved application code statement coverage of540

97% or higher for nearly all benchmarks. We studied all uncovered code manually, and found541

that it was either dead code or could not be exercised in a single run of the application (e.g.,542

for the AngularJs version, a small amount of code would only run if the app were used and543

then restarted in offline mode).544

For Juice Shop, we were unable to exercise the application beyond fully completing its545

initial loading, explaining the significantly lower code coverage. Our infrastructure ran into546

scalability issues for deeper runs of Juice Shop, which we hope to fully address in the near547

future. Still, simply loading Juice Shop exercised a large amount of code (its flow trace was548

nearly 5 times larger than any fully-exercised TodoMVC benchmark), making a study of549

missed call edges for the loading portion of the execution interesting on its own.550

In terms of running times for our tools, dynamic call graph and flow trace collection551

each took between 30 and 60 seconds for each TodoMVC benchmark, varying based on the552

amount of code executed; this overhead is comparable to previous Jalangi-based dynamic553

analyses [53]. Missing flow detection (Section 4) took time proportional to the size of the flow554

trace, ranging from around half a second (for VanillaJS) to around 10 minutes (for React).555

Overall running time for Juice Shop was much longer (more than an hour total) due to its556

size and the aformentioned scalability bottlenecks it exposed. We expect the missing flow557

detection times could be reduced significantly with a more optimized implementation.558

8 Some implementations used newer JavaScript language features not yet supported by Jalangi.
9 All implementations use a common base JavaScript library, accounting for the library code in VanillaJS.
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7 Results559

In this section, we present results from performing root cause quantification for our bench-560

marks. The results show that our quantification techniques can provide interesting insights561

into the relative prevalence of different root causes for missing call graph edges. We first562

give recall measurements for our benchmarks using multiple metrics in Section 7.1. Then,563

we discuss the top root cause labels for missed call graph edges in Section 7.2 and insights564

gained from this data. Finally, we discuss results from performing a finer-grained labeling565

of missing flows related to dynamic property accesses (the most prevalent root cause) in566

Section 7.3.567

7.1 Recall Measurements568

We measured call graph recall for our benchmarks by comparing the ACG static call graphs569

with our collected dynamic call graphs. We first describe our methodology, and then present570

results. We also measured call graph precision for all benchmarks, but as our new techniques571

focus on root causes for low recall, we do not discuss the precision results here; they are572

presented in an extended version of the paper [22].573

Methodology We used three different metrics to measure recall, suited to different client574

scenarios:575

Call site targets: the set of targets at each call site present in the dynamic call graph.576

This metric was used in the original ACG paper [25]. Recall is computed for each call577

site, and then averaged across call sites to produce recall for a benchmark. This metric is578

most relevant to clients like code navigation in an IDE.579

Reachable nodes: the set of reachable methods, where roots are the entrypoints in the580

dynamic call graph. This metric has been used in previous work [57], and is relevant to581

clients like dead-code elimination.582

Reachable edges: the set of call graph edges whose source method is present in the583

dynamic call graph. This metric is most relevant to clients doing deep inter-procedural584

analysis like taint analysis [26].585

Given our collected data, we studied the following research questions:586

RQ1: How does recall vary across the three metrics?587

RQ2: How does recall vary across benchmarks?588

Results Figure 4 gives detailed recall results for WALA’s original ACG implementation589

for each TodoMVC benchmark, with results for the pessimistic variant in Figure 4a and590

for optimistic in Figure 4b. Average recall across the TodoMVC benchmarks is shown in591

Figure 5.592

For RQ1, the data show that recall of ACG tends to suffer with more exacting metrics.593

The ACG paper [25] used the call site targets metric, and showed that both precision and594

recall were typically above 80% for their benchmarks. Figure 5 shows that for our benchmarks,595

while recall is above 80% for this metric for both the optimistic and pessimistic variants,596

recall decreases for the more exacting metrics, particularly for pessimistic analysis.597

For RQ2, Figure 4 shows that recall can vary widely across benchmarks. In Section 7.2598

we dig further into these differences, showing that root causes for low recall can also vary599

across the benchmarks. For the TodoMVC React benchmark, recall is very high for the600

optimistic analysis but quite low for pessimistic. In this case, the high recall for optimistic601
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(b) Optimistic ACG.

