
Machine Learning For Finding Bugs in Source
Code: An Initial Report

Timothy Chappell†, Cristina Cifuentes∗, Padmanabhan Krishnan∗, Shlomo Geva†
∗Oracle Labs, Brisbane, Australia

{cristina.cifuentes,paddy.krishnan}@oracle.com
†Queensland University of Technology, Brisbane, Australia

{timothy.chappell,s.geva}@qut.edu.au

Abstract—Static program analysis is a technique to analyse
code without executing it, and can be used to find bugs in
source code. Many open source and commercial tools have been
developed in this space over the past 20 years. Of importance for
the deployment of static code analysis tools is the precision of the
technique and its scalability – numerous false positives and slow
runtime both make the tool hard to be used by development,
where integration into a nightly build is the standard goal.

In this paper we report our findings on using machine
learning techniques to detect defects in C programs. We use three
off the shelf machine learning techniques and use a large corpus
of programs available for use in both the training and evaluation
of the results. We compare the results produced by the machine
learning technique against the Parfait static program analysis
tool used internally at Oracle by thousands of developers.

While on the surface the initial results were encouraging, fur-
ther investigation suggests that the machine learning techniques
we used are not suitable replacements for static program analysis
tools due to low precision of the results. This could be due to
a variety of reasons including not using domain knowledge and
lack of suitable data used in the training process.

I. MOTIVATION

Static program analysis aims to determine if a program
meets certain requirements without actually running the pro-
gram. As the program is not executed, the static analyser cre-
ates an abstraction of the program on which the requirements
are checked [1]. Depending on the underlying abstraction, it is
possible to support sophisticated path analysis including inter-
procedural analysis and object-oriented features. Static analysis
techniques to identify potential bugs in large code-bases [2],
[3] have been very successful. To make the analysis tractable,
the abstraction chosen (e.g., for all values computed by a
program) is finite. The key challenges that need to be overcome
in any static analysis include choosing the right abstraction to
detect the relevant defect and tuning the analysis to reduce the
false positive rate. For instance one can use the pentagon or
octagon domain to detect illegal memory accesses [4], [5]. The
process of identifying the abstraction and tuning the analysis
can take a long time, as it is reliant on the insights available
to the designer of the program analysis.

The goal of our work is to determine whether off the shelf
machine learning techniques can be used to detect potential
defects in programs. More specifically, we investigated the
effectiveness of document signature approaches for finding
defects in source code. The idea was that, if an effective low-
dimensionality representation of source code could be found

that preserves all the necessary information, it could be used
to assist in classification tasks when paired with a sufficiently
large corpus of marked-up source code. This representation
can then be translated into signature space, within which high
performance retrieval and clustering approaches can be utilised
for the purpose of creating a highly scalable and precise source
code classification service.

As the long term aim of our work is to eventually deploy
such a tool as part of the software development cycle, the
performance of the tool as measured by the number of true
positive, false positive, and false negative reports must be
comparable to currently used tools such as Parfait [3]. Hence
the focus of our work was to determine the ideal representation
to use for source code for specific defect types similar to the
human-specified abstraction in static analysis. This also means
that our experiments compare the performance of machine
learning (which is inductive) with static program analysis
(which is deductive). This is in contrast to other work such
as ALETHEIA [6] which compare different machine learning
techniques which refine outputs produced by static analysers.

This paper is organised as follows. In Section II we
present the data-set used in our experiments. This includes the
programs used for training as well as testing the effectiveness
of the machine learning techniques. In Section III we describe
the features used to represent the signature of the programs.
Sections IV–VII present the details of our experimental setup
and the results that we obtained. We wrap up with the
conclusions we can draw from our experiments and outline
some of our ideas towards improving the results.

II. DATA SETS

The extent to which meaningful classification of source
code can be achieved is limited by the training data we
have available. We have used both publicly available code-
bases (including benchmarks and applications) as well as some
purely internal code-bases in our experimentation. These are
described below.

