
BinEq – A Benchmark of Compiled Java Programs to Assess
Alternative Builds

Jens Dietrich
jens.dietrich@vuw.ac.nz

Victoria University of Wellington
Wellington, New Zealand

Tim White
tim.white@vuw.ac.nz

Victoria University of Wellington
Wellington, New Zealand

Mohammad Mahdi
Abdollahpour

mohammadmahdi.abdollahpour@uwaterloo.ca
University of Waterloo

Waterloo, Canada

Elliott Wen
elliott.wen@auckland.ac.nz
University of Auckland
Auckland, New Zealand

Behnaz Hassanshahi
behnaz.hassanshahi@oracle.com

Oracle Labs
Brisbane, Australia

Abstract
Incidents like xz and SolarWinds have led to an increased focus on
software supply chain security. A particular concern is the detection
and prevention of compromised builds. A common approach is to
independently re-build projects, and compare the results. This leads
to the availability of different binaries built from the same sources,
and raises the question of how to compare the respective binaries
(to confirm the integrity of builds, to detect compromised builds,
etc). It is however not clear how to do this: naive bitwise comparison
is often too strict, and establishing the behavioural equivalence of
two binaries is undecidable.

A pragmatic step towards a solution is to provision a benchmark
that can be used to test and train equivalence relations. We present
such a benchmark for Java bytecode, consisting of 622,029 pairs of
binaries (compiled Java classes) labelled as to whether these classes
are equivalent or not. We refer to these pairs as equivalence and
non-equivalence oracles, respectively.

We derive equivalence oracles from building 56 projects and
project versions using 32 dockerised build environments (with
different compilers, compiler versions and configurations). Non-
equivalence oracles are derived from three different sources: (1)
proven breaking API changes, (2) semantic code changes synthe-
sised by means of bytecode mutations, and (3) code changes ex-
tracted from vulnerability patches. To illustrate how to use the
benchmark, we describe an experiment using two equivalence rela-
tions based on locality-sensitive hashing.

CCS Concepts
• Security and privacy → Software security engineering; Vul-
nerability management; • Software and its engineering → Soft-
ware post-development issues.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1240-1/24/10
https://doi.org/10.1145/3689944.3696162

Keywords
Software Supply Chain Security, Build Security, Reproducible Builds,
Java, Maven

ACM Reference Format:
Jens Dietrich, Tim White, Mohammad Mahdi Abdollahpour, Elliott Wen,
and Behnaz Hassanshahi. 2024. BinEq – A Benchmark of Compiled Java Pro-
grams to Assess Alternative Builds. In Proceedings of the 2024 Workshop on
Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED
’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3689944.3696162

1 Introduction
Modern software engineering heavily depends on software supply
chains. This includes the use of commoditised libraries through
managed dependencies and component repositories, and sophisti-
cated automated processes to build, integrate and deploy software.
The security of these supply chains has become a major concern
[7], highlighted by incidents and vulnerabilities such as SolarWinds,
codecov and xz [22, 23, 38].

This has created the need to rethink software supply chains,
paying attention to the security of both components and processes.
While technologies like software composition analysis [28, 42, 43]
and the construction of software bills of materials [10, 14] focus on
component security, there is also a need to look at build processes
for weaknesses that can be exploited [26]. The possibility of such at-
tacks has long been hypothesised, in particular, in Ken Thompson’s
famous Turing Award address [50]. In recent years, similar attacks
have been observed in the wild, including XcodeGhost, ccleaner,
shadowpad, ShadowHammer, SolarWinds and xz [8, 9, 38], and evi-
dence is starting to emerge that compiler-induced vulnerabilities
are more common than previously thought [21, 27].

One way to tackle the problem of compromised builds is to aim
for reproducible builds [2, 33] or to build redundancy into software
supply chains and use consensus protocols to compare indepen-
dent builds performed by separate parties [1]. The SLSA initiative,
which aims at improving build security, mandates builds in a se-
cure hosted environment [4]. Several companies and organisations
are now offering such build services and publish independently
built components for popular open source packages in dedicated
repositories. This has led to a situation where several binaries are
available that have been built from the same source code. This raises

https://orcid.org/0000-0001-9019-6550
https://orcid.org/0000-0002-1997-0176
https://orcid.org/0009-0009-2433-7816
https://orcid.org/0009-0009-2433-7816
https://orcid.org/0000-0002-0340-9392
https://orcid.org/0009-0006-6639-3056
https://doi.org/10.1145/3689944.3696162
https://doi.org/10.1145/3689944.3696162

SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Jens Dietrich, Tim White, Mohammad Mahdi Abdollahpour, Elliott Wen & Behnaz Hassanshahi

the question of how such binaries can be compared. In particular, it
is of interest to establish equivalence (e.g., to demonstrate that an
independent build B confirms build A), and non-equivalence (e.g., to
demonstrate that one of two builds may have been compromised).

In general, the equivalence of binaries is a difficult problem.
Bitwise comparison is too simplistic as it is sensitive to even the
smallest changes caused in the build environment, such as compiler
optimisations. What is more, builds might be non-deterministic,
and therefore, even building twice on the same platform may re-
sult in different binaries. On the other hand, establishing semantic
equivalence is generally not feasible as it is undecidable [32].

We believe that there is space for pragmatic solutions between
these two options, captured by a formal notion of binary equiva-
lence on pairs of programs, together with classifiers that evaluate
them on actual program pairs given as input. This however requires
benchmark datasets to assess the performance of such equivalences
in terms of correct classifications. Such benchmarks can then also
be used to train classifiers deciding whether two binaries are equiv-
alent or not. In this paper, we present such a benchmark for Java
programs, i.e. for Java source code compiled into Java bytecode.

The paper is organised as follows. We discuss the emergence
of multiple alternative builds in the background Section 2. We
then introduce the core concepts of binary equivalence, equiva-
lence oracle and non-equivalence oracle in Section 3. Section 4
discusses the equivalence oracles, while Section 5 discusses the
non-equivalence oracles in detail. We then conduct some experi-
ments with the benchmark to demonstrate its utility by assessing
two simple equivalence relations, and report the results in Section 6.
This is followed by a discussion of related work in Section 7. We
wrap up our contribution in Section 9.

2 Background: Alternative Builds
Open source packages are typically built by developers and released
into package repositories. Using the Java ecosystem as an example,
developers use build tools like Maven or Gradle to build projects,
and deploy the resulting binaries (“jars”) into a Maven repository,
usually Maven Central 1. For other software ecosystems, similar
solutions exist. While Maven and Gradle allow deployment builds to
be performed by developers on their workstations, it is considered
best practice to build on a hosted build platform (a requirement
for SLSA level-2 [4]), which in practice is often achieved by using
GitHub Actions. However, this remains optional from an open
source developers point of view [26].

There are several initiatives by third parties to reproduce builds
with improved security and provenance-gathering capabilities, us-
ing hosted build environments. The resulting binaries are then
stored and managed in curated repositories controlled by the third
party. This improves security, and therefore adds value to open
source components. This in turn allows vendors to productise those
services. Such offerings are now available from Google 2, Oracle 3

and RedHat 4. In general, these builds try to replicate the platform
used in the original build in order to maximise the chances of build
success. In the case of Java projects, information that can be used
1https://central.sonatype.com/
2https://cloud.google.com/security/products/assured-open-source-software
3https://blogs.oracle.com/java/post/announcing-graal-development-kit-437
4https://maven.repository.redhat.com/ga/

for this purpose includes: (1) The build script itself, such as proper-
ties that set language and target bytecode versions. (2) Additional
settings used in GitHub Actions or similar scripts used by projects,
such as the compiler version or OS being used. (3) Metadata in ex-
isting binaries (from Maven Central), such as the Build-Jdk-Spec
manifest key inserted by the Maven archiver plugin 5.