Figure 4 Detailed recall results for our three metrics across the benchmarks.

analysis comes at a cost of very low precision (less than 5% for reachable edges; see the602

extended version of the paper [22] for full details). We suspect that some initial imprecision603

spirals out of control for optimistic analysis for React, leading to poor precision. Previous604

work studied diagnosing imprecision root causes [20, 35, 60]; such a study is out of scope605

here. However, improving recall can lead to reduced precision, and this tradeoff must be606

minded when devising solutions to improving recall.607

For Juice Shop, only the pessimistic ACG variant could run to completion; optimistic608

ACG could not complete within 64GB of memory. Pessimistic ACG missed 15,060 edges that609

were present in the dynamic call graph. Since our coverage for Juice Shop was significantly610

lower than the other benchmarks (see section 6.3), we do not quantify the precision and611

recall of pessimistic ACG for the benchmark, nor do we include it in aggregate statistics.612

7.2 Root Cause Quantification613

We present illustrative results from applying our techniques to quantify prevalence of root614

causes for missing call graph edges for our benchmarks. Space does not allow a full presentation615
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Figure 5 Average recall across benchmarks for original WALA ACG implementation.
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Figure 6 Original root causes for optimistic ACG across TodoMVC, before WALA improvements.

of all results; all experimental data is available in our artifact [21]. Here we focus on the616

following questions:617

RQ3: What are the most common root causes for missed call graph edges?618

RQ4: Does the relative importance of root causes vary across benchmarks?619

We compute root causes for each individual missed call edge in the static call graph,620

corresponding to the “Reachable edges” metric used to measure recall in Section 7.1. The621

color legend for the pie charts appears below Figure 8.622

Using data to improve recall Figure 6 shows the prevalence of different root causes across623

the TodoMVC benchmarks for the optimistic variant of the original ACG implementation624

in WALA. When studying these root causes, we were surprised to see that 24% of missed625

call edges were due to calls to unmodeled standard library functions. Based on this data,626

we modified WALA to include basic models of many of these native functions. This change627
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Figure 7 Improved root causes for ACG variants across TodoMVC, after WALA improvements.
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Figure 8 Root causes for three TodoMVC benchmarks for optimistic ACG.
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Figure 9 Root causes for pessimistic ACG for Juice Shop.

improved average recall for the pessimistic analysis by 2 percentage points to 37% (by the628

Reachable Edges metric); improvement for optimistic analysis was 5 percentage points, to629

76%. These improvements show that quantifying root cause prevalence can guide an analysis630

developer to “quick wins” for improving analysis recall. The data in the remainder of this631

section were computed using the improved version of WALA ACG.632

Top root causes Turning to RQ3, Figures 7a and 7b respectively show top root causes for633

pessimistic and optimistic ACG across the TodoMVC benchmarks (after improving WALA’s634

native models). Comparing the two, we see a key difference is that missed calls due to635

functions being passed as parameters or returned (the “Parameter Pass” and “Function636

return” labels) are significant root causes (totaling 74%) for pessimistic analysis but not637

optimistic. This result makes sense, as the key difference between optimistic and pessimistic638

ACG is that optimistic analysis tracks interprocedural flow of function values. Given that639

74% of missed edges for pessimistic analysis are due to such interprocedural flows, it seems640

the best approach to improving pessimistic recall for these benchmarks would be to model641

some of these flows, rather than attacking other root causes.642

The “Others” label covers a small number of cases (5% overall) where our current scripts643

cannot yet find a root cause. In addition to the unhandled constructs and cases described644

in Section 5, our automated reasoning failed in rare cases due to a bug in WALA ACG’s645

handling of finally blocks. During our work, we identified two other WALA ACG bugs that646

were fixed by the maintainers. Overall, our techniques successfully handle more than 95%647

of the missing call edges for our benchmarks, and we will continue to improve our tools to648

reduce the number of unhandled cases.649

Focusing in on figure 7a, we see that dynamic property accesses are by far the most650

prevalent root cause for optimistic analysis of TodoMVC benchmarks at 70%. We dig further651

into these property accesses with a finer-grained labeling in Section 7.3. The second-most652

prevalent root cause on average is “Eval via new Function” at 10%, but as we shall see next,653

the second-highest root cause varies significantly across benchmarks.654
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Figure 10 Finer-grained dynamic property access root causes for TodoMVC benchmarks.

Variance across benchmarks For RQ4, we use illustrative examples to show the variance655

in root cause prevalence across benchmarks. Figures 8a–8c respectively show root causes656

for the React, Angular, and Vue.js TodoMVC benchmarks, analyzed with optimistic ACG.657

While the most-prevalent root cause for each of these benchmarks was dynamic property658

accesses, the second-place root cause varies by benchmark: “Eval via new Function” is second659

for React, “Call to bounded functions” for AngularJS, and “Call to getter / setter” for Vue.660

This benchmark-specific data could provide valuable information to an analysis developer.661

E.g., if the developer were primarily trying to improve recall for applications like the Vue662

benchmark, it may be more worthwhile to improve handling of getters and setters than if663

the applications were more similar to the React benchmark.664

Figure 9 shows root causes for the larger Juice Shop benchmark (analyzed with pessimistic665

ACG). Unfortunately, Juice Shop exercised gaps in our infrastructure’s handling of tricky666