A. Begbunch

Begbunch is a collections of test data sets used internally at
Oracle for benchmarking Oracle’s Parfait static analysis tool.
Begbunch is divided into two main sub-collections, of which
one is the accuracy collection. The accuracy collection is used
for benchmarking the accuracy of Parfait, that is, its precision
and recall. It consists of several suites of test programs which



Test suite Suite type # of functions
Cigital Artificial 50
Iowa Artificial 1686
Samate Artificial 2366
OracleLabs-I Artificial 25
OracleLabs-II Real 1126

TABLE I. SUMMARY OF BEGBUNCH’S ACCURACY BENCHMARKS

have had their source code marked up to indicate the location
and nature of various bugs (such as buffer overflows, memory
leaks and use of uninitialised data). This includes programs
from well known suites including Cigital, Iowa [7] and NIST
SAMATE [8]. These have been extended with some examples
derived from various sources such as unit tests. All these
examples are artificial in that each test case is just a few lines
of code to illustrate the presence/absence of the defect. This
artificial benchmark suite has been extended with some code
derived from open systems for which bug reports are available.
Table I summarises the contents of this collection.

Approximately 20% of the functions in the Begbunch
accuracy data set are real, while the remaining functions are
artificial. For the purposes of our research the real data is the
most helpful, as it identifies what real functions that exhibit
particular vulnerabilities look like.

The second collection of programs in Begbunch is the
scalability set of test suites. These consist of a set of indepen-
dently compilable software projects that are intended to test
the execution time of static analysis tools; as a result, while
the code may or may not contain bugs, there is no mark-up
within the source files in this data set to indicate the presence
of bugs. It is a large data set with a total of 64,662 functions.
However, for it to be used as training or test data for any
classifier, it needs to be marked up using some other approach
(such as a static analysis tool like Parfait) first.

B. OpenSolaris

OpenSolaris (release from 2008) is the third and the largest
data sets used and has more than 600,000 functions. Although
the entire code has not been marked up, there is a certain
amount of independently-verified ground truth available for
this set. This ground truth is in the form of 10,101 bugs that
have been reported by a run of an old version of Parfait and
manually evaluated for false positives, with bugs marked as
“verified”, “unverified”, “false” or “wontfix”.

Two limitations prevent this data set from being quite as
useful as the Begbunch accuracy data set. The first reason is
that the reports consist of classification of the defects reported
by Parfait. So the defects that were not caught by Parfait
(false negatives) are not included. The second is related to
the granularity of the reports. The report only lists bugs, not
the files and functions that Parfait was run on. Hence it is
impossible to tell if a particular file is unrepresented in the data
because Parfait did not detect any bugs in it, or because the
file was never processed by Parfait (e.g., a conditional include
that imports some files but not others).

Thus the data-set we have for training and testing include
small (both artificial and real) programs for which the defects
are marked up and two large collections for which the ground

truth is not fully known. Apart from Parfait, the static analyzers
Splint [9] and Uno [10] were also included in the benchmark
for comparison purposes.

III. FEATURE EXTRACTION

In order to perform machine learning on the available
source code and determine what information any signature
representation will need to incorporate, it is necessary to
establish a set of features that can be extracted that contain
the information needed. The initial approach taken in this
instance was to extract a number of different features and
progressively trim that list down until it was small enough
that more computationally expensive machine learning tools
could be run on it efficiently. We outline two specific signature
representation techniques below.

A. Op-code n-grams

For code to be analysed with Parfait it first needs to be
translated into LLVM’s intermediary bitcode format. This for-
mat also presents us with some useful cross-platform features
that allow some of the control flow of a function to be captured
without the syntax. In this case we make use of n-grams
of the instruction op-codes (e.g. load, store, br), with each
feature counting the number of times a particular sequence of
n consecutive instructions appear in each function. While the
amount of individual detail these features can give is low, the
idea is that it may be possible that certain instructions or pairs
of instructions present an elevated risk profile with respect
to certain types of bugs; alternatively, the absence of certain
instructions or pairs of instructions may make it impossible
for certain types of bugs to exist in the code.

B. Code complexity features

The complexity tool is a feature of Parfait and it computes
a set of standard complexity metrics for each function in the
input file. These metrics relate to how complex the control
flow of the code is, among other factors. These features
are relatively inexpensive to compute. The intuition is that
associations between code complexity and the presence of
defects in code could be used to identify complex code that
is potentially buggy. The complexity features used include
lines of code, def-use chains, nesting depth and McCabe’s
cyclomatic complexity.

IV. EXPERIMENTS AND RESULTS

Once a set of features is available, machine learning can
be performed on these feature sets to classify functions as
possessing a particular bug or not.