The use case driving this is to replicate and confirm existing
builds. Preferably, a reproduced build will result in the same binary,
i.e., a binary that is byte-for-byte identical to the original one (e.g.,
using binaries from Maven Central as reference), and therefore
also has the same cryptographic hash. A different approach is to
purposely alter the build environment (e.g., use a different compiler
and operating system). A closely reproduced build environment will
also make the build exposed to the same vulnerabilities that may
have affected the original build. Mutating the build environment
on the other hand may reveal a compromised build. For instance,
consider a build that creates a binary with a backdoor, injected by a
compromised compiler. The backdoor consists of an additional call
site to a network or system API in a function reachable from the
main entry point. A second build using a different platform with an
alternative compiler that has not been compromised would produce
a binary that does not have such a call site, facilitating the detection
of the backdoor (with a simple static analysis), and therefore the
compromised compiler. In general, comparing binaries built from
the same source code using a diverse array of independent software
supply chains forces a would-be attacker to compromise all such
builds to remain undetected – dramatically escalating the cost of
such an attack.

The problem with this approach is that different build envi-
ronments (including compilers) usually produce different binaries,
even when the environment has not been compromised. Compilers,
and even compiler versions, differ by employing often intricate
optimisations, resulting in different binaries. In the case of Java,
there have been significant changes in recent years to how some of
the most common code is compiled, such as string concatenation
(JEP280) [47] and member access by inner classes (JEP181) [46].
Interestingly, even when the same platform is used, builds may
not be deterministic. Non-determinism of the Java compiler on the
same platform has been reported by Xiong et al. [51]. Compiler
non-determinism is seen as not desirable and if discovered is treated
as a bug. Recent issues in OpenJDK’s javac include: JDK-8264306,
JDK-8072753, JDK-8076031 and JDK-8295024 6. What is more, there
are other sources of non-determinism in builds, such as build time
code generation. This is widely used to generate parsers from gram-
mars or schemas, using build plugins for antlr, javacc, jaxb, etc. ,
and for annotation processing, used in popular frameworks like
lombok, spring and hibernate.

While there are recent approaches to control sources of non-
determinism [51] by normalising bytecode in a post-compilation
step (using the proposed JavaBEPFix tool), it is unclear how this per-
forms for significant variations (e.g., related to JEP280 and JEP181)
and in settings where the full build specification of the build to
be reproduced is not known, as it is the case for many binaries
on Maven Central. According to [51], the focus of this work is on

5https://maven.apache.org/shared/maven-archiver/
6Issue URLs: https://bugs.openjdk.org/browse/<issue-id>

https://central.sonatype.com/
https://cloud.google.com/security/products/assured-open-source-software
https://blogs.oracle.com/java/post/announcing-graal-development-kit-437
https://maven.repository.redhat.com/ga/
https://maven.apache.org/shared/maven-archiver/

BinEq – A Benchmark of Compiled Java Programs to Assess Alternative Builds SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

sources of non-determinism that occur when very similar build
environments are used, like constant-pool orderings. We also note
that the use of invasive tools like JavaBEPFix potentially introduces
new risks to the build process, as this tool itself could become the
target of an attack 7.

Another compelling motivation for such a benchmark is in sce-
narios where source code needs to be compared to bytecode, such as
in patch presence testing [16, 41]. In such cases one does not neces-
sarily know what compilation environment has been used to obtain
the bytecode originally, thus needing to deal with compilation-
induced differences.

3 Binary Equivalence
3.1 Definition
Establishing whether two binaries 𝑏1 and 𝑏2 are equivalent is a
matter of defining an equivalence relation ≃ ⊆ 𝐵 × 𝐵 between
binaries, and then determining whether (𝑏1, 𝑏2) ∈ ≃ or not. As is
customary we use the notion 𝑏1 ≃ 𝑏2 to state that (𝑏1, 𝑏2) ∈ ≃. Such
an equivalence relation is usually expected to satisfy the following
three conditions:

(1) 𝑏 ≃ 𝑏 for all 𝑏 - reflexivity
(2) 𝑏1 ≃ 𝑏2 ⇒ 𝑏2 ≃ 𝑏1 for all 𝑏1, 𝑏2 - symmetry
(3) 𝑏1 ≃ 𝑏2 ∧ 𝑏2 ≃ 𝑏3 ⇒ 𝑏1 ≃ 𝑏3 for all 𝑏1, 𝑏2, 𝑏3 - transitivity
The baseline is bitwise (for bytecode: byte-by-byte) comparison.

In practice, this is not very useful in the context of comparing bina-
ries built from the same sources but different compilers or compiler
versions since the output can vary widely [46, 47], and compilers
cannot always be assumed to be deterministic as discussed above.

The perfect equivalence is behavioural (semantic) equivalence.
However, this can be reduced to the halting problem, meaning it is
undecidable [32].

Java binaries are jar files, which are archives containingmetadata,
resources, and finer-grained, atomic binaries representing compiled
classes (.class files). Establishing the equivalence of jars can be
reduced to establishing the equivalence of their content, using
existing mechanisms to compare character-based metadata and
resources, and some standard mechanisms for other embedded
binary resources such as media files. We therefore focus on the
equivalence of .class files from here on.

3.2 Equivalence Oracles
While it is difficult or even impossible to capture the full semantics
of such an equivalence relation, it is fairly easy to find pairs of
binaries (i.e. Java class files in this case) that should be considered
equivalent. Such examples include:

(1) Two classes compiled using the same compiler (same javac
version) from the same sources on the same platform.

(2) Two classes compiled using the same compiler (same javac
version) from the same sources, one with debug info (-g),
one without (-g:none) 8.

(3) Two classes compiled using different compilers or compiler
versions from the same sources.

7We contacted the authors of [51] in order to obtain JavaBEPFix for evaluation and
were informed that the tool is not publicly available.
8https://docs.oracle.com/en/java/javase/17/docs/specs/man/javac.html

We refer to such a set of pairs of equivalent classes as an equiva-
lence oracle. Given a set of equivalence oracles 𝑒𝑞 ⊆ 𝐵 × 𝐵 and an
equivalence relation ≃ ⊆ 𝐵 × 𝐵, we can assess ≃ by checking how
many of the records in 𝑒𝑞 are correctly classified as being equivalent.

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠𝑒𝑞 (≃) :=
|𝑒𝑞∩ ≃ |
|𝑒𝑞 | (1)

3.3 Non-Equivalence Oracles
Similarly, there are clear cases where two classes must not be con-
sidered equivalent. Examples include:

(1) Two classes with different APIs, such as differences in non-
private method names or descriptors, supertypes, declared
exceptions, etc.

(2) Two classes with semantic changes applied to one, such as
changed arithmetic operators, additional call sites invoking
non-synthetic methods, additional precondition checks, etc.

(3) Two classes with changes that have a causal effect on pro-
gram behaviour, evidenced by the changed outcomes of tests.

We refer to such pairs of classes as non-equivalence oracles. Given
a set of non-equivalence oracles 𝑛𝑒𝑞 ⊆ 𝐵 × 𝐵 and an equivalence
relation ≃ ⊆ 𝐵 × 𝐵, we can assess ≃ by checking how many of the
records in 𝑛𝑒𝑞 are correctly classified as not being equivalent.

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠𝑛𝑒𝑞 (≃) :=
|𝑛𝑒𝑞∩ ; |
|𝑛𝑒𝑞 | (2)

3.4 The Structure of the Benchmark
The benchmark is organised as a set of tsv (tab-separated values)
files, each containing records belonging to an oracle. This facilitates
the use of the data by many tools, including relational databases
and standard statistical software like R. The columns in those files
are defined by a simple relational database schema. Each oracle has
its own schema, but all share a core schema, i.e., a set of common
columns. Oracle-specific additional columns provide additional
information. The core schema is depicted in Table 1. Container paths
are relative with respect to a root folder containing the distribution
of the oracles. Figure 1 shows the folder structure.

Table 1: Core Schema for all Oracles

name type description
container_1 path a folder or jar file containing bytecode
container_2 path a folder or jar file containing bytecode
class_1 path the path of a .class file within container_1
class_2 path the path of a .class file within container_2

Figure 1: Folder structure

https://docs.oracle.com/en/java/javase/17/docs/specs/man/javac.html

SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Jens Dietrich, Tim White, Mohammad Mahdi Abdollahpour, Elliott Wen & Behnaz Hassanshahi

3.5 The Benchmark API
There is a simple Java API to access the benchmark. The key ele-
ment is a type DataSet with an API to acquire a stream of records.
Record is a simple Java record type representing a single row in
the benchmark as defined by the schema, particular oracles may
use a custom subclass to accommodate additional columns.

