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Abstract
Most changes to large systems that have been deployed are
quite small compared to the size of the entire system. While
standard summary-based analyses reduce the code that is re-
analysed, they, nevertheless, analyse code that is not changed.
For example, a backward summary-based analysis, will ex-
amine all the callers of the changed code even if the callers
themselves have not changed. In this paper we present a
novel approach of having summaries of the callers (called
forward summaries) that enables one to analyse only the
changed code. An evaluation of this approach on two rep-
resentative examples, demonstrates that the overheads as-
sociated with the generation of the forward summaries is
recovered by performing just one or two incremental analy-
ses. Thus this technique can be used at commit-time where
only the changed code is available.

CCS Concepts • Security and privacy → Software se-
curity engineering; • Software and its engineering →
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1 Introduction
If static analysis tools are to be used regularly in the software
development cycle, they must be fast and precise from a de-
veloper’s perspective [14]. There are numerous techniques
that can be used to make static analysis both scalable and
precise [3]. Current static analysis tools can be integrated
as part of the nightly build process. However, they are not
efficient enough to be run at commit time. This is because
most tools require reanalysis of a large subset of the code
that has not changed, but either depend on or potentially in-
fluence the changed code. Additionally, software developers
will generally be interested in viewing only the side effects of
small changes that they have made to an application. That is,
the tool must report results only on the changed component.

Tools such as Tricorder [14] perform only lint-level checks
when presented with files that correspond to a change. How-
ever, to do deeper level analysis, it needs to trigger a build
of all targets affected by the change. Approaches such as
Reviser [2] and JIT Static Analysis [5] address the issue of
incremental analysis.

To perform an analysis on onlymodified components of an
application, the information required about any unchanged
code must be persisted in a summary [6]. This summary
can then be used in place of any analysis of the unchanged
code. The performance gained through recomputation of
only changed code must not be outweighed by the addi-
tional cost of computing, storing and using the summaries
amortised over a set of analyses.
In the context of security-related analysis, one needs to

detect the flow of potentially malicious input (from taint
sources) to methods that perform security-sensitive opera-
tions (taint sinks).

Consider Listing 1, which illustrates the flow of a tainted
value. Here the taint source is the result of the call to the
method getParameter on the request object req. The assign-
ment of the return value now taints the value in fName. The
taint sink is the executeQuery that executes the SQL com-
mand. If the value in qstring is tainted, executing the query
in qstring can lead to a SQL injection. In this example, since
the method createQuery does not perform any sanitisation on
its input parameter, there is a potential security vulnerability.
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Assume the method service is modified but the calls to
the methods createQuery and getResult are maintained. Also
assume that we are using the standard demand-driven [3]
analysis. Here the callee (or backward) summary-based anal-
ysis will instantiate the summaries of the methods that are
called by the method under analysis. In our case, the meth-
ods createQuery and getResult will be analysed. The analysis
will conclude that the value in sName can flow to a security-
sensitive sink.

To detect a security vulnerability, one needs to determine
whether the value in sName is tainted. This requires an anal-
ysis of all the direct and indirect callers of service . In our
example, the analysis needs to examine the methods setup
and doPut to conclude that the original vulnerability is not
removed.

Listing 1. Example: Taint Flow
pub l i c c l a s s MyServlet extends HttpServ l e t {

protec t ed void
doPut ( HttpServ letRequest req ,

HttpServletResponse r e s )
{

St r ing fName = req . getParameter ( "name" ) ;
setup ( fName ) ;

}

p r i va t e void setup ( St r ing value )
{

Provider prov ide r = new Provider ( . . . ) ;
p rov ide r . s e r v i c e ( va lue ) ;

}
}

pub l i c c l a s s Provider {

Engine eng ine ;

pub l i c void s e r v i c e ( S t r ing sName)
{

St r ing s q l =
SQLHandler . createQuery (sName ) ;

r e s u l t = engine . ge tResu l t ( s q l ) ;
}

}

c l a s s SQLHandler {

pub l i c s t a t i c S t r ing
createQuery ( St r ing name)

{
St r ing q ;
q = "select * from data where name=" + name ;
re turn q ;