JavaScript constructs more heavily, particularly in the dynamic flow trace analysis. So, we667

could not compute proper root causes for 27% of missing call graph edges for Juice Shop.668

Still, the remaining data is interesting, particularly when compared to the pessimistic results669

for the TodoMVC benchmarks shown in Figure 7b. We see that handling returns of functions670

seems to be relatively less important than for the TodoMVC benchmarks, whereas handling671

of getters and setters is more important. Though making strong conclusions is difficult given672

the number of uncategorized edges in this case, these preliminary data again show the ability673

of our technique to expose benchmark-specific insights about causes of low recall.674

To summarize, we have shown that our technique for quantifying root causes works across675

several benchmarks and can expose the most important root causes in aggregate and the676

differences between benchmarks. Since improving recall for JavaScript static analysis on677

real-world programs poses so many challenges, we expect improvements for specific types of678

benchmarks to prove worthwhile, and the data from our techniques can provide valuable679

guidance in how to do so.680
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7.3 Name Flow for Dynamic Property Accesses681

Given the importance of dynamic property accesses as a root cause in Section 7.2, we682

performed a finer-grained root cause labeling of these accesses. Our goal was to understand683

better how property names are computed for these accesses, to see if some targeted handling684

of the property name expressions could be useful. Recent work by Nielsen et al. [44] proposes685

just such a technique for analysis of Node.js code, via special handling of property name686

expressions that concatenate a string constant prefix or suffix to some other expression.687

We hoped to use root cause labeling to see if a similar technique could be effective for our688

web-based benchmarks.689

We implemented a simple intra-procedural analysis using WALA [58] to label each root-690

cause dynamic property access based on how data flows into its property name expression691

(for an access x[e], e is the property name expression). Aggregate results appear in Figure 10;692

our artifact has the complete data [21]. As shown in Figure 10, property names for root-cause693

dynamic accesses have a diverse set of sources. The largest single source are JavaScript’s694

for-in loops for iterating over object properties, studied frequently in the literature as a695

challenge for static analysis (e.g., [19, 47]). However, they account for only 31% of cases in696

total, and many other sources exist. Property names are often passed in from outside the697

function containing the access, whether by parameter passing (28%) or variables in enclosing698

lexical scopes (12%); handling these cases may require inter-procedural tracking of property699

name value flow. Another major source is property reads (12%) (i.e., the property name is700

read from another object property), whose handling may again require deep tracking of value701

flow.702

String concatenation cases comprise 14% of root-cause property name expressions. Only703

4% of such expressions in our benchmarks had a string constant prefix or suffix, the type of704

expression targeted by Nielsen et al. [44]. Hence, the data show that their technique would705

likely have at most a small impact on recall for our benchmarks.706

A deeper study of inter-procedural property name value flow could provide further insights707

on how these names are computed; this remains as future work. Still, our data show it is708

likely that a variety of challenges would need to be addressed to significantly improve ACG’s709

recall with respect to dynamic property accesses.710

7.4 Threats to Validity711

As noted in Section 6, we do not claim generalizability of the results for our benchmarks to712

a broader set of JavaScript applications. In our benchmark suite, each individual framework713

is primarily exercised by a single TodoMVC benchmark, which may not be representative of714

other applications using that framework. Also, though our harness achieves high statement715

coverage for the TodoMVC benchmarks (Section 6.3), it is possible that certain application716

behaviors in those apps remain unexercised. Our dynamic coverage of Juice Shop was717

relatively low due to scalability limitations; more complete coverage is required to make718

strong conclusions about relative importance of root causes for that application. Finally, as719

noted in Section 5, our tooling still does not handle certain language features completely,720

which may have impacted our measurements.721

8 Related Work722

Here, we briefly discuss related studies of analysis effectiveness, and also other analysis723

frameworks and their applicability to framework-based web applications.724
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Root cause analysis Our work was partly inspired by a study of call graph recall for Java725

programs by Sui et al. [57]. As in that work, we measure recall with respect to dynamic726

analysis measurements, and we aim to determine which constructs are responsible for missing727

edges. Sui et al.’s approach used calling-context trees [18] and runtime tagging of reflective728

operations to determine language features impacting recall. Since functions are first-class729

values in JavaScript, we can trace function data flow directly to make this determination.730

Also, due to JavaScript’s dynamic nature, the potential causes of missing edges and their731

usage patterns differ significantly from Java’s problematic constructs.732

Andreasen et al. present techniques for isolating soundness and precision issues in the733

