

Christian Wimmer

GraalVM Native Image Project Lead

christian.wimmer@oracle.com

Maximizing Performance with GraalVM

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied upon in making purchasing decisions.
The development, release, timing, and pricing of any features or functionality described for Oracle’s
products may change and remains at the sole discretion of Oracle Corporation.

GraalVM Native Image technology (including Substrate VM) is Early Adopter technology. It is
available only under an early adopter license and remains subject to potentially significant further
changes, compatibility testing and certification.

© 2019 Oracle3

~8 years ago, we started a little research project…

© 2019 Oracle4

Java

C

C++

Python

C#

VB.NET

JavaScript

Assembly language
PHP

PerlRubyVBSwift
R

Objective-C
Go

MATLAB

Delphi/Object Pascal
PL/SQL

Scratch

Others

Programming Language Popularity

(TOP 20 Languages From May 2018 Tiobe INDEX)

© 2019 Oracle5

GraalVM will be the Universal VM

© 2019 Oracle

ubiquitous across the cloud stack

1. run programs more efficient

2. make developers more productive

6

Native Image

© 2019 Oracle7

What is Graal VM?

• Drop-in replacement for Oracle Java 8 and Java 11

• Run your Java application faster

• Ahead-of-time compilation for Java

• Create standalone binaries with low footprint

• High-performance JavaScript, Python, Ruby, R, ...

• The first VM for true polyglot programming

• Implement your own language or DSL

© 2019 Oracle8

© 2019 Oracle9

FREE on Oracle Cloud!

GraalVM Open Source

© 2019 Oracle10

Open Source LOC actively maintained by GraalVM team

Total: 3,640,000 lines of code

Twitter uses GraalVM compiler in

production to run their Scala

microservices

© 2019 Oracle11

• Peak performance: +10%

• Garbage collection

time: -25%

• Seamless migration

© 2019 Oracle12

The rich ecosystem of CUDA-X libraries is now
available for GraalVM applications.

GPU kernels can be directly launched from
GraalVM languages such as R, JavaScript, Scala
and other JVM-based languages.

© 2019 Oracle13

JIT Performance

14 © 2019 Oracle

GraalVM Vision:
Abstractions should be without performance regret!

© 2019 Oracle15

Dynamic Optimization and Deoptimization

© 2019 Oracle16

Interpreter
Optimized

machine code

Just-in-time compilation

Deoptimization

Compiler Optimization Terms to Know

• Static Single Assignment Form (SSA Form)

• The type of intermediate representation used in modern compilers: Phi Function at control flow joints to maintain “one assignment per variable”
• Method Inlining

• Eliminate call overhead, expand the view of the compiler
• Register Allocation

• Use fast (but few) processor registers as much as possible
• Constant Folding / Strength Reduction

• The basic math rules
• Dead Code Elimination

• Remove code that can never be reached
• Common Subexpression Elimination / Value Numbering / Partial Redundancy Elimination

• Don’t compute the same thing twice
• Loop Unrolling / Loop Peeling

• Special focus on frequently executed code
• Escape Analysis

• Eliminate allocation and synchronization when objects are method local or thread local
• Vectorization

• Do several loop iterations at once
• Points-to analysis

• Can two pointers reference the same memory location?

© 2019 Oracle17

Optimistic Optimizations

• Inlining of virtual methods

• Most methods in Java are dynamically bound

• Class Hierarchy Analysis

• Inline when only one suitable method exists

• Compilation of foo() when only A loaded

• Method getX() is inlined

• Same machine code as direct field access

• No dynamic type check

• Later loading of class B

• Discard machine code of foo()

• Recompile later without inlining

• Deoptimization

• Switch to interpreter in the middle of foo()

• Reconstruct interpreter stack frames

• Expensive, but rare situation

• Most classes already loaded at first compile

void foo() {
A a = create();
a.getX();

}

class A {
int x;

int getX() {
return x;

}
}

class B extends A {
int getX() {

return ...
}

}

© 2019 Oracle18

Deoptimization

main()
Interpreter
Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Stack grows
downwards