As many machine learning tools are geared towards classi-
fying data into one class or another, while a function can have
multiple different bugs, this is handled by training a machine
learning model for one specific class of bugs at a time. The
models for each bug type can then be run on any input data
to classify it. Each model is run entirely independently and
a function is presumed to have each bug type identified; for
instance, if a function is marked as positive by the buffer-
overflow and memory-leak classifiers, it is presumed to contain
both bugs.



To support any combination of feature sets, a number of
tools and scripts were built to deal with the data using a
common set of intermediary file formats. The FunctionList file
format maps function IDs to functions in source files; for each
function ID the path to the source code, the function name
and the first and last line numbers of the function are stored.
The BugList file stores the bugs that are associated with each
function; each line contains the function ID, the bug type, the
line number the bug occurred on and some other metadata,
such as whether the bug was inter-procedural, security-related
etc. The suite of tools constructed for this purpose was named
’Biscotti’. The machine learning approach used was the Weka
[11] (a Java based machine learning toolkit) implementation
of the RandomForest algorithm: a machine learning algorithm
that creates a large number of decision trees and combines
their findings to classify an input.

To evaluate the approach initially, 10-fold cross-validation
was used. This means that the model was trained and tested
10 times for each bug type, each time testing on a different
subset (a randomly selected set of 10% of the functions in the
input data) and training on the remaining data. This ensures
that a function is never used to both train and test the same
model. The classifiers were used as-is with no tuning.

Table II shows a comparison of Biscotti against static
analysis tools Parfait and Splint on the Begbunch accuracy
data set. The accuracy of each system is shown in the form
”X/Y (X/Y%), Z FP”, where X is the number of successfully
detected instances of that bug type, Y is the total number of
instances of that bug type and Z is the number of false positives
(functions that were classified by the system as possessing that
bug type when in fact they did not.)

V. TRAINING AND TESTING SPLITS

One problem that was discovered early on is the fact that
standard training and testing splits; holding back a randomly
selected portion of the data set, or performing X-fold cross-
validation on random subsets of the data set; is insufficient
for properly evaluating machine learning static analysis ap-
proaches [12], [13]. In general these algorithms work well
within one data set do not work so well when migrated to other
projects. In our context when a model is trained on one set of
source code, it is found to have far worse performance when
tested on another set of source code. This is almost certainly
due to the analysis tools detecting duplicate or near-duplicate
functions and assuming identical defects are found in each
copy.

Within the Begbunch accuracy data set, this problem
exhibits itself largely as a result of the artificial training sets
that make up the majority of the available data. As these
testing suites consist of a large number of small functions
designed to test for specific bugs, rather than possessing
characteristics similar to buggy real-world code they instead
possess characteristics similar to other functions in the same
testing set that were designed to test for the same bug. As a
result, the machine learning algorithms learned to recognise
functions that fit a particular form and was therefore unable to
recognise real bugs. Conversely, when training on real-world
data the resulting model had trouble with classifying bugs in
artificial data for certain bug types.

Table III shows the outcome of training the machine
learning approach on real-world data (that is, OracleLabs-II
data) and testing the approach on artificial data (Iowa, Cigital,
SAMATE, and OracleLabs-I data sets).

VI. TEXT FEATURES AND DIMENSIONALITY REDUCTION

To extend the expressiveness of the feature sets, text
features were also added to the data set. While these have
the effect of adding a lot of features that identify particular
functions, they are nonetheless a rich source of data and
problems with the data can be taken care of during training
(e.g. by ensuring that the same Begbunch accuracy suite is
never used for both training and testing). These text features
consist of tokens taken directly from the text of the source
code from each function. This is performed with a custom
tokenisation approach that attempts to preserve C language
tokens (for example, keeping != and >> together) and the
output acts as a term frequency table of each identifier and
syntactical atom that appears in a given function. These
features should function similarly to bag-of-words features in
document classification, allowing duplicate or near-duplicate
functions (which may possess the same defect) to be identified.

As an aside, the source code text also consists of the
mark-up that was added to the Begbunch accuracy data set
in order to mark the presence of particular bugs. As these text
features would be an immediate giveaway as to the presence
of a bug, they were removed beforehand. The text features that
were extracted from the Begbunch accuracy data set include
tokens such as reserved words, parenthesis, constant strings
and identifiers in the program. LLVM instructions that feature
in the learning include alloca, bitcast and call. Overall there
are more than 2500 features that are extracted. Table IV lists
some of the text features (i.e., tokens in the program) extracted
from the Begbunch accuracy data set.