}

c l a s s Engine {

pub l i c Resu l tSet ge tResu l t ( S t r ing q s t r i n g )
{

re turn = conn . executeQuery ( q s t r i n g ) ;
}

}

Unfortunately, for commit-time analysis, the callers of
service may not be available as part of the commit. Also, the
number of methods that may need to be analysed as part
of the call-chain is unclear (in the worst case, all methods).
This means, under certain circumstances, the performance
of the standard backward analysis may be unacceptable.
To avoid reanalysing the callers, the effect of the callers

must be summarised. To distinguish such summaries from
the callee-summaries that we is used in the demand-driven
analysis, we call these “forward” summaries and show how
they can be used to analyse only the changed code. Thus,
we get a truly commit-based analysis where only the code
that has been changed is analysed. We also show that the
overheads of generating and using the “forward” summaries
is much less than the savings obtained by analysing only the
changed code.
Our technique is explained in Section 2. Our implemen-

tation and experimental results along with the limitations
of our approach are described in Section 3 and Section 4,
respectively.

2 Our Approach
As observed in the previous section, extending the standard
backward dataflow analysis techniques to the incremental
case will compute a new summary for any changed code and
then propagate all flows backwards, recomputing summaries
up the call stack up to the entry methods. That is, all the
methods that invoke (directly or indirectly) the changed
method will be reanalysed. This technique will often result
in recomputing summaries of unchanged code to ensure that
no flows are lost. Our aim is to recompute summaries for
changed code only, and to use persisted summaries for all
unchanged code. Towards this, forward summarisation (i.e.,
relevant flows along call paths from entry points to relevant
program locations) are used in conjunction with backward
summarisation. This is illustrated using the call graph in
Figure 1.

A standard backward analysis will first analyse themethod
m4 andm5 and generate summaries for them. Methodm5’s
summary will be used to analyse methodsm2 andm3, while
the summary of methods m2, m3 and m4 will be used to
analysem1.We call such summaries backward summaries. Let
us now assume that methodm3 is changed. In the standard
incremental analysis, the backward summary ofm5 will be
used to reanalysem3 and the changed summary will be used
to reanalysem1. This process is applied to all the callers of
m1. In our approach, we will not reanalysem1 or its callers.

27



Commit-Time Incremental Analysis SOAP ’19, June 22, 2019, Phoenix, AZ, USA

Direct and indirect
callers of methodm1
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Figure 1. Example Call Graph

Rather, we will use the forward summary ofm1 along with
the backward summary ofm5 to reanalysem1. No other code
needs reanalysis.
In our experience, summarising all the flows along call

paths from the entry methods to other methods is not scal-
able because the summary is almost as large as the code itself.
Because of this, we can summarise only a small subset of
the flows. Therefore, we focus only on summarising relevant
behaviour based on potential client analyses. For our use
case of security analyses, we summarise only the flow of
tainted information. But our technique can be generalised to
support any predicate, provided the size of the summaries is
a fraction of the size of the program.
To support our incremental analysis, we need to extend

the security analysis on the entire code to compute and
persist the forward and backward summaries. The generation
of such summaries is usually done as part of the nightly
build and analysis process. It means that the overheads of
generating the forward summaries is not borne by the actual
commit-time analysis.
The analysis that is run nightly also reports all the vul-

nerabilities in the entire codebase. The incremental analysis
needs to consult this report to indicate which vulnerabilities
have been removed or introduced by the changed code.

3 Implementation and Experimental
Results

3.1 Summaries as a Graph
To evaluate the performance of the incremental analysis
technique, the key components were implemented using
the PGX graph analytics package [8]. For our analysis, the
program is represented as a directed graph. The nodes of
the graph represent individual program values/variables at
particular execution points within the application under
analysis while the edges describe flows between them. While
our implementation considers only values/variables, it could
be extended to support field sensitivity by generalising the
nodes of the graph to represent particular access paths.

In this representation, each individual method has a subset
of nodes that are the entry points connected to callers (e.g.
arguments), and a subset of nodes that are the exit points
connected to callees (e.g. actual parameters at callsites).

The nodes of the graph possess properties describing their
location within the application and their taint status. This
status indicates whether a node should be considered a taint
source or sink during an analysis of that method. A security
vulnerability is reported if there is a flow path through the
graph from a taint source to a taint sink.
The precomputed forward and backward summaries re-

lated to an individual method designate some method entry
nodes as local taint sources (forward summaries). This means
that there is a backward taint flow to a universal taint source,
and some method exit nodes are local taint sinks (backward
summaries). Therefore, there exists a forward taint flow to a
universal taint sink.
To perform an incremental analysis using the precom-

puted summaries, the local subgraph for each changedmethod
is analysed. A security vulnerability is reported if there is
a flow path through the local subgraph, from a taint source
(local or universal) to a taint sink (local or universal).