The stream-based API particularly facilitates two use cases: (1)
the definition of views by defining filters (i.e., Java stream pred-
icates), similar to SQL views 9. This will be discussed further in
Section 4.6. (2) the expansion of the stream with flatmap to infer
additional records. This is used to infer records for anonymous
inner classes, this is discussed in Section 4.5.

3.6 Downloading and Using the Benchmark
dataset: https://zenodo.org/records/13381845
api: https://github.com/binaryeq/bineq-api

4 Equivalence Oracles
We describe the equivalence oracles included in BinEq in this sec-
tion. There is a single oracle that is materialised (i.e. distributed as
a file), but additional equivalence oracles can be extracted from this
by means of filters (similar to SQL views) provided as part of the
benchmark API, this is described in Section 4.6.

4.1 Compiler Selection
An equality oracle EQ can be constructed by building the same
project with different compilers or compiler versions. For this pur-
pose, we set up an environment using eclipse-temurin docker im-
ages 10 with the respective compilers. We included compilers from
four categories defined by vendor, distribution and debug configura-
tion: OpenJDK, OpenJDK-nodebug, Oracle, and ejc. In total, we used
32 different compilers, of which 8 are versions of the Eclipse com-
piler (ejc), 4 are versions on the Oracle JDK compiler, and all other
compilers are versions of OpenJDK’s javac. Among the OpenJDK
compilers, 4 use a custom Maven property to modify the debug in-
formation that is being created (-Dmaven.compiler.debug=false,
the default setting being true 11).

We selected compiler versions from major version 8 to 20, with
preference for the popular long-term support major versions (8, 11,
17) 12. While the mapping to versions is explicit for the compilers
from the OpenJDK and the Oracle JDKs, it is less obvious for the
Eclipse compiler. To establish the correspondence of ejc versions to
OpenJDK releases, we ran ejc with the -help option, then inspected
the output of -target and used the latest version listed there.

The selection of compilers and compiler versions was informed
by recent industry surveys on the state of the Java ecosystem 13.

The dataset consists of records of pairs of classes and information
about the compilers (name, major/minor/patch version) used to

9Since the benchmark is distributed in a tabular tsv format, it is actually possible to
access it with SQL by using a database driver for tsv, or importing the files into a
relational database
10https://hub.docker.com/_/eclipse-temurin
11https://maven.apache.org/plugins/maven-compiler-plugin/compile-mojo.html
12https://www.oracle.com/java/technologies/java-se-support-roadmap.html
13https://www.jetbrains.com/lp/devecosystem-2023/java/, https://newrelic.com/
resources/report/2024-state-of-the-java-ecosystem, https://snyk.io/reports/jvm-
ecosystem-report-2021/

compile each class. We selected compiler combinations according
to the following relationship between compilers to create records:
(1) Pairs of binaries built by adjacent compiler versions within the
same compiler category. Adjacency is defined according to the
rules of semantic versioning [3]. (2) Pairs built by corresponding
or (if unavailable) similar versions of two compilers from different
categories. Figure 2 gives an overview of the compilers used.

4.2 Build Setup
Maven is used to customise building Java projects. This includes the
use of a custom Maven dependency cache on the host, and setting
custom build properties to remove non-essential build steps, such
as testing (maven.test.skip), license checks (rat.skip), generation of
javadocs (maven.javadoc.skip), SBOMs (cyclonedx.skip) and class
version checks (animal.sniffer.skip). This also avoids build failures
caused by test flakiness [37].

Projects often define a target bytecode version. I.e., even if a
later Java version is used to build, projects still compile into some
earlier version of bytecode for maximum compatibility. This is
usually defined by setting the maven.compiler.target property
in pom.xml. We overrode this property to set the target version to
match the major JDK version of the compiler being used in order
to maximise the amount of diversity in the benchmark. E.g., when
using a Java 17 compiler we attempt to create Java 17 bytecode.
While switching to a later compiler is usually unproblematic, using
older compilers (e.g., building a project that declares Java 17 as
source and/or target Java level with Java 8) will generally fail due
to unsupported language features or APIs. We checked a sample
of the generated class files with javap, verifying that their major
version properties were set accordingly.

4.3 Project Selection
Projects were selected from popular open source libraries, mainly
Apache libraries. Different versions of these libraries were used to
facilitate the construction of the evolution-related oracle NEQ1 (see
Section 5.1). These projects are (the number in brackets indicates the
number of versions): commons-io (6), commons-lang (6), commons-
codec (6), commons-net (4), commons-configuration (4), commons-
compress (6), commons-csv (5), commons-bcel (6), JSON-java (5),
jackson-core (5) and checkstyle (3).

We aimed to select projects based on the following criteria:
(1) Popular projects, as evidenced by metrics for the binary

distribution (rank in category) and social metrics of the re-
spective source code projects (GitHub fork and star counts).
Popularity suggests that this code is representative and sim-
ilar to code found in other projects.

(2) Projects with permissive open source licenses to facilitate the
use as training data for machine learning (such as bytecode
classifiers).

(3) Projects from different domains, evidenced by the categori-
sation used in the Maven repository.

(4) Projects using Maven as build system, in order to facilitate
automated builds. This eliminated the Spring Framework,
which is built using Gradle.

(5) Projects that are easy to build, in particular mid-sized stand-
alone projects, in order to facilitate automated builds.

https://zenodo.org/records/13381845
https://github.com/binaryeq/bineq-api
https://hub.docker.com/_/eclipse-temurin
https://maven.apache.org/plugins/maven-compiler-plugin/compile-mojo.html
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://www.jetbrains.com/lp/devecosystem-2023/java/
https://newrelic.com/resources/report/2024-state-of-the-java-ecosystem
https://newrelic.com/resources/report/2024-state-of-the-java-ecosystem
https://snyk.io/reports/jvm-ecosystem-report-2021/
https://snyk.io/reports/jvm-ecosystem-report-2021/

BinEq – A Benchmark of Compiled Java Programs to Assess Alternative Builds SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 2: Compilers used to create EQ. Edges indicate the
creation of records for the respective pairs. Directed edges
are between adjacent versions of the same compiler or com-
piler configuration. Undirected edges are between different
compilers or compiler configurations with identical or simi-
lar versions. Compiler versions corresponding to long-term
OpenJDK long-term support (LTS) releases are highlighted
bold. Similar compilers or compiler configurations are ren-
dered using the same background colour.

(6) Project versions that have small incremental changes to facil-
itate the creation of dataset records that test whether equiv-
alence relations are sensitive to those changes. This is in-
terpreted as using several patch and minor versions of the
same project [3].

Altogether, this resulted in 56 projects, and therefore 1,792 (56 ×
32) attempted builds. Many builds produce a jar file for the main
classes as well as a jar for tests. Not all builds succeeded; if they
failed, we retained the Maven output. A typical failure reason is
that a project uses language features not supported by the compiler
used. From successful builds we obtained 1,347 jar files containing
classes in the main scope, and 1,077 additional jar files containing
test classes.

Table 2 provides an overview of the projects selected, including
some of the project meta-data used to justify inclusion.

The docker-based setup to synthesise EQ can be easily extended:
compilers and projects used are defined in simple JSON files, and
the process to generate the oracle is scripted.

4.4 Reduction
As stated in Section 4.1, we do not consider all pairs of compilers
because additional equivalence records can be easily inferred from
the transitivity property an equivalence relation has by definition.
Given two records that involve three binaries, each built in a differ-
ent environment, and with EQ records stating 𝑏1 ≃ 𝑏2 and 𝑏2 ≃ 𝑏3,
we can easily infer an additional record stating that 𝑏1 ≃ 𝑏3. Given
the size of the dataset, the objective of this step becomes clear:
there are 32x31 = 992 pairs of different compilers. Assuming that
there are 56 binaries from the built projects (this is conservative,
since some produce multiple jars) and 100 classes per project (again
conservative), we estimate that pre-computing the full transitive
closure would produce an EQ benchmark of over 5 million records
(992×56×100), larger than the actual dataset of 465,858 (see Table 4)
by an order of a magnitude.