A. Dimensionality reduction

With the additional text features, the full set of features
has reached a considerable size which poses problems for
many machine learning methods. It therefore makes sense
to develop some initial method of ranking them in terms of
their representational capacity as far as their effectiveness at
successfully classifying source code is concerned. This way the
low-value features can be excluded without much additional
work. To this end, the Leave One Out Nearest Neighbour Error
(LOONNE) method is employed [14] ; the nearest neighbour
error is calculated as the number of errors that exist when
each function is classified as possessing the same bug as the
nearest function in terms of Euclidean distance in the current
feature space. For each feature in the current feature set, the
nearest neighbour error is calculated for the feature set with
that feature omitted. Through this process the feature that when
removed results in the lowest nearest neighbour error for the
remaining feature space can be determined. That feature is
then permanently excluded and the process repeated until all
features have been removed. The result is a ranked list of
features in terms of their value, with the first-removed features
being the least valuable.



Bug type Biscotti Parfait Splint

buffer-overflow 1065/1305 (82%), 20 FP 1073/1305 (82%), 21 FP 821/1305 (65%), 356 FP
double-free 0/23 (0%), 0 FP 16/23 (70%), 3 FP 0/23 (0%), 0 FP
format-string 0/17 (0%), 0 FP 0/17 (0%), 0 FP 4/17 (24%), 17 FP
integer-overflow 0/24 (0%), 0 FP 1/24 (4%), 9 FP 0/24 (0%), 0 FP
memory-leak 17/189 (9%), 2 FP 54/189 (29%), 24 FP 0/189 (0%), 0 FP
null-pointer-deref 0/14 (0%), 0 FP 8/14 (57%), 3 FP 5/14 (36%), 69 FP
read-outside-array-bounds 171/267 (64%), 2 FP 179/267 (67%), 4 FP 232/267 (87%), 890 FP
uninitialised-var 0/125 (0%), 6 FP 81/125 (65%), 83 FP 79/125 (63%), 134 FP
use-after-free 0/31 (0%), 0 FP 17/31 (55%), 3 FP 18/31 (58%), 7 FP

Total 1253/1995 (63%), 30 FP 1429/1995 (72%), 150 FP 1159/1995 (58%), 1473 FP

TABLE II. COMPARING THE EFFECTIVENESS OF BISCOTTI TO STATIC ANALYSIS TOOLS ON DIFFERENT BUG TYPES

Bug type Biscotti Parfait

buffer-overflow 852/1234 (69%), 5 FP 1042/1234 (84%), 19 FP
double-free 0/22 (0%), 0 FP 16/22 (73%), 3 FP
format-string 0/11 (0%), 0 FP 0/11 (0%), 0 FP
integer-overflow 0/18 (0%), 0 FP 1/18 (6%), 9 FP
memory-leak 0/179 (0%), 0 FP 46/179 (26%), 13 FP
null-pointer-deref 0/12 (0%), 0 FP 8/12 (67%), 0 FP
read-outside-array-bounds 0/241 (0%), 0 FP 164/241 (68%), 1 FP
uninitialised-var 0/121 (0%), 0 FP 79/121 (65%), 68 FP
use-after-free 0/31 (0%), 0 FP 17/31 (55%), 3 FP

Total 852/1869 (46%), 5 FP 1373/1869 (73%), 116 FP

TABLE III. COMPARING BISCOTTI AGAINST PARFAIT WITHOUT SAME-SYSTEM TRAINING

!
(
)
,
00
1
10
101
1024
12

2
20
25
320x200
4G
55
553
8000 CV INT
Con GetByte
Con GetCommand

Con GetFloat
Con GetVariable
DDKEY ENTER
DHparams dup
EXITCODE OK
Expired
FILE
FONT
FSM IDADD
FSM IDDEL

FSM MACRO
HITN
In
Input
MagickExport
Only
PATH SEP
PKCS7 TEXT
REPLY LEDS CMD
RESERVED

RXON FILTER ACCEPT GRP MSK
RX QUEUE SIZE
SCD DRAM BASE ADDR
SCD INTERRUPT MASK
SDSSC OKAY
SGE INTR MAXBUCKETS
SGE PL INTR MASK
SGE RX COPY THRESHOLD
SLC IP
SSL3 MT CERTIFICATE VERIFY

TABLE IV. EXAMPLE OF SOURCE CODE TEXT FEATURES

B. Most useful features

The output from the LOONNE tool is a ranked list of
features. Table V lists the features that were found most useful
for classifying functions in this data set.