TAJS static analyzer for JavaScript [20]. For finding analysis unsoundness, their technique734

creates logs of expression values while executing target programs, and then checks that the735

static analysis abstractions account for all such values. When unsoundness is discovered736

for a program, delta debugging [61] is employed to find a reduced version of the program737

with the same unsoundness. From this reduced program, determining a root cause is often738

much simpler. In contrast to their work, which is focused on an analysis that strives for full739

soundness, our approach is targeted at analyses with deliberate unsoundness (for practicality),740

and aims to quantify the impact of different unsoundness root causes.741

Reif et al. [61] present a system that provides methods for exposing sources of unsoundness742

in different Java call graph builders and also for measuring how frequently hard-to-analyze743

constructs appear in a set of benchmarks, yielding many useful practical insights. A difference744

with our work is that our technique can automatically connect specific uses of hard-to-analyze745

constructs to the corresponding missed call graph edges. This provides important additional746

information for JavaScript, since hard-to-analyze constructs can appear pervasively in747

JavaScript code, and not all occurrences cause call graph unsoundness.748

Lhoták [37] also presents a comparison of static and dynamic call graphs for Java, aimed749

at finding sources of imprecision in the static call graph. Other work [20, 60] used dynamic750

analysis to generate traces and find root causes of imprecision in JavaScript static analyses,751

and Wei et al. [60] also provides suggestions to fix the root causes of imprecision. Lee et752

al. [35] produce a tracing graph by tracking information flow from imprecise program points753

backwards, thereby aiding the user to identify main causes of the imprecision. Our work754

differs from all of these studies in its focus on recall rather than precision, which necessitates755

different techniques.756

JavaScript Analyses Several analysis frameworks use abstract interpretation [24] to handle757

the interdependent problem of scalability and precision in JavaScript [32, 33, 36]. These758

frameworks have been steadily enhanced with techniques to improve precision and scalability759

when analyzing libraries, particularly TAJS [19, 31, 32, 43] and SAFE [34, 35, 36, 46, 47,760

50]. While these techniques have shown enormous improvement in analyzing libraries like761

jQuery [10] and Lodash [11], they do not yet scale to complex MVC frameworks like React [4].762

Other techniques use dynamic information to improve static analysis. Wei and Ryder763

introduced blended analysis [59], which uses dynamic analysis to aid static analysis in handling764

JavaScript’s dynamic features. The dynamic flow analysis by Naus and Thiemann [41]765

generates flow constraints from a training run to infer types in JavaScript applications.766

(Their technique finds constraints by tracking operations on values; we determine how values767

are copied through memory, an orthogonal problem.) Lacuna [45] utilizes static and dynamic768

analysis to detect dead code in JavaScript applications; this work uses ACG and also uses769

TodoMVC applications for evaluation. While dynamic information can be very helpful in770

static analysis, improving pure static analysis is still desirable, as it can compute results771
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without instrumenting and running the code and without inputs.772

To analyze JavaScript applications that use the Windows runtime and other libraries,773

Madsen et al. proposed a use analysis that infers points-to specifications automatically [38].774

It is unclear if their analysis will be effective for framework-based applications, where control775

flow is mainly driven by the framework, not the application. Also, we study applications using776

diverse frameworks from by many different developers, whereas [38] focuses on Windows777

libraries. For Node.js, Madsen et al. [39] presented a static analysis using call graphs778

augmented to represent event-driven control flow. To scale static analysis in server-side779

JavaScript applications in Node.js, Nielsen et al. present a feedback-driven static analysis780

to automatically identify the third-party modules that need to be analyzed [42]. Our focus,781

however, is on client-side MVC applications that often do not have clean module interfaces.782

Other recent systems make use of pragmatic JavaScript static analyzers. The CodeQL783

system [7] includes an under-approximate call graph builder for JavaScript [8]. CodeQL’s784

analysis is primarily intra-procedural, targeted toward taint analysis, and does not handle785

dynamic property accesses.10 Møller et al. [40] describe a system for detecting breaking786

library changes in Node.js programs, based on an under-approximate analysis designed for787

high recall at the cost of some precision. Nielsen et al. [44] present a pragmatic modular788

call-graph construction technique for Node.js programs; we discussed its specialized handling789

of property name expressions in Section 7.3. For these approaches, our methodology could790

be used to quantify the importance of different causes of reduced recall. Salis et al. recently791

presented a pragmatic call graph builder for Python programs [51]; it would be interesting792

future work to extend our techniques to Python. Beyond dataflow-based reasoning about793

call graphs, other approaches to JavaScript static analysis include AST-based linting [9] and794

type inference [16, 23].795

9 Conclusions796

We have presented novel techniques for quantifying the relative importance of different root797

causes of missed edges in JavaScript static call graphs. We instantiated our approach to798

perform a detailed study of the results of the ACG algorithm on modern, framework-based799

web applications. The study’s results provided numerous insights on the variety and relative800

impact of root causes for missed edges. All of our code and data is publicly available. In801

future work, we plan to extend the study to other domains; we expect that analyses for802

any dynamic language with extensive use of higher-order functions could benefit from our803

techniques. We also plan to use the techniques to further develop improved call graph804

builders and other JavaScript static analyses.805
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