For example, Figure 2 shows the graph representation of
the program in Listing 1, with the return value of getParameter
marked as a universal taint source and the parameter passed
to executeQuery marked as a universal taint sink. The high-
lighted edges indicate the taint flow from source to sink
detected by the full analysis.
Suppose that the definition of service was changed, as

shown in Listing 2:

Listing 2. Example: Change
pub l i c c l a s s Provider {

pub l i c void s e r v i c e ( S t r ing sName) {
St r ing pre = "T" + sName ;
S t r ing s q l = SQLHandler . createQuery ( pre ) ;
r e s u l t = engine . ge tResu l t ( s q l ) ;

}
}

To perform an incremental analysis of this method, the
changed code must be recompiled, and a new local graph rep-
resentation derived. Then, the new local graph is analysed
in the context of the relevant summaries produced by the
full analysis, as shown in Figure 3. In this case, the forward
summary for service itself is needed, as are the backward
summaries of the callees createQuery and getResult. The for-
ward summary for service indicates that the first argument
is a local source (it is tainted via some caller). The backward
summary of createQuery indicates that taint flows from the
first argument to the return value. The backward summary
for getResult indicates that the first argument is a local sink
(it eventually flows to a universal taint sink). The incremen-
tal analysis of the new local graph in the context of these
previously computed summaries finds that there is a taint
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Figure 2. Example: Graph Representation

flow from the local source to the local sink (highlighted), and
so a security vulnerability is reported.

3.2 Evaluation on Internal Codebases
The internal codebases selected for experimentation are rep-
resentative cases of likely real-world uses of the technique.
The two codebases discussed in this document referred to as
“Codebase A” and “Codebase B” have 2.87 MLOC and 1.75
MLOC containing 132,485 and 56,117 methods, respectively.
Table 1 shows the time taken by the full analysis as well

as the extra time to generate the different summaries, we
produce these summaries using the Green Marl DSL [7] in
PGX.

Figure 3. Example: Incremental Analysis

To evaluate the benefit of using our summary approach,
we measure the time it takes to perform the incremental anal-
ysis using both the forward and backward summaries, and
compare it against using only the backward summaries. We
also report on the time it takes to read the various summaries
that have been generated. Towards this, we randomly pick
100 methods to trigger the recomputation of the taint flows.
Our focus is to identify new taint flows through the mod-
ifications using a reachability query. We use PGX’s PGQL
[10] queries to find a path from taint source to sink. Using
only the backward summaries, we must analyse the method
subgraph and all caller subgraphs to locate a path from a
universal source to a universal or local sink. When using
both forward and backward summaries, we analyse only
the changed method’s subgraph to find any paths between
universal or local sources to universal or local sinks.
In our experiments, each change triggered, on average,

the reanalysis of 15 methods for the standard backward in-
cremental analysis. But Codebase A had 8 and Codebase B
had 5 cases where the number of methods that required re-
analysis was higher than 500. In Codebase A, there was was
a pathological case where more than 14,000 methods had to
be recomputed. We consider such cases as outliers because,
normally, if a core component is changed, it is often better to
do a full analysis. The change impacts a significant fraction
of the code which makes commit-time analysis ineffective.
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Table 1. Full Analysis And Summary Generation
Time (ms)

Application Full Analysis: No Sum-
mary Generation

Generating Only Back-
ward Summaries

Generating both For-
ward and Backward
Summaries

Codebase A 65,371 45 85
Codebase B 9,575 63 65

Table 2. Incremental Analysis Time (ms)

Application Backward Incre-
mental Analysis

Reading backward
summaries

Our Incremental
Analysis

Reading both Back-
ward and Forward
Summaries

Codebase A 15.5 169.5 1.6 11.3
Codebase B 14.0 166.5 1.26 11.1

The results, ignoring the outliers, are shown in Table 2.
From these results, we can see the benefit of generating the
forward and backward summaries when compared with the
standard backward analysis. The extra cost of forward and
backward summary generation is not very high, and can be
recovered by performing only one forward and backward
incremental analysis. Our experiments also confirm the ben-
efits of the standard backward analysis using the summaries
over the full analysis.