The utility of some of these features is obvious; Parfait and
Splint both report suspected buffer overflow bugs and there
is clearly a strong correlation between this reporting and the
presence of buffer overflow bugs in the code. Splint’s “Fresh
store not released before return” is also clearly indicative of
a certain type of memory leak and a strong association with
memory leaks can therefore be expected. For other features
the association is far less clear.

Biscotti, using the new feature set, was once again eval-
uated on the Begbunch accuracy data set. Keeping in mind
the problems associated with training and testing on the same
test suite, in this next evaluation Biscotti was trained on the
artificial test suites (Cigital, Iowa, Samate and OracleLabs-I)
and evaluated on the real-world test suites (OracleLabs-II). The
results of this evaluation are included in Table VI.

This shows that, while under some circumstances the
machine learning approach employed by Biscotti is capable of
combining enough evidence to perform better than other static
analysis tools with a low false positive rate, this success is only
seen with certain types of bugs and has limited portability. The

Feature type Feature name

Parfait buffer-overflow
Text csl to argv
Splint Undocumented global use
Splint For body not block
Splint buffer-overflow
Splint If body not block
Splint Path with no return in function with return type
Splint Return value ignored
Parfait Uninitialised var
Splint Function exported but not used outside
Splint Operands of comparison have incompatible types
LLVM 2-gram load, fpext
Complexity FuncStartLine
Splint Test expression for if not boolean
Splint Fresh storage not released before return
Complexity Nesting
Text !
LLVM 2-gram add, call

TABLE V. LIST OF THE MOST IMPORTANT FEATURES, AS
DETERMINED BY LOONNE

other issue is the high level of reliance the model has on the
features from static analysis tools. When there are duplicate (or
very similar) functions to be trained and tested on the structural
features work well; however, for discovering bugs in previously
unseen code these features are insufficient, and in these cases
it is only by combining the analysis results from tools like
Parfait and Splint that Biscotti is able to perform adequately.



Bug type Biscotti Parfait Splint Uno

buffer-overflow 39/71 (1 FP) 31/71 (2 FP) 37/71 (133 FP) 3/71 (7 FP)
format-string 0/6 (0 FP) 0/6 (0 FP) 3/6 (6 FP) 0/6 (0 FP)
memory-leak 0/8 (0 FP) 8/8 (11 FP) 0/8 (0 FP) 0/8 (0 FP)
null-pointer-deref 0/2 (0 FP) 0/2 (3 FP) 0/2 (34 FP) 0/2 (0 FP)
read-outside-array-bounds 7/25 (0 FP) 15/25 (3 FP) 16/25 (225 FP) 0/25 (0 FP)
uninitialised-var 0/4 (2 FP) 2/4 (15 FP) 1/4 (32 FP) 0/4 (13 FP)
Total 46/116 (3 FP) 56/116 (34 FP) 57/116 (430 FP) 3/116 (20 FP)

TABLE VI. EVALUATING BISCOTTI AND STATIC ANALYSIS TOOLS ON REAL-WORLD CODE

Bug type NeuralNet Parfait

buffer-overflow 56,095 81
memory-leak 47,414 94

TABLE VII. COMPARING NEURAL NET APPROACH AGAINST PARFAIT
ON OPENSOLARIS

VII. NEURAL NETWORK EXPERIMENTS

A limitation of the machine learning approaches described
previously is the requirement that the feature set be specified in
advance. This works well in cases where only a limited number
of features are actually available from the data in question,
but as the real data sets here are source code there could be
a wealth of additional information that is being left out of the
classification models to the detriment of our results. To this end
a small number of initial experiments were conducted using
neural networks. The idea is to construct a model that is able
to learn the features to use, rather than simply classifying on
a set of existing features.

A. Convolutional neural networks

While typically used for image recognition tasks, convolu-
tional neural networks are a particular type of neural network
that features one or more layers of convolutional kernels. These
kernels are a (typically 2D) array of weights that are trained
to fit various features of the input data, then feed their results
into one or more fully connected layers in order to learn how
the learned features correspond to classes.