© 2019 Oracle19

enter
call create
move [eax + 8] -> esi
leave
return

Deoptimization

main()
Interpreter
Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Dynamic Link, Return Address

Spill Slots

foo()
Compiled Frame

Stack grows
downwards

Machine code for foo():

© 2019 Oracle20

enter
call create
move [eax + 8] -> esi
leave
return

jump Interpreter
call create
call Deoptimization
leave
return

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Deoptimization

main()
Interpreter
Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Dynamic Link, Return Address

Spill Slots

foo()
Compiled Frame

create()
Interpreter
Frame

Stack grows
downwards

Machine code for foo():

© 2019 Oracle21

Deoptimization

main()
Interpreter
Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Dynamic Link, Return Address

Spill Slots

foo()
Compiled Frame

Stack grows
downwards

Machine code for foo():

© 2019 Oracle22

jump Interpreter
call create
call Deoptimization
leave
return

foo()
Interpreter
Frame

enter
call create
move [eax + 8] -> esi
leave
return

jump Interpreter
call create
move [eax + 8] -> esi
leave
return

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

jump Interpreter
call create
call Deoptimization
leave
return

Deoptimization

main()
Interpreter
Frame

Expression Stack

Local Variables

Interpreter Information

Dynamic Link, Return Address

Stack grows
downwards

Machine code for foo():

© 2019 Oracle23

Answer:
Of course it can!

© 2019 Oracle24

GraalVM JIT Performance: Renaissance.dev
1.

0
2 1.

2
7 1.

5
3

1.
1

1.
3

6

1.
3

7

1.
17

1.
4

9

1.
14

1.
14

1.
9

6

1.
0

3

1.
0

3

3
.0

8

1.
3

5

1.
1 1.
12

1.
13

1.
6

6

1.
17

1.
5

9

1.
3

2

0
.9

7

0
.9

9

1 1

1.
0

9

1.
2

0
.7

9

0
.9

3

1.
0

3

1.
0

9

0
.9

4

0
.8

3

0
.9

7

2
.7

8

1.
0

2

0
.9

8

1.
12

0
.9

8 1.
16

1.
0

4

1.
0

9

1.
0

6

0

0.5

1

1.5

2

2.5

3

3.5

S
p

e
e

d
u

p
 v

s
JD

K
8

EE/C2 CE/C2

© 2019 Oracle25

More Benchmarks…

Optimizing for too few benchmarks is like overfitting a machine learning
algorithm.

Therefore we started together with academic collaborators
https://renaissance.dev

All benchmark data can be interesting; careful with conclusions though.

© 2019 Oracle26

Java Flight Recorder Compilation Information

© 2019 Oracle27

GraalVM Native Image

28 © 2019 Oracle

native-image MyMainClass
./mymainclass

JIT AOT

java MyMainClass

© 2019 Oracle29

Currently

Startup Speed

Peak

Throughput

Memory
Footprint

Max LatencyPackaging Size

AOT JIT

© 2019 Oracle30

Goal

Startup Speed

Memory
Footprint

Max LatencyPackaging Size

AOT JIT

© 2019 Oracle31

Peak

Throughput

Native Image: Principle

© 2019 Oracle

Application

Libraries

JDK

Substrate VM

Input:
All classes from application,

libraries, and VM

Code in
Text Section

Image Heap in
Data Section

Output:
Native executable

Initialize
application

Snapshot
reachable code

and objects

32

Native Image: Details

© 2019 Oracle

Ahead-of-Time
Compilation

Application

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until
fixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap

Writing

Output:
Native executable

33

Paper with Details, Examples, Benchmarks

© 2019 Oracle34

http://www.christianwimmer.at/Publications/Wimmer19a/Wimmer19a.pdf

Closed World Assumption

• The points-to analysis needs to see all bytecode

• Otherwise aggressive AOT optimizations are not possible

• Otherwise unused classes, methods, and fields cannot be removed

• Otherwise a class loader / bytecode interpreter is necessary at run time

•

• Dynamic parts of Java require configuration at build time

• Reflection, JNI, Proxy, resources, ...

• That’s what this talk is about

• No loading of new classes at run time

© 2019 Oracle35

Image Heap

• Execution at run time starts with an initial heap: the “image heap”

• Objects are allocated in the Java VM that runs the image generator

• Heap snapshotting gathers all objects that are reachable at run time

• Do things once at build time instead at every application startup

• Class initializers, initializers for static and static final fields

• Explicit code that is part of a so-called “Feature”

• Examples for objects in the image heap

• java.lang.Class objects, Enum constants

© 2019 Oracle36

Benefits of the Image Heap

© 2019 Oracle

Without GraalVM
Native Image

Build time

Run time

GraalVM Native Image
(default)

Build time

Run time

GraalVM Native Image:
Load configuration file

at build time

Build time

Run time

Load Classes

Load Configuration File

Run Workload

Compile Sources

Load Classes

Load Configuration File

Run Workload

Compile Sources

Load Classes

Load Configuration File

Run Workload

Compile Sources

37

Get VMs Ready for the Cloud and Microservices

Important evaluation metrics:

• Startup time

• Memory footprint

• Peak requests per MByte-second

© 2019 Oracle38

Bruno Borges,
Microsoft Azure Advocate

Java Microservice Frameworks with GraalVM Native Image Support

https://micronaut.io

https://helidon.io

https://quarkus.io

Soon also Spring support
https://github.com/spring-projects-experimental/spring-graal-native

© 2019 Oracle39

https://micronaut.io/
https://helidon.io/
https://quarkus.io/
https://github.com/spring-projects-experimental/spring-graal-native

Startup Time

© 2019 Oracle

983 ms

1967 ms

979 ms

10.5

30 ms

23 ms

0 ms 500 ms 1000 ms 1500 ms 2000 ms

Quarkus

Micronaut

Helidon

GraalVM Native Image

JDK 8
40

Memory Footprint

© 2019 Oracle41

160 MByte

198 MByte

107 MByte

16 MByte

37 MByte

26 MByte

0 MByte 50 MByte 100 MByte 150 MByte 200 MByte 250 MByte

Quarkus

Micronaut

Helidon

GraalVM Native Image

JDK 8

Spring Boot Applications as GraalVM Native Images

https://www.youtube.com/watch?v=3eoAxphAUIg

© 2019 Oracle42

https://www.youtube.com/watch?v=3eoAxphAUIg

Starting up and serving 3 requests (Micronaut example)

© 2019 Oracle43

AOT JIT

23.1

12.0

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

[MByte]

Number of JavaScript instances

V8 JavaScript VM

RSS PSS USS

• Memory for the first JavaScript instance: 23 MByte vs. 19 MByte

• Memory for each additional JavaScript instance: 12 MByte vs. 0.5 MByte

JavaScript Memory Footprint: V8 vs. GraalVM

© 2019 Oracle

19.0

0.5

1 2 3 4 5 6 7 8 9 10 11 12

GraalVM

44

Native Image vs. Java HotSpot VM

• Use GraalVM Native Image when

• Startup time matters

• Memory footprint matters

• Small to medium-sized heaps (100 MByte – a few GByte)

• All code is known ahead of time

• Use Java HotSpot VM when

• Heaps size is large

• Multiple GByte – TByte heap size

• Classes are only known at run time

© 2019 Oracle45

Jump Start Your Project

• How do I know quickly if my application will run as a native image?

• Disable fallback image generation
• --no-fallback

• Report unsupported features at run time
• --report-unsupported-elements-at-runtime

• Allow incomplete class path: throw linking errors at run time
• --allow-incomplete-classpath

• Trace reflection, JNI, resource, ... usage on Java HotSpot VM
• java -agentlib:native-image-agent=config-output-dir=META-INF/native-image ...

• Initialize all application classes at run time: default since GraalVM 19.0

© 2019 Oracle46

Incomplete Classpath

• Default: image build fails when a reachable class is missing

• Guarantees no linking errors at run time

• We believe that is a desirable goal

• But some applications have not all dependencies on the class path

• Missing optional dependencies of libraries

• Static analysis not always precise enough to exclude such code

• Solution: support incomplete class path

• Throw linking errors at run time

• Command line option: --allow-incomplete-classpath

© 2019 Oracle47

Reflection and JNI

• Need configuration at image build time
• Classes, methods, and fields that are reflectively visible
• Necessary to keep the metadata small and to avoid too conservative points-to analysis

•

© 2019 Oracle

class Element {
String value;

}

[
{

"name" : "com.oracle.test.Element",
"fields" : [

{ "name" : "value" }
],
"methods" : [

{ "name" : "<init>" }
]

}
]

Data class:

Element element = new Element();
element.value = "Hello World";
String json = new Gson().toJson(element);

Serialize Java object to JSON:

String json = "{\"value\":\"Hello World\"}";
Element element = new Gson().fromJson(json, Element.class);

Deserialize JSON to Java object:

Reflection configuration:

Example: Gson library to serialize / deserialize Java objects

48

Tracing Agent

• Trace reflection, JNI, resource usage on Java HotSpot VM
• Agent to record usage and produce configuration files for native images

• java -agentlib:native-image-agent=config-output-dir=META-INF/native-image ...

• Simplify the getting-started process

• Everything that was executed on the Java HotSpot VM also works in the native image
• Manual adjustment / addition will still be necessary

• Unless you have an excellent test suite for your application

• Fun fact: Agent is a Java Native Image
• JVMTI interface implemented using the low-level C interface of Native Image

© 2019 Oracle49

Blog Article with Details and Examples

© 2019 Oracle50

https://medium.com/graalvm/c3b56c486271

Class Initialization

• Class initialization at image build time improves application startup

• Configurable per class / package / package prefix

• --initialize-at-build-time=... --initialize-at-run-time=...

• By default, application classes are initialized at run time
• Most JDK classes are initialized at image build time
• Static analysis finds class initializers that can run at image build time

• Performance implications of class initialization at run time
• If a class is initialized at run time, no instances can be in the image heap
• Runtime checks before static method calls, static field accesses, and allocations

© 2019 Oracle51

Tracing Class Initialization

• Class initialization is tricky

• Some reasons for class initialization are not obvious

• Adding a default method in an interface changes class initialization behavior

• Class initialization order can be non-deterministic

• When class dependencies are cyclic

• Common usability problem: A class that is marked for initialization at run time gets initialized at
build time

-H:+TraceClassInitialization

© 2019 Oracle52

Class Initialization: Corner Cases

• Order of class initialization at image build time
A static analysis cannot determine the order that would be used at run time

Possible solution: track class initialization order in the Tracing Agent

• Java lambdas trigger class initialization at image build time
JDK forces initialization

Fixed in GraalVM 19.3: patch JDK

• Annotation classes are always initialized at image build time
Not a problem because annotation classes cannot do much

But they can trigger the initialization of enum classes

No reasonable solution, needs application changes

© 2019 Oracle53

Blog Article with Details and Examples

© 2019 Oracle54

https://medium.com/graalvm/c61faca461f7

Native Image Support in Libraries

• Configuration options should be provided by libraries
• Library and framework developers know best what their code needs

• Configuration files in META-INF/native-image are automatically picked up

• native-image.properties for command line options like class initialization options
• reflect-config.json, jni-config.json, ... for configuration files created by tracing agent

• Use subdirectories to make files composeable (inspired by Maven)

• META-INF/native-image/your.group.id/artifactId/

© 2019 Oracle55

Profile-Guided Optimizations (PGO)

• AOT compiled code cannot optimize itself at run time

• No dynamic “hot spot” compilation
• PGO requires relevant workloads at build time
• Optimized code runs immediately at startup, no “warmup” curve

© 2019 Oracle

native-image
--pgo-instrument

Instrumented
Binary

native-image
--pgo

Optimized
BinaryWorkloads Profiles

56

Service Loader

• Allows dynamic configuration of Java applications

• Look up classes implementing a service interface

• Requires a combination of resources and reflection

• Native image automatically detects used service interfaces

• All resource and reflection registration done automatically

• It might add a little bit too much that is unused in your application

• But simplifies many common use cases

© 2019 Oracle57

Native Image Specific Code

• Ideally, application code is not aware of native image
• In practice, sometimes different code paths are necessary

• Work around limitations of native image

• Benefit from initialization at build time

• API to query how code is running

ImageInfo.inImageCode()

ImageInfo.inImageRuntimeCode()

ImageInfo.inImageBuildtimeCode()

© 2019 Oracle58

Operating System and Java 11 Support

• Original design: C code of the JDK manually translated to low-level Java code
• Necessary because there was no JNI support
• Feasible because only part of JDK was needed

• Problems
• Even translations for Linux are not complete yet
• Maintenance problem: all bugfixes need to be ported from C to Java
• Windows support: as much work as Linux support because little C code is shared
• Java version support: differences between Java 8, 11, 13, and future versions

• New approach (under development)
• Statically link in the C code of the JDK
• Invocation of C code using JNI

59 © 2019 Oracle

What’s Next for GraalVM Native Image?

• Low-latency, high-throughput, and parallel GC

• Inspired by G1 of Java HotSpot VM

• Peak performance improvements

• Same or better peak performance compared to Java HotSpot VM

• More supported platforms

• JDK 11, AArch64, Windows

• Work with the community to support important libraries

© 2019 Oracle60

Architecture Support

• Graal compiler supports x64, AArch64, and Sparc
• Native image currently limited to x64
• Native Image Support for AArch64 under development

• How to support all architectures?
• LLVM compiler infrastructure has broad architecture support
• Slow compile time of LLVM does not matter for ahead-of-time compilation

• Using LLVM comes with a price
• Moving GC support in LLVM is still experimental
• Currently slower code due to constraints of the LLVM IR

• For example no fixed register for threads
• Not suitable for JIT compilation

© 2019 Oracle61

Cross-Platform GraalVM

© 2019 Oracle

IDE
Plugin

GluonTools

JavaFX
mobile

Graal VM
Native ImageGluon

Mobile

• JavaFX extensions for mobile
• Integration with mobile functionality (e.g. GPS/camera)
• Mobile-specific connectivity

Java static
libs

62

Polyglot and Embeddability

63 © 2019 Oracle

© 2019 Oracle64

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting

for Profiling Feedback

AST Interpreter

Rewritten Nodes

AST Interpreter

Uninitialized Nodes

Compilation using

Partial Evaluation

Compiled Code

Node Transitions

S

U

I

D

G

Uninitialized Integer

Generic

DoubleString

Optimization and Speculation…

© 2019 Oracle65

I

I I

G

G I

I I

G

G

Deoptimization

to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update

Profiling Feedback

Recompilation using

Partial Evaluation

And Deoptimization!

© 2019 Oracle66

© 2019 Oracle67

Simple Embeddability

© 2019 Oracle68

© 2019 Oracle

Full separation of logical and
physical data layout, enabling
virtual data structures

69

© 2019 Oracle

Enable Polyglot interoperability:

node --polyglot

70

Multiplicative Value-Add of GraalVM Ecosystem

Languages GraalVM Embeddings* *

Java
JavaScript

Ruby
R

Python
C/C++, FORTRAN, …

HotSpot JVM
Oracle RDBMS

Node.js
Standalone

Spark
…

Optimizations
Tooling

Interoperability
Security

Add your own language or embedding or language-agnostic tools!

© 2019 Oracle71

node modules with only JavaScript
node modules with native
extensions

node standard library

node bindings (socket, http, etc)

V8 API
thread
pool

(libeio)

event
loop

(libev)

DNS
(c-ares)

crypto
(OpenSSL)

JavaScript

C++

Java

Adapter V8 API to Graal.js via JNI

native extensions

Architecture of Node.js running via GraalVM

© 2019 Oracle

GraalVM JavaScript Engine

72

https://kangax.github.io

© 2019 Oracle73

© 2019 Oracle74

https://www.graalvm.org/docs/reference-manual/compatibility/

© 2019 Oracle75

Trade-Offs

Advantages

• Java interoperability: Use any Java library or framework

• Polyglot capabilities (Python, Ruby, R)

• Run with large heaps and JVM garbage collectors

Disadvantages

• Longer start-up time

• Higher memory footprint

© 2019 Oracle76

Graal.js Performance (versus V8)

© 2019 Oracle77

0

0.2

0.4

0.6

0.8

1

1.2

1.4

GraalVM 19.3.0-dev V8 7.2.502

FastR

• GNU-R compatible R implementation

• Including the C/Fortran interface

• Built on top of the GraalVM platform

• Leverages GraalVM optimizing compiler

• Integration with GraalVM dev tools

• Zero overhead interop with other GraalVM languages

© 2019 Oracle78

79

FastR Cluster Package

fastRCluster package to use
FastR as a “cluster” from GNU-R

• Works like other “cluster”
providers packages

• Offload to efficient R runtime
similar to offloading to cluster

© 2019 Oracle

Python Performance

© 2019 Oracle

Comparable to PyPy, the fastest
alternative

0

10

20

30

40

50

60

70

Micro Benchmarks Shootout Benchmarks

Geomean Speedup over CPython

(more is better)

GraalVM EE GraalVM CE PyPy

80

Using Numpy from Java – Calling into Numpy

© 2019 Oracle81

try (Context context = Context.newBuilder()

.option("python.PythonPath", "/path/to/numpy-1.16.4-py3.7-macosx-10.14-x86_64.egg")

.allowAllAccess(true).build()) {

Value geomean = context.eval("python", "import numpy\n" + "import math\n" +

"lambda x: math.pow(numpy.array(x).prod(), 1/len(x))");

double[] values = new double[] { 1, 5, 8, 3, 5, 8, 8, 7, 5, 6 };

double mean = geomean.execute(values).asDouble();

System.out.println(mean);

// 4.905181164183902

}

anonymous function that calculates the geometric
mean using numpy and the math module

Using Numpy from Java – Arrays, Methods

© 2019 Oracle82

Value arrayFunction = context.eval("python", "import numpy\n" + "numpy.array");

Value cumprod = arrayFunction.execute(values).invokeMember("cumprod");

System.out.println(cumprod);

// array([1.000e+00, 5.000e+00, 4.000e+01, 1.200e+02, 6.000e+02, 4.800e+03,...])

System.out.println(cumprod.getArraySize() + " / ” + cumprod.getArrayElement(6));

// 10 / 38400.0

retrieve numpy’s array class

call “cumulative product” function

access array-like data structures (from numpy or any other language / library)

Using Numpy from Java – Matrix, Operations

© 2019 Oracle83

double[][] matrixValues = new double[][]

{ { 1,2,3,4 }, { 5,6,7,8 }, { 9,10,11,12 } };

Value matrix = arrayFunction.execute(matrixValues);

System.out.println(matrix);

// array([[1., 2., 3., 4.], [5., 6., 7., 8.], ...]

System.out.println(matrix.getArrayElement(2).getArrayElement(1));

// 11.0

System.out.println(matrix.invokeMember("__add__", 1));

// array([[2., 3., 4., 5.], [6., 7., 8., 9.], ...]

Value plus = context.eval("python", "lambda x, y: x + y");

System.out.println(plus.execute(matrix, 1));

// array([[2., 3., 4., 5.], [6., 7., 8., 9.], ...]

also works
for matrixes

addition via Python
“magic function”

addition via
Python snippet

Using Numpy from Java – Code in Files

© 2019 Oracle84

Value clazz = context.eval(Source.newBuilder("python", new File("mycode.py")).build());

assert clazz.canInstantiate();

Value instance = clazz.newInstance(1234);

System.out.println(instance);

// <__main__.ALSModel object at 0x6b3b4f37>

System.out.println(instance.invokeMember("infer", new int[] { 1, 2, 3 }));

// 3

create class instance

class ALSModel():

def __init__(self, iterations):

self.iterations = iterations

def fit(self, data):

pass

def infer(self, data):

return len(data)

ALSModel

Using Numpy from Java – Code in Files

© 2019 Oracle85

Inference instance = clazz.newInstance(1234).as(Inference.class);

System.out.println(instance.infer(new int[] { 1, 2, 3 }));

// 3

call into Python class via interface functions

interface Inference {

Object fit(int[] data);

Object infer(int[] data);

}

Using Numpy from Java – Modules

© 2019 Oracle86

Value numpy = context.eval("python", "import numpy\n" + "numpy");

Value intArray = numpy.invokeMember("array", matrixValues, "int32");

System.out.println(intArray.getMember("dtype"));

// dtype('int32')

retrieve the numpy module

use members of the module, e.g., the array constructor

“Managed Mode” Execution

© 2019 Oracle

• LLVM Interpreter on GraalVM

• Run native extensions safely

• Catch memory errors as exceptions

87

Package Support

• Pip installer is not available, yet (c.f.: no sockets)

• We ship our own installer ginstall

• Pandas and NumPy can be installed work for a wide range of code in the latest builds

• Performance of native extensions is under active development

• SciPy support is currently work-in-progress

• More and more pure Python packages “just work” and compatibility is improving

© 2019 Oracle88

Jython Replacement

• A “Jython-mode” gives Jython features in Python code

• Direct import of Java packages and classes, exception handling with Python and Java
exceptions, seamless interaction with Java objects

• Language-agnostic GraalVM embedder API replaces Jython-specific APIs

• Are you using Jython? We’re interested in supporting your use-case!

© 2019 Oracle89

Using CUDA to Access Nvidia GPUs

• Different binding libraries / APIs for CUDA in different programming languages
• Varying set of supported features
• Translation to/from unmanaged environment (in Java, C#, Python, etc.)

© 2019 Oracle90

Python Numba, cuPy, PyCUDA

Java JCuda, jCUDA, CUDA4J

C / C++ CUDA C/C++ (language extension)

R gpuR, indirectly through Rcpp

JS gpu.js (WebGL), node-cuda, cuda-ts

C# Hybridizer, ManagedCUDA, Alea GPU, ILGPU

Ruby RbCUDA

Using grCUDA to Access Nvidia GPUs

• Efficient exchange of data between host language and GPU without burdening the programmer
• Expose GPU resources in ways that are native in the host language, e.g., as arrays
• Allow programmers to invoke existing GPU code from their host language
• Allow programmers to define new GPU kernels on the fly
• Polyglot interface: uniform bindings across several programming languages

• Implemented as a “Truffle Language”
(although “CUDA” is a platform, not a language)

• Developed by NVIDIA in collaboration
with Oracle Labs

• BSD 3-clause license

© 2019 Oracle91

Creating and Using Device Arrays (Python)

© 2019 Oracle92

import polyglot

Get constructor function as callable

DeviceArray = polyglot.eval(language=‘grcuda’, string=‘DeviceArray’)

Create 1D device array that can hold 1000 int values

dev_int_arr = DeviceArray(‘int’, 1000)

Create 2D device array that can hold 1000 x 100 float values

dev_float_2d = DeviceArray(‘float’, 1000, 100)

Setting array elements

for i in range(len(dev_int_array)):

dev_int_arr[i] = i

for i in range(len(dev_float_2d)):

for j in range(len(dev_float_2d[0])):

dev_float_2d[i][j] = i + j

As fast or faster than native language
constructs (e.g., R vectors) because of
simpler semantics (e.g., no NA values)

GPU Kernels in CUDA C++

© 2019 Oracle93

__global__ void inc_kernel(float *out_arr, const float *in_arr, size_t num_elements) {

for (auto idx = blockIdx.x * blockDim.x + threadIdx.x; idx < num_elements;

idx += gridDim.x * blockDim.x) {

out_arr[idx] = in_arr[idx] + 1;

}

}

gridDim

blockDim

Block 0 Block 1 Block 2

Thread 1

Number of blocks and threads can
be configured in 3 dimensions (x, y, z)

Launching GPU Kernels (JS)

© 2019 Oracle94

const DeviceArray = Polyglot.eval('grcuda', string='DeviceArray')

const N = 1000

const in_arr = DeviceArray('float', N)

const out_arr = DeviceArray('float', N)

for (let i = 0; i < N; i++)

in_arr[i] = i

const code = '__global__ void inc_kernel(...) ...'

const buildkernel = Polyglot.eval('grcuda', string='buildkernel')

const incKernel = buildkernel(code, 'inc_kernel', 'pointer, pointer, uint64')

// Launch kernel in grid consisting of 160 blocks with 256 threads each

incKernel(160, 256)(out_arr, in_arr, N)

for (let i = 0; i < 10; i++) {

console.log(out_arr[i]);

}

Device arrays in_arr and out_arr
can be passed to GPU kernel

grCUDA

• … and a lot more, e.g.:

• Use existing GPU-accelerated libraries with DeviceArray objects

• Load pre-compiled kernels from .ptx and .cubin files

• Query GPU device properties, e.g., grid and memory sizes

• More features planned, e.g.:

• Device Memory managed by grCUDA using explicit transfers.

• Asynchronous execution of copy and kernel launches.

• Conversion and shredding of host-language objects (array-of-structs vs. struct-of-arrays)

© 2019 Oracle95

Get it from https://github.com/NVIDIA/grcuda
More info on Nvidia’s Blog: https://blogs.nvidia.com/

Polyglot Stack Trace

© 2019 Oracle96

Polyglot Heap Dump

© 2019 Oracle97

© 2019 Oracle98

© 2019 Oracle99

Summary

100 © 2019 Oracle

Key Performance Takeaways

• Write small methods
• Local allocations are free, global data structures expensive
• Don’t hand optimize, unless you have studied the compiler graph

• Make a pull request (or at least an issue) for the GraalVM project!

• For best throughput use GraalVM JIT,
for best startup & footprint use GraalVM AOT (native images)

© 2019 Oracle101

Top 3 Misconceptions about GraalVM

assert(“GraalVM does not support reflection and can run only a subset of Java”)
=> false

© 2019 Oracle102

assert(“GraalVM is a competition to the HotSpot JVM technology”)
=> false

assert(“GraalVM is just a research project and not ready for production”)
=> false

© 2019 Oracle

Java

Scala, Groovy, Kotlin

JavaScript

Node.js

Native Image

VisualVM

Production-Ready Experimental Visionary

Ruby

R

LLVM Toolchain

Python

VSCode Plugin

GPU Integration

Webassembly

LLVM Backend

103

Oracle GraalVM Enterprise Edition

• Higher performance

• Smaller footprint

• Enhanced security for native code

• Oracle Enterprise Support 7x24x365

• Support directly from the GraalVM Team

© 2019 Oracle104

www.oracle.com/cloud/free/

2 GByte instance = 60+ GraalVM native images ;)

© 2019 Oracle105

Versioning

• Major release every 3 months named YEAR.x
• Both major and CPU releases on predictable dates
• Last major release of a year receives patches for the following year

© 2019 Oracle106

More Platform Support

• JDK11 support will be in GraalVM 19.3 (November 19, 2019)

• Working on:

• ARM64 support

• Windows support

• Considering to add also JDK-latest version

© 2019 Oracle107

GraalVM Value Proposition

1. High performance for abstractions of any language

2. Low footprint ahead-of-time mode for JVM-based languages

3. Convenient language interoperability and polyglot tooling

4. Simple embeddability in native and managed programs

© 2019 Oracle108

Download and use it for your application!

• 100% production ready
• https://www.graalvm.org
• https://github.com/graalvm/
• @graalvm

© 2019 Oracle109

Thank you

© 2019 Oracle110