In summary, our experiments demonstrate that, for chang-
ing code, the forward and backward summary-based analysis
is faster than performing a backward-only summary-based
analysis. This is because the summaries of the callers of
changed code are not needed when forward summaries are
used.

4 Limitations
Wehave assumed that each incremental analysis of a changed
method uses only the persisted forward and backward sum-
maries to determine the effects of that method’s callers and
callees, respectively. Thus, when changes are committed and
analysed, we do not invalidate the existing summaries and
recompute the new summaries. If the information contained
within a summary is rendered invalid by the change, the
results will be inaccurate. For example, if a changed method
appears on the call path to another changed method, and
the change in the former removes a taint flow previously
reaching the latter, the incremental analysis of the latter
will consider only the pre-existing flows contained in the
forward summary, resulting in a false positive. This also
includes the well-known limitations of not having an incre-
mental call graph construction. That is, we do not modify
the call graph after a commit. To overcome this, we would
need to have a form of modular points-to or heap analysis

[12]. But these techniques are quite expensive because they
have to summarise all the effects on the heap. While our
current prototype implementation does not flag such issues,
our implementation integrated with Parfait [4] will.

Thus, for our technique to be useful, the various changes
have to be relatively small and independent of each other. As
the full summaries will be recomputed as part of the nightly
build, any potential errors in the incremental analysis will be
short-lived. Also for large codebases, different programmers
are likely to be making independent changes to different
parts of the codebases and often only on their own branch.
Because of this, the likelihood of errors is reduced. In cases of
more pervasive or high-impact changes, it is better to rerun
the full analysis, like Reviser [2] does, or use the trace-based
invalidation technique [11].
We have evaluated our technique on only two internal

codebases. While they are quite large, they may not be rep-
resentative of different codebases. Furthermore, we have not
used real commit data. We have relied on randomly marking
methods as changed to evaluate the benefits of our incre-
mental analysis.

Currently, our filtering of security vulnerabilities removed
by the changed code is limited. A particular vulnerability
could havemultiple taint-sources and/or paths to the security-
sensitive sink. For pragmatic reasons, we do not store all such
possibilities as part of the report. The modified code could
fix one of the causes, thereby signalling that the vulnerabil-
ity has been removed. This should not be interpreted as all
causes have been fixed. Only a full analysis can be be used
to conclude that all the causes of the vulnerability have been
fixed.
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5 Related Work
Reviser [2] is closest to our work. They do show that in
certain situations the incremental analysis takes roughly the
same time as a fresh full analysis, as seen in our experiments
on Codebase A. This high cost is incurred when the values
from the changed code propagates to a number of callers. By
storing the taint-flow summary for the callers (in the forward
summary) and the destinations of the potential tainted value
(in the backward summary), we do not need to reanalyse
the callers or the callees. We can instantiate the summaries
and indicate whether a security violation can be triggered
by the changed code. While they look at all nodes that are
reachable from changed nodes, we focus only on the changed
code. Further experimentation is required to understand the
relative strengths of the two approaches.
Another approach is a layered approach [5], where the

analysis is first used locally and then used more globally,
therefore the local analysis cannot detect defects caused by
“global” flows. Because of this, they always need to perform
the global analysis to detect all defects.
Sootkeeper [9] describes an infrastructure that enables

one to store and, thus, reuse intermediate results. This infras-
tructure enables modular analysis, but this is, by itself, not
sufficient. This is because if there is a change to the code, one
still needs to determine what can be reused and what needs
to be recomputed. In our implementation, we use similar
ideas to persist summaries and reuse summaries for all the
unchanged code.
[1] use slicing to get impacted code. This is orthogonal

to our approach because we do not update the incremental
summaries. [13] use path abstraction, which leads to very
precise but not scalable solutions. If required, we can be flow
sensitive, but path sensitivity is expensive and not scalable.

6 Conclusion
In summary, the main novelty of our work is that we do
not analyse callers; instead we precompute “forward” sum-
maries. These forward summaries capture only the state of
relevant predicates (such as taint) at the point of entry of
a particular method, covering all call paths to that method.
While the standard backward summary approach allows

incremental analysis with complexity dependent upon the
changed methods and their transitive (unchanged) callers,
our forward summary approach eliminates the need to re-
analyse unchanged callers, allowing incremental analysis
with complexity dependent upon only the methods directly
modified by the change.
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