The convolutional neural network architecture used for
these experiments is a simple model based on LeNet [15]
consisting of a convolutional layer of 16 neurons, followed by
a fully connected layer of 40 neurons, which in turn fed into
a convolutional layer of 2 neurons to perform classification.
Once again, the approach used here was to train the model to
recognise one particular kind of bug. To transform the (text)
data into a form that the network can handle, the text was
converted into a bitmap image with one pixel per bit of input
text.

Unfortunately, this approach had similar problems to the
problems Biscotti had when features obtained by static analysis
tools were removed from the equation; only bugs common
across multiple copies of bugs were able to be consistently
identified. When the evaluation is performed carefully to avoid
this, the results are only marginally better than random chance.
For instance, training the network on the Begbunch scalability
data set and testing it on the OpenSolaris data set is shown
in Table VII. While the true positive rates are comparable the
false positive rates are prohibitive for this approach to actually
be useful.

B. Recurrent neural networks with long short-term memory

Another form of neural network that was briefly experi-
mented with was the recurrent neural network with long short-
term memory [16]. The recurrent neural network consists of
nodes that are connected to themselves temporally, with these
links to the past having associated weights just like normal
connections between nodes in a neural net. As a result, the
network can learn how much to remember and how to use
the stored data. The long short-term memory variation on
the recurrent neural network features memory nodes that hold
information between steps and other nodes can communicate
with those nodes to store or retrieve this information.

Unfortunately preliminary testing has shown that the RNN
approach has similar problems to the other models that rely
on superficial features for classifying source code. Multiple
models were tested; both classifying the non-buggy RNN on
non-buggy functions and on buggy functions with the buggy
code removed, but neither was found to be acceptable. Once
again, the approach is able to successfully identify duplicate
functions, but this limits the portability of the approach to other
data sets. The applicability of the approach to find defects is
also unclear.

VIII. CONCLUSION AND FUTURE WORK

While these machine learning approaches show some po-
tential for refining the output of other static analysis engines to
reduce the rate of false positives among certain bug types, the
effectiveness of all discussed approaches drops greatly when
this static analysis data is not available as features. This means
that the approaches, as currently designed and with no extra
data, cannot compete against handcrafted static analysis tools.
Any machine learning technique that relies on the results of a
static analysis to perform well is not useful. The main benefit
of using machine learning to reduce the time to develop the
abstractions and tune the analysis is defeated. This is further
compounded as each defect type needs its own training.

More specifically the lessons learned from our experiments
include the following. When only structural source code fea-
tures are available, only similar-function detection is feasible.
This allows some functions to be classified correctly, even in
data sets without significant duplication; however, the accuracy
is too low and false positive rate too high to be useful as a
defect finding technique. This is clear from Table IV where
there is no feature that a human will identify as the cause of
the bugs. Furthermore, the important features, (ignoring the
mark ups which will not be available on real code) identified
by LOONNE has items such as the start line and !.

There are not enough examples of marked-up real-world
data in the available data sets for machine learning approaches



to sufficiently generalise in order to detect new bugs. The
problem is that the data set is too limited for the machine
learning approaches used to learn features that generalise;
when the non-general features perform better than the general
features it is difficult for the model to learn those general
features. This is even more of a problem for neural network
approaches that provide no manual control over the features
that are selected; as a result, the non-general features are
almost guaranteed to be preferred. While generating input
programs is not a challenge, marking real bugs is too time
consuming to be useful in practice. As this has to be done
for each bug-type, the generality of the approach is unclear.
In other words, the time spent in marking up real bugs for
the training can be used to develop the specific static analysis.
Another approach is to have both the program with the bug and
the program without the bug in the machine learning process
[17]. But their technique also relies on test suites from which
invariants are derived raising the issue of scalability.

The neural network approach does not seem to yield
practical results. Note that for the experiments different version
off Parfait were used for the training and for the comparison.
While this could bias the results towards Parfait, the results
for the neural network approach is not promising as the false
positive rate is not comparable to Parfait’s rate and overall, is
only better than random.

Our experiments lead us to wonder if techniques used un-
related domains such as image recognition or natural language
processing, are suitable for defect detection. Programming
languages have a notion of semantics and these defects can
be defined using this semantics. However, the syntax based
approach ignores the underlying semantics and it is not clear
if such semantics can be learned. Machine learning techniques
using program features such as abstract syntax trees (ASTs)
have been proposed [18], [19]. While they are useful in
detecting similar code it is not clear if they can be used to
detect defects in general code.