To further reduce the number of low-value records produced,
we also exclude the following type of records:

(1) records containing two identical classes (as these records
can be inferred from the reflexivity of the equivalence)

(2) records swapping the two classes being compared in an
existing record (as these records can be inferred from the
symmetry of the equivalence)

Libraries and algorithms to compute the equivalence closures
are readily available and can be used if those additional records are
required.

4.5 Anonymous Inner Classes
Anonymous inner classes (AICs) are inner classes without a name
and for which only a single object is created. The compiler creates
names for those classes by appending a "$" character followed by a
counter (1,2,..). AICs are represented by a value representing the
number of AICs. E.g., given a class pck.Foo with two anonymous
inner classes pck.Foo$1 and pck.Foo$2, each record for pck.Foo
contains an n_anon_inner_classes_ column with the value set to
2 (the number of AICs in pck.Foo). The dataset is then expanded
using this counter into three records – one for the outer class, and
two for the AOCs. The API has the respective expansion logic (see
Section 3.5) applying a functional flatmap operation to the record
stream. Inferring those records expands the oracle from 465,858 to
518,138 records.

AICs have to be used with caution, and the benchmark con-
tains oracles to ignore them as described in the next Section. The

SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Jens Dietrich, Tim White, Mohammad Mahdi Abdollahpour, Elliott Wen & Behnaz Hassanshahi

Table 2: Project selection details. Mvn rank in category data are from https://mvnrepository.com/. Star and fork counts were
acquired from the projects’ GitHub pages. Ranks, stars and fork counts collected on 25 June 2024. “c.-” is short for “commons-”

project versions mvn rank in category GitHub metrics GitHub Project URLcount first last stars forks
c.-io 6 2.7 2.12.0 #1 in I/O Utilities 996 662 https://github.com/apache/commons-io
c.-lang 6 3.8 3.12.0 #2 in Core Utilities 2.7k 1.5k https://github.com/apache/commons-lang
c.-codec 6 1.11 1.16.0 #1 in Base64 Libraries 449 231 https://github.com/apache/commons-codec
c.-net 4 3.7.1 3.9.0 #1 in FTP Clients and Servers 249 184 https://github.com/apache/commons-net
c.-configuration2 4 2.6 2.9.0 #9 in Configuration Libraries 194 135 https://github.com/apache/commons-configuration
c.-compress 6 1.16 1.23 #1 in Compression Libraries 321 256 https://github.com/apache/commons-compress
c.-csv 5 1.6 1.10.0 #1 in CSV Libraries 372 256 https://github.com/apache/commons-csv
c.-bcel 6 6.4.0 6.7.0 #11 in Bytecode Libraries 239 125 https://github.com/apache/commons-bcel
json.org 5 20211205 20230618 #5 in JSON Libraries 4.5k 2.6k https://github.com/stleary/JSON-java
jackson-core 5 2.14.2 2.15.2 #3 in JSON Libraries 2.2k 765 https://github.com/FasterXML/jackson-core
checkstyle 3 10.12.2 10.12.4 #2 in Code Analyzers 8.2k 3.6k https://github.com/checkstyle/checkstyle

problem is that the order of the numbers used to generate names
can also depend on the compiler. To study this we used a simple
over-approximating method to identify equivalent classes based
on computing a feature summary consisting of the superclass, the
interfaces and the non-synthetic fields and methods of an AIC. This
has revealed some cases where the class numbering clearly differs
across compilers. For instance, consider the classes ZipFile$1 and
ZipFile$2 in commons-compress-1.16.1.jar (package names omit-
ted for brevity). Table 3 lists some basic properties of these classes
generated by two different compilers.

Table 3: Properties of anonymous inner classes created
by different compilers for org.apache.commons.compress.-
archivers.zip.ZipFile in commons-compress-1.16.1

ecj 3.11.1.v20150902-1521 openjdk 8.0.302

ZipFile$1
superclass java.lang.Object java.util.zip.InflaterInput-

Stream
interface(s) java.util.Comparator
method(s) compare(ZipArchiveEntry,

ZipArchiveEntry)
close()

ZipFile$2
superclass java.util.zip.InflaterInput-

Stream
java.lang.Object

interface(s) java.util.Comparator
method(s) close() compare(ZipArchiveEntry,

ZipArchiveEntry)

This suggests that the two compilers use a different numbering
scheme, but the classes are otherwise equivalent. We studied the
prevalence of this problem using feature summaries as described
above. In all cases the compilers were from different groups (e.g.,
OpenJDK javac vs ecj), and not just different versions of the same
compiler. The derived oracles described in the next section facilitate
the exclusion of such records.

4.6 Derived EQ Oracles
Several EQ subsets are of interest to study particular features of
equivalence relations. The selection of subsets directly supported
by the benchmark is based on the following criteria: the compiler
selection (Selection 4.1, visualised in Figure 2) follows two prin-
ciples (4.2)– to compare (classes compiled from the same source
code using) non-OpenJDK compilers with an equivalent OpenJDK
version, and to compare adjacent versions of the same compiler.
We also include additional views for OpenJDK compilers only (due
to its popularity), and for records where both classes have been

compiled with the same compiler using the same major version.
This is of interest as jar files built with Maven often don’t contain
details of the compiler that has been used, and only report the major
version (via the Build-Jdk-Spec manifest entry). Given the issues
around AICs it is a reasonable choice to exclude them from the
benchmark altogether, at least for some scenarios. For this purpose,
we provide -no-aic versions for each oracle.

This yields the following 10 equivalence oracles (we consider
the OpenJDK javac nodebug configuration as a different compiler
here):

• EQ – the entire dataset described above
• EQ-no-aic – removes anonymous inner classes (with compiler-
generated names) from EQ

• EQ-OpenJDK – only records with both classes compiled with
(some version) of the OpenJDK javac compiler are considered

• EQ-OpenJDK-no-aic – like EQ-OpenJD, but with anonymous
inner classes removed

• EQ-SameComp – both classes have been compiled using the
same compiler (but different versions)

• EQ-SameComp-no-aic – like EQ-SameComp, butwith anony-
mous inner classes removed

• EQ-DiffComp – both classes have been compiled using a
different compiler

• EQ-DiffComp-no-aic – like EQ-DiffComp, but with anony-
mous inner classes removed

• EQ-SameMjCompVer – both classes have been compiled us-
ing the same compiler, the major versions used are identical

• EQ-SameMjCompVer-no-aic – like EQ-SameMjCompVer, but
with anonymous inner classes removed

Those oracles are defined in the API via filters applied to the
record stream (similar to SQL SELECT queries) for EQ.

4.7 Build Time and Environment
The dataset is created on an i7-1355U 1.70 GHz laptop with 10 cores
and 64 GB, running Linux 5.15.0 inside a VM. Building the EQ jar
files took 358 minutes using 3-way parallelization via make -j 3;
building the EQ.tsv oracle took a further 17 minutes.

4.8 Observations
4.8.1 Summary. Table 4 contains an overview of the EQ oracles
with some data about the prevalence of certain features. Column 2
is the size of the oracle. The remaining columns are discussed in

BinEq – A Benchmark of Compiled Java Programs to Assess Alternative Builds SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

the following sections, where we examine a few interesting cases
we have encountered.

4.8.2 Different Bytecode Versions in Same Jar. An unexpected
insight from our experiments is that jar files may contain .class
files with different bytecode versions 14. There is a legitimate use
case for this. Consider the project bcel 15 that is part of our dataset.
The bcel-6.9.0-tests official artifact from Maven Central 16 contains
classes with different bytecode versions (versions are in format
(major.minor)), including:

(1) org.apache.bcel.AbstractTestCase – version 52.0
(2) issue369.Test – version 46.0
(3) issue362.Bcel362 – version 55.0

The last two classes are used as test data. It does make sense to
include bytecode compiled with different compilers in order to test
compatibility of bcel. This means that the respective classes have
to be compiled outside the (main) build. A look at the repository
reveals the strategy that has been used here: the classes used as test
data (issue*/*, both sources and compiled) are test resources in
src/test/resources. I.e., during the build they will be copied into
the target/classes folder and included in the jar file alongside
the classes compiled during the build.

In general, the presence of classes with different bytecode ver-
sions is suspicious and could indicate that the build has been com-
promised and code has been included in the binary to be deployed
by copying them into the resource folder. Multiple builds in different
environments are more likely to reveal such issues.

4.8.3 Bytecode Size and Complexity. Bcel tests (bcel-6.9.0-tests)
also contains a class org.apache.bcel.data.LargeMethod to be
used as test data, compiled during the main build. While the source
code is relatively small (ca 50 lines of code), it contains a pattern
of deeply nested try-finally blocks that need to be expanded by
the compiler, resulting in a 6.6 MB class file.

It is reasonable for the bcel test library to contain such test data,
but in general, similar features might be used to craft denial-of-
service attacks on program analyses used in software supply chain
security. There are a number of related known patterns in Java,
often leveraging data structures similar to billion laughs [6, 19].

4.8.4 Use of Build-time Source Generators. Some binaries con-
tain classes compiled from sources generated during the build. In
Maven, the source code of such classes is created in subdirectories
of target/generated-classes, and these classes can be cross-
referenced with binaries. We added columns generated_by_1 and
generated_by_2 to EQ records for this purpose: for classes built
from source files generated at build time, these columns store the
name of the subdirectory within target/generated-classes they
were found in (corresponding to the name of the tool that generated
them); for classes present in the original source code, the values for
those columns are empty (- is used to represent this).

The EQ benchmark contains numerous records for classes com-
piled from generated code, details can be found in columns 5-7 of

14Java byte code is generated by a Java compiler. The structure and version of this
byte code is formally defined in the JVM Specification [35].
15https://github.com/apache/commons-bcel
16https://repo1.maven.org/maven2/org/apache/bcel/bcel/6.9.0/bcel-6.9.0-tests.jar

Table 4. The code generators we encountered in benchmark pro-
grams are the antlr and javacc parser generators and annotation
processors for (test) classes.

We think that it is desirable to have such projects in the bench-
mark for two reasons. Firstly, code generators are a potential source
of non-determinism. While compiler builders try to control this,
third party tools could still cause this, even though we have not
observed this in the wild. Secondly, those tools could be part of an
attack surface and could be used to inject malware into binaries.

4.8.5 Evidence of Non-Determinism. Xiong et al. [51] report non-
determinism in bytecode generation. If this non-determinism is
interpreted as variation across compiler versions that differ only in
minor or patch version levels, then this concurs with our findings,
however we were unable to reproduce run-to-run non-determinism
in our attempts to build either docker-maven-plugin:0.36.0 17

or kubernetes-client-project:5.4.1 18.
We ran the build scripts used to compile the projects three times

and compared the produced jar files. We encountered differences in
the file order within jars, in the Bnd-LastModified timestamp in
MANIFEST.MF and in the timestamp in the pom.properties header
comment, but no other differences: In particular, we did not en-
counter any bytecode differences. This suggests that while non-
deterministic run-to-run variation in bytecode generation is possi-
ble, it is rare in the wild.

4.8.6 JEP181 and JEP280. Throughout the compiler version range
we consider there have been some major changes to how byte-
code is created, in particular related to member access by inner
classes (JEP181) and string concatenation (JEP280). We run a light-
weight bytecode analysis on the produced binaries. The results are
attached to EQ records using four special columns with boolean val-
ues: bytecode_jep181_1, bytecode_jep181_2, bytecode_jep280_1 and
bytecode_jep280_2, respectively.

The EQ benchmark contains numerous records where one class
uses one of those bytecode features, while the other does not, details
can be found in columns 3 and 4 of Table 4. These records are par-
ticularly valuable in order to test the performance of equivalences
that can identify the common semantics of the pre- and post-JEP
bytecode patterns.

5 Non-Equivalence Oracles
5.1 NEQ1 – Breaking API Changes
Different versions of software may introduce API changes that
break clients either at compile time (if the API change is source in-
compatible), linkage time (if the API change is binary incompatible),
or even runtime (when the compiler generates runtime checks).
These issues are surprisingly common [18, 29, 45], and static analy-
sis tools exist to locate and categorise these changes [30].

To construct this oracle, we used the revapi 19 static analysis tool
version 0.28.1 to compare adjacent versions of the same project in
the dataset discussed in Section 4.3. Adjacent versions are identified
according to the conventions of semantic versioning [3].

17https://github.com/binaryeq/jcompile/issues/32#issuecomment-1806946498
18https://github.com/binaryeq/jcompile/issues/34#issuecomment-1809827183
19https://revapi.org/

https://github.com/apache/commons-bcel
https://repo1.maven.org/maven2/org/apache/bcel/bcel/6.9.0/bcel-6.9.0-tests.jar
https://github.com/binaryeq/jcompile/issues/32#issuecomment-1806946498
https://github.com/binaryeq/jcompile/issues/34#issuecomment-1809827183
https://revapi.org/

SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Jens Dietrich, Tim White, Mohammad Mahdi Abdollahpour, Elliott Wen & Behnaz Hassanshahi

Table 4: Properties of datasets derived from EQ

name all JEP181 JEP280 antlr javacc annot. proc.
EQ 518,138 10,830 36,827 8,721 745 2,796
EQ-no-aic 465,858 5,474 29,422 8,721 735 2,796
EQ-OpenJDK 129,929 3,377 4,947 971 204 880
EQ-OpenJDK-no-aic 115,549 1,688 3,717 971 198 880
EQ-SameComp 285,705 10,797 14,989 2,913 456 1,772
EQ-SameComp-no-aic 255,665 5,441 11,469 2,913 450 1,772
EQ-SameMjCompVer 42,631 666 0 0 108 276
EQ-SameMjCompVer-no-aic 37,957 377 0 0 108 276
EQ-DiffComp 232,433 33 21,838 5,808 289 1,024
EQ-DiffComp-no-aic 210,193 33 17,953 5,808 285 1,024

Revapi detects API changes such as changes to method signa-
tures, type hierarchies, class names, etc., that may result in compila-
tion (source compatibility) or linking (binary compatibility) issues
for client code. Revapi detects some basic semantic issues as well,
such as issues related to constant inlining. We consider the revapi
analysis to be precise, i.e., it will not produce false positives [30].

This analysis produces an oracle consisting of 14,384 records re-
lated to changes of the respective classes between versions. Of those
308 relate to binary compatibility-breaking changes only, 6,957 to
source compatibility-breaking changes only, 7,711 to changes that
break both binary and source compatibility, the rest are semantic
compatibility-breaking changes.

The NEQ1 schema has extra columns referring to the kind of
incompatibility (source, binary or semantic) revapi has detected.

5.2 NEQ2 – Mutations
Mutation testing [31] is a technique designed to inject changes
into code that change the program semantics, for the purpose of
assessing the sensitivity of existing unit, integration or regression
tests written against that code. This makes it a suitable technique
to generate a non-equivalence oracle.

In order to generate NEQ2, we used an existing mutation testing
framework, pitest-1.15.0 [15]. We customised pitest, removing its
dependency on testing frameworks, and work in bare-bones mode
to transform bytecode into mutated bytecode (i.e., treat pitest as
a function byte[] → byte[]). We also added an additional verifi-
cation check based on asm [12] to double-check that the modified
bytecode is valid. We used all mutators available in pitest except
those flagged as experimental – 19 mutators in total. We did not
attempt to confirm semantic differences by running tests.

The NEQ2 schema extends the core schema by adding columns
providing details about the mutations being made, including the
type of mutation and the location of the mutated code.

As input for mutations we have used 20 jars from EQ. For each
of the 11 projects, the latest project version compiled with javac-
11.0.19 is used as a baseline version; this compiler version was
chosen since it is the latest that successfully compiles all 11 such
jars. The remaining 9 jars used are the corresponding test jars.

NEQ2 contains 141,585 records. All pass our additional conserva-
tive asm-based verification. Interestingly, we encountered a rather
large number of mutations (222,445) for which verification failed.
The respective records were ignored.

5.3 NEQ3 – Vulnerability Patches
NEQ3 consists of security-relevant changes. This is based on an-
other dataset, SAP’s project-kb 20, described in [44]. Records in this
Apache 2.0-licensed dataset consist of a vulnerability id (CVE), a
repository URL, a commit id, and a class name. In general, building
arbitrary projects (before and after the commit) is challenging to
automate [25]; we therefore opted for finding existing binaries of
the last version before and the first version after the commit. For
this purpose, we identified the GHSA 21 entry corresponding to
the CVE; GHSA has references to binaries in the Maven repository.
This required the CVE to have a corresponding GHSA record. We
only consider reviewed GHSA records that referred to a single fix
commit and single fixed artifact identified by group, artifact, and
version (GAV) to obtain a unique reference to a binary in the Maven
repository. We obtained 270 CVE records up to this stage.

To obtain the latest vulnerable version of each binary, we scanned
the maven-metadata.xml of the corresponding package and ex-
tracted the latest version before the fixed version. We used Maven
Central and Jenkins CI as our Maven repository sources. In the
next step, we cloned the repository of each package and analysed
the modified Java files in the corresponding patch commits. We
only kept the files with at least one method modification to remove
potential false positives. Since project-kb lacks source changes for
many records, we extracted patches directly from the repositories.

Finally, we looked up and extracted the modified class files from
the corresponding jars. This step is necessary to ensure a match
between the identified classes from the previous step and the down-
loaded jar files, as they stem from different data sources. The commit
information is obtained from project-kb dataset, and the artifact
coordinates (GAVs) are extracted from the GHSA dataset. We found
that 186 of the modified classes are test classes which are not in-
cluded in the compiled binaries. In 28 cases, source changes do not
change the compiled binary. In several cases the modified class file
is in a different jar which is used as a dependency of the vulnera-
ble artifact (e.g., CVE-2019-10093). Several cases are attributed to
imprecisions in the GHSA dataset (e.g., CVE-2013-7285).

Overall, this process yielded 202 pairs for classes from 77 different
repositories. NEQ3 is based on patches for the vulnerabilities listed
in Figure 5. Sometimes there are multiple patches for the same
vulnerability.

The NEQ3 schema extends the core schema by adding columns
providing details about the CVE, the GHSA id, the latest vulnerable

20https://github.com/SAP/project-kb
21https://github.com/github/advisory-database/

https://github.com/SAP/project-kb
https://github.com/github/advisory-database/

BinEq – A Benchmark of Compiled Java Programs to Assess Alternative Builds SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 5: CVEs for which patches are included in NEQ3

CVE-2012-0881 CVE-2012-4386 CVE-2012-6612 CVE-2013-1879
CVE-2013-2035 CVE-2013-4310 CVE-2013-4316 CVE-2013-4366
CVE-2013-5679 CVE-2013-5960 CVE-2013-6397 CVE-2013-6407
CVE-2013-6408 CVE-2013-6430 CVE-2014-0168 CVE-2014-1972
CVE-2014-3600 CVE-2014-8152 CVE-2015-3253 CVE-2015-3271
CVE-2015-4165 CVE-2015-5258 CVE-2015-5531 CVE-2016-0785
CVE-2016-10006 CVE-2016-10750 CVE-2016-3720 CVE-2016-4437
CVE-2016-6814 CVE-2016-8738 CVE-2017-1000486 CVE-2017-1000487
CVE-2017-1000498 CVE-2017-12197 CVE-2017-14063 CVE-2017-3523
CVE-2017-3586 CVE-2017-7672 CVE-2017-9803 CVE-2018-1000129
CVE-2018-1000134 CVE-2018-1000820 CVE-2018-1000850 CVE-2018-1002200
CVE-2018-1002201 CVE-2018-10899 CVE-2018-11761 CVE-2018-11771
CVE-2018-11775 CVE-2018-11799 CVE-2018-12418 CVE-2018-12541
CVE-2018-12542 CVE-2018-1309 CVE-2018-1324 CVE-2018-15531
CVE-2018-17187 CVE-2018-17194 CVE-2018-17197 CVE-2018-20433
CVE-2018-21234 CVE-2018-8016 CVE-2018-8718 CVE-2019-0193
CVE-2019-0226 CVE-2019-1003005 CVE-2019-10071 CVE-2019-10088
CVE-2019-10091 CVE-2019-10093 CVE-2019-10094 CVE-2019-10173
CVE-2019-10462 CVE-2019-10463 CVE-2019-10770 CVE-2019-11343
CVE-2019-11777 CVE-2019-12422 CVE-2019-13990 CVE-2019-16771
CVE-2019-17513 CVE-2019-17555 CVE-2019-17556 CVE-2019-17572
CVE-2019-17638 CVE-2019-5427 CVE-2019-9658 CVE-2020-11050
CVE-2020-11987 CVE-2020-11988 CVE-2020-13692 CVE-2020-13973
CVE-2020-15250 CVE-2020-1729 CVE-2020-1925 CVE-2020-1929
CVE-2020-1953 CVE-2020-1963 CVE-2020-25020 CVE-2020-26258
CVE-2020-26259 CVE-2020-28191 CVE-2020-35460 CVE-2020-5289
CVE-2020-8929 CVE-2021-21234 CVE-2021-29425

and the fixed version, the Git repository, the fix commit hash and
the method modified in the fix.

5.4 Build Time and Environment
The computing environment used to create the NEQ oracles is
identical with the environment used for EQ, reported in Section 4.7.
Building NEQ1.tsv took 239 minutes (including all revapi runs,
2-way parallelized with make -j 2). Building all NEQ2 jar files and
NEQ2.tsv took 15 minutes in total.

Building NEQ3 was done mainly manually by inspecting records
using the process described above, we can therefore not report
computing times.

6 Experiments
In order to illustrate how to use the benchmark, we describe an
experiment using tlsh [40] to establish binary equivalence. Tlsh is a
locality-sensitive hash that has been used in malware detection. We
define two equivalence relations based on the tlsh implementation
by trendmicro 22, with thresholds of 10 (tlsh10) and 100 (tlsh100),
respectively, as follows:

𝑏1 ≃ 𝑏2 iff |𝑡𝑙𝑠ℎ(𝑏1) − 𝑡𝑙𝑠ℎ(𝑡2) | < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

These thresholds were chosen based on the tlsh documenta-
tion 23. Note that thresholding a distance measure in this way only
approximates an equivalence relation, since transitivity is not guar-
anteed to hold. We computed the correctness of the classification
we achieve for the various oracles in the benchmark using those
equivalent relations. The results are reported in Table 6. This clearly
shows that tlsh10 is too sensitive to correctly identify most equiv-
alent classes, but it can correctly distinguish between almost all
non-equivalent classes. If the threshold is increased to 100, this
is reversed, illustrating the trade-offs that often have to be made

22https://github.com/trendmicro/tlsh, version 4.5.0
23https://github.com/trendmicro/tlsh/blob/master/java/src/main/java/com/
trendmicro/tlsh/Tlsh.java

between false positives and false negatives. A false positive in this
context means identifying pairs as equivalent when they are not, a
false negative means not classifying a pair of equivalent classes as
being equivalent. The BinEq benchmark can be used to assess this.
It also provides a starting point for analyses to detect unexpected
behaviour.

Table 6: Classification correctness of equivalence relations
based on tlsh10 and tlsh100.

oracle EQ
EQ-no- EQ-Same- EQ-Diff-

NEQ1 NEQ2 NEQ3AIC Comp- Comp-
AIC no-aic no-aic

tlsh10 0.235 0.236 0.428 0.002 0.97 1 0.985
tlsh100 0.778 0.774 0.858 0.67 0.428 0.406 0.173

7 Related Work
We focus the discussion on benchmarks and datasets for Java.

DaCapo [11] is an older benchmark widely used in program
and performance analysis. Originally released in 2006 containing
11 programs, subsequent releases were made in 2009 and 2023.
DaCapo comes with drivers to execute the programs. It draws from
and improves upon older benchmarks such as SPEC JVM98 [5].

The Qualitas Corpus [48] is a collection of 100 Java programs
(20100719), 23 of which have multiple versions, for 495 versions
in total. The corpus was updated in 2013. The Qualitas corpus has
been mainly used for studies on source code such as code smell
detection. A shortcoming of the corpus is that programs cannot be
easily built. The evolution edition of the Qualitas Corpus that has
several versions of the same program is similar to our use of differ-
ent versions of the same project in EQ and NEQ1. Many projects
in the Qualitas Corpus did not use Maven or similar build systems
based on the convention over configuration philosophy, making
it much harder to build projects mechanically. The reason is the
age of the corpus – those build systems were only emerging when
the projects that are part of the corpus were created and released.
The Qualitas.class corpus [49] contains compiled versions of the
respective projects. The compilation process used may differ from
the intended build of the projects, and sometimes contains ad hoc
refactoring to address compilation errors. The XCorpus [20] con-
sists of 70 programs from the Qualitas Corpus and adds another 6
programs. It adds ant-based builds to compile the programs, and
integrates existing and synthesized tests. The focus is on test cov-
erage. It has been used to assess program analyses where dynamic
and static techniques must be compared.

Jezek et al. [30] present a micro-benchmark consisting of syn-
thetic code to assess API change analysis tools. This is related to
NEQ1, which leverages such a tool.

The 50K-C corpus [39] contains 50,000 compilable Java projects
gathered from GitHub. The dataset includes the projects in both
source and compiled forms, as well as dependencies and build
scripts, and a VirtualBox VM for convenient usage. While the
dataset is large, it is not curated – GitHub projects were downloaded
(479,113 initially), and the dataset consists of projects randomly
selected from the projects the authors were able to build.

There are several security-related datasets for Java, associating
vulnerabilities and patches with programs. Project-kb [44] consists

https://github.com/trendmicro/tlsh
https://github.com/trendmicro/tlsh/blob/master/java/src/main/java/com/trendmicro/tlsh/Tlsh.java
https://github.com/trendmicro/tlsh/blob/master/java/src/main/java/com/trendmicro/tlsh/Tlsh.java

SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Jens Dietrich, Tim White, Mohammad Mahdi Abdollahpour, Elliott Wen & Behnaz Hassanshahi

of 1,297 publicly disclosed vulnerabilities (624 at time of analy-
sis) affecting 205 distinct open-source Java projects, and includes
patch commits. We use this as a base for NEQ3. A slightly newer
but smaller dataset is Vul4j [13] which consists of 79 vulnerabili-
ties with patches from 51 open-source projects. Vulinoss [24] is a
dataset extracted from the National Vulnerability Database (NVD),
mapping vulnerabilities to project versions. It does not contain
information about commit-level patches. TaintBench [36] is a spe-
cialised benchmark for taint analysis of Android programs.

Table 7 summarises related work and compares it with BinEq.

8 Threats to Validity
In Section 3.2, we assume that class files produced by compiling
the same source class with different compilers, or with different
versions of the same compiler, are semantically equivalent. How-
ever, due to reflection, and the fact that compilers may produce
different but (absent reflection) functionally equivalent bytecode,
this cannot be guaranteed. For instance, JEP 181 [46] removes the
generation of synthetic methods for accessing outer-class private
fields. It is, therefore, possible to craft code that uses reflection to
count the number of methods in a class, and behave differently
for different compiler versions. That said, arguably even bitwise
equality is insufficient to guarantee an ideal notion of behavioural
equivalence, since a program may be crafted to behave differently
based on, e.g., the location of its class files in the filesystem. In
practice, few programs explore these corners, so imperfect notions
of equivalence remain useful.

In order to simplify the build process, the benchmark uses only
Maven-based projects. This notably excludes Gradle-based projects
such as the Spring Framework, potentially limiting diversity.

In Section 5.2, we do not run tests to verify that the mutations
introduced in NEQ2 actually alter program semantics. Such a muta-
tion would arguably be a bug in the pitest mutation testing frame-
work, so the chances of this occurring are low. Given this fact,
and the reality of incomplete test coverage, such stringent testing
would likely shrink the dataset unnecessarily, and at considerable
computational cost. Nevertheless this introduces a small possibility
of false positives in NEQ2.

9 Conclusion
We have presented BinEq, a benchmark of compiled Java code la-
belled as either equivalent or non-equivalent. The benchmark con-
sists of four parts, the equivalence oracle EQ with 465,858 records
(518,138 when expanded to include anonymous inner classes), the
non-equivalence oracles NEQ1 with 14,384 , NEQ2 with 141,585
and NEQ3 with 202 records, 622,029 records in total.

We hope that this will facilitate research into binary equivalence
relations that approximate semantic equivalence of Java byte code,
with applications to software supply chain security. The bench-
mark can not only be used for assessing relations, but also to train
relations via supervised machine learning techniques. To this end
it would be interesting to assess more sophisticated tools for deter-
mining equivalence, like SootDiff [17].

While the benchmark is large, there is potential to extend it as
new compilers, compiler versions, bytecode features, code genera-
tors and build systems become available. Adding non-Maven build

systems such as Gradle, and non-Java programs (Kotlin, Scala etc.)
compiling into Java byte code are other desirable features for fu-
ture versions of the benchmark. Similar problems exist in different
ecosystems, in particular where diverse and quickly evolving com-
pilers are being used, as in Rust/WASM [34]; similar benchmarks
could be developed to improve build security for those platforms.

10 Acknowledgements
The work of the first author was supported by a gift by Oracle
Labs Australia, the first and the second author were supported by
the New Zealand National Science Challenge for Technological
Innovation (Sfti) -funded Veracity project.

References
[1] [n. d.]. Pyrsia - decentralised package network. https://pyrsia.io/.
[2] [n. d.]. Reproducible Builds. https://reproducible-builds.org/.
[3] [n. d.]. Semantic Versioning 2.0.0. https://semver.org/.
[4] [n. d.]. Supply Chain Levels for Software Artifacts (SLSA) 1.0. https://slsa.dev/

spec/v1.0/#core-specification.
[5] 1998. SPEC JVM98 Benchmarks. https://www.spec.org/jvm98/.
[6] 2003. CVE-2003-1564 (billion laughs). https://nvd.nist.gov/vuln/detail/CVE-

2003-1564.
[7] 2022. Executive Order 14028, Improvin the Nation’s Cybersecurity. https:

//www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity.
[8] 2024. CVE-2024-3094 (xz). https://nvd.nist.gov/vuln/detail/CVE-2024-3094.
[9] Anthony Andreoli, Anis Lounis, Mourad Debbabi, and Aiman Hanna. 2023. On

the prevalence of software supply chain attacks: Empirical study and investigative
framework. Forensic Science International: Digital Investigation 44 (2023), 301508.

[10] Tingting Bi, Boming Xia, Zhenchang Xing, Qinghua Lu, and Liming Zhu. 2023.
On the way to sboms: Investigating design issues and solutions in practice. ACM
Transactions on Software Engineering and Methodology (2023).

[11] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z Guyer, et al. 2006. The DaCapo benchmarks: Java benchmarking devel-
opment and analysis. In Proceedings of the 21st annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications. 169–190.

[12] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: a code manip-
ulation tool to implement adaptable systems. Adaptable and extensible component
systems 30, 19 (2002).

[13] Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E Díaz Ferreyra. 2022.
Vul4J: a dataset of reproducible Java vulnerabilities geared towards the study of
program repair techniques. In Proceedings of the 19th International Conference on
Mining Software Repositories. 464–468.

[14] L Jean Camp and Vafa Andalibi. 2021. SBOM vulnerability assessment & corre-
sponding requirements. NTIA Response to Notice and Request for Comments on
Software Bill of Materials Elements and Considerations (2021).

[15] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. Pit: a practical mutation testing tool for java. In Pro-
ceedings of the 25th international symposium on software testing and analysis.
449–452.

[16] Jiarun Dai, Yuan Zhang, Zheyue Jiang, Yingtian Zhou, Junyan Chen, Xinyu
Xing, Xiaohan Zhang, Xin Tan, Min Yang, and Zhemin Yang. 2020. BScout:
Direct Whole Patch Presence Test for Java Executables. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, 1147–1164. https://www.
usenix.org/conference/usenixsecurity20/presentation/dai

[17] Andreas Dann, Ben Hermann, and Eric Bodden. 2019. SootDiff: bytecode com-
parison across different Java compilers. In Proceedings of the 8th ACM SIGPLAN
International Workshop on State Of the Art in Program Analysis (Phoenix, AZ,
USA) (SOAP 2019). Association for Computing Machinery, New York, NY, USA,
14–19. https://doi.org/10.1145/3315568.3329966

[18] Jens Dietrich, Kamil Jezek, and Premek Brada. 2014. Broken promises: An empiri-
cal study into evolution problems in java programs caused by library upgrades. In
2014 Software Evolution Week-IEEE Conference on Software Maintenance, Reengi-
neering, and Reverse Engineering (CSMR-WCRE). IEEE, 64–73.

[19] Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex Potanin. 2017.
Evil pickles: DoS attacks based on object-graph engineering. In 31st European
Conference on Object-Oriented Programming (ECOOP 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[20] Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. 2017. XCorpus – An
executable Corpus of Java Programs. Journal of Object Technology 16, 4 (Aug.
2017), 1:1–24. https://doi.org/10.5381/jot.2017.16.4.a1

https://pyrsia.io/
https://reproducible-builds.org/
https://semver.org/
https://slsa.dev/spec/v1.0/#core-specification
https://slsa.dev/spec/v1.0/#core-specification
https://www.spec.org/jvm98/
https://nvd.nist.gov/vuln/detail/CVE-2003-1564
https://nvd.nist.gov/vuln/detail/CVE-2003-1564
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://www.usenix.org/conference/usenixsecurity20/presentation/dai
https://www.usenix.org/conference/usenixsecurity20/presentation/dai
https://doi.org/10.1145/3315568.3329966
https://doi.org/10.5381/jot.2017.16.4.a1

BinEq – A Benchmark of Compiled Java Programs to Assess Alternative Builds SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 7: Comparison of datasets from related research with BinEq. “Buildable” refers to easy buildability with scripts included
in the dataset, “executable” to the availability of drivers (harnesses, test suites) as part of the dataset. Size categories: small (≤
100),medium (100-1,000), large (≥ 1,000). BinEq dataset sizes use the number of jars, not records, for a fair comparison.

dataset year(s) size real-world buildable executable vulnerabilities patches evolution build variability
Dacapo 2006,2009,2023 small yes yes yes no n/a no no
Qualitas Corpus 2010,2013 medium yes no no no n/a yes n/a
Qualitas.class 2013 medium yes yes yes no n/a no no
XCorpus 2017 medium yes yes yes no n/a no no
Jezek et al 2017 small no yes yes no n/a yes no
50K-C 2018 large yes yes yes no no no no
Vulinoss 2018 large yes no no yes no yes n/a
Project-KB 2019 large yes no no yes yes yes n/a
TaintBench 2022 small yes yes no yes no no no
Vul4J 2022 medium yes no no yes yes yes n/a
BinEq-EQ 2024 medium yes yes no no n/a yes yes
BinEq-NEQ1 2024 small yes yes no no n/a yes no
BinEq-NEQ2 2024 medium partially yes no no n/a no no
BinEq-NEQ3 2024 small yes yes no yes yes yes no

[21] Yufei Du, Omar Alrawi, Kevin Snow, Manos Antonakakis, and Fabian Monrose.
2023. Improving Security Tasks Using Compiler Provenance Information Recov-
ered At the Binary-Level. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security. 2695–2709.

[22] Robert J Ellison, John B Goodenough, Charles B Weinstock, and Carol Woody.
2010. Evaluating and mitigating software supply chain security risks. Software
Engineering Institute, Tech. Rep. CMU/SEI-2010-TN-016 (2010).

[23] William Enck and Laurie Williams. 2022. Top five challenges in software supply
chain security: Observations from 30 industry and government organizations.
IEEE Security & Privacy 20, 2 (2022), 96–100.

[24] Antonios Gkortzis, Dimitris Mitropoulos, and Diomidis Spinellis. 2018. VulinOSS:
a dataset of security vulnerabilities in open-source systems. In Proceedings of the
15th International conference on mining software repositories. 18–21.

[25] Foyzul Hassan, Shaikh Mostafa, Edmund SL Lam, and Xiaoyin Wang. 2017. Au-
tomatic building of java projects in software repositories: A study on feasibility
and challenges. In 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, 38–47.

[26] Behnaz Hassanshahi, Trong Nhan Mai, Alistair Michael, Benjamin Selwyn-Smith,
Sophie Bates, and Padmanabhan Krishnan. 2023. Macaron: A Logic-based Frame-
work for Software Supply Chain Security Assurance. In Proceedings of the 2023
Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses
(SCORED ’23). 29–37. https://doi.org/10.1145/3605770.3625213

[27] Michael J Hohnka, Jodi A Miller, Kenrick M Dacumos, Timothy J Fritton, Julia D
Erdley, and Lyle N Long. 2019. Evaluation of compiler-induced vulnerabilities.
Journal of Aerospace Information Systems 16, 10 (2019), 409–426.

[28] Nasif Imtiaz, Seaver Thorn, and Laurie Williams. 2021. A comparative study of
vulnerability reporting by software composition analysis tools. In Proceedings of
the 15th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). 1–11.

[29] Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, Samuel Ou, and Kelly
Blincoe. 2023. Understanding Breaking Changes in the Wild. In ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). 1433—-1444.
https://doi.org/10.1145/3597926.3598147

[30] Kamil Jezek and Jens Dietrich. 2017. API Evolution and Compatibility: A Data
Corpus and Tool Evaluation. Journal of Object Technology 16, 4 (Aug. 2017),
2:1–23. https://doi.org/10.5381/jot.2017.16.4.a2

[31] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.

[32] Arun Lakhotia, Mila Dalla Preda, and Roberto Giacobazzi. 2013. Fast location
of similar code fragments using semantic’juice’. In Proceedings of the 2nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop. 1–6.

[33] Chris Lamb and Stefano Zacchiroli. 2021. Reproducible builds: Increasing the
integrity of software supply chains. IEEE Software 39, 2 (2021), 62–70.

[34] Chenghao Li, Yifei Wu, Wenbo Shen, Zichen Zhao, Rui Chang, Chengwei Liu,
Yang Liu, and Kui Ren. 2024. Demystifying Compiler Unstable Feature Usage and
Impacts in the Rust Ecosystem. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering. 1–13.

[35] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley, and Daniel Smith.
2021. The Java®Virtual Machine Specification, Java SE 17 Edition. https:
//docs.oracle.com/javase/specs/jvms/se17/html/index.html.

[36] Linghui Luo, Felix Pauck, Goran Piskachev, Manuel Benz, Ivan Pashchenko, Mar-
tin Mory, Eric Bodden, Ben Hermann, and Fabio Massacci. 2022. TaintBench:

Automatic real-world malware benchmarking of Android taint analyses. Empiri-
cal Software Engineering 27 (2022), 1–41.

[37] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and DarkoMarinov. 2014. An empir-
ical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT international
symposium on foundations of software engineering. 643–653.

[38] Jeferson Martínez and Javier M Durán. 2021. Software supply chain attacks, a
threat to global cybersecurity: SolarWinds’ case study. International Journal of
Safety and Security Engineering 11, 5 (2021), 537–545.

[39] Pedro Martins, Rohan Achar, and Cristina V Lopes. 2018. 50k-c: A dataset of
compilable, and compiled, java projects. In Proceedings of the 15th international
conference on mining software repositories. 1–5.

[40] Jonathan Oliver, Chun Cheng, and Yanggui Chen. 2013. TLSH–a locality sensitive
hash. In 2013 Fourth