Given that ground truth generation via manually marking
up the large representative source code is infeasible, the
following are considered to be potentially useful alternatives.

One could use semi-supervised learning. Given the large
amount of unlabelled input data, one potential strategy is to
build a classifier trained on the labelled data and use it to
classify the rest of the data so that a larger corpus of training
data is available. While this approach still has the problem
of potentially giving misleading results due to the input data
not being general enough, semi-supervised learning is known
to provide superior results compared to only training on the
smaller subset.

Determine another means of evaluating code for the pur-
poses of producing training data. While this may not be as
high quality nor as versatile as simply having more manually
marked up input data, other tools can potentially be used
to detect bugs for the purposes of marking up input source
automatically. Dynamic analysis tools like Valgrind are usually
highly accurate, but come with the downside of needing to be
run on code and actually experience bugs like buffer overflows,
double frees and memory leaks instead of determining if they
could potentially happen.

In summary, while the initial results of our tool Biscotti

looked encouraging, closer investigation revealed the inter-
depence between static analysis and the training phase for
the machine learning techniques. Thus we have not made
significant progress towards our goal of replacing handcrafted
static analysis tools with machine learning techniques.

REFERENCES

[1] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis, 2nd ed. Springer, 2005.

[2] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later – using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, pp. 66–75, 2010.

[3] C. Cifuentes, N. Keynes, L. Li, N. Hawes, and M. Valdiviezo, “Tran-
sitioning Parfait into a development tool,” IEEE Security and Privacy,
vol. 10, no. 3, pp. 16–23, May/June 2012.

[4] F. Logozzo and M. Fähndrich, “Pentagons: a weakly relational abstract
domain for the efficient validation of array accesses,” in Proceedings
of the 2008 ACM Symposium on Applied Computing (SAC), 2008, pp.
184–188.

[5] A. Miné, “The octagon abstract domain,” Higher-Order and Symbolic
Computation, vol. 19, no. 1, pp. 31–100, 2006.

[6] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin, “ALETHEIA :
Improving the usability of static security analysis,” in CCS. ACM,
2014, pp. 762–774.

[7] G. R. Luecke, J. Coyle, J. Hoekstra, M. Kraeva, Y. Li, O. Taborskaia,
and Y. Wang, “A survey of systems for detecting serial run-time errors,”
Concurrency and Computation – Practice and Experience, vol. 18,
no. 15, pp. 1885–1907, 2006.

[8] “NIST SAMATE – software assurance metrics and tool evaluation,”
http://samate.nist.gov. [Online]. Available: http://samate.nist.gov

[9] D. Evans and D. Larochelle, “Improving security using extensible
lightweight static analysis,” IEEE Software, pp. 42–51, 2002. [Online].
Available: http://www.splint.org/

[10] G. J. Holzmann, “UNO: Static source code checking for userdefined
properties,” in Integrated Design and Process Technology, 2002.

[11] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann, 2016.

[12] K. H. Esbensen and P. Geladi, “Principles of proper validation: use and
abuse of re-sampling for validation,” Journal of Chemometrics, vol. 24,
no. 3-4, pp. 168–187, 2010.

[13] U. M. Braga-Neto, A. Zollanvari, and E. R. Dougherty, “Cross-
validation under separate sampling: Strong bias and how to correct it,”
Bioinformatics, 2014.

[14] S. Geva, “Boosting the performance of nearest neighbour methods
with feature selection,” in Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining. Springer, 2001, pp. 210–221.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” in Proceedings of the IEEE,
1998.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, pp. 1735– 1780, 1997.

[17] Y. Brun and M. D. Ernst, “Finding latent code errors via machine
learning over program executions,” in ICSE. ACM, 2004, pp. 480–490.

[18] F. Y. M. L. K. Rieck, “Generalized vulnerability extrapolation using
abstract syntax trees,” in ACSAC. ACM, 2012, pp. 359–368.

[19] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Conference on AI. AAAI, 2016.

http://samate.nist.gov
http://samate.nist.gov
http://www.splint.org/

	Motivation
	Data sets
	Begbunch
	OpenSolaris

	Feature Extraction
	Op-code n-grams
	Code complexity features

	Experiments and Results
	Training and testing splits
	Text Features and Dimensionality Reduction
	Dimensionality reduction
	Most useful features

	Neural network experiments
	Convolutional neural networks
	Recurrent neural networks with long short-term memory

	Conclusion and Future Work
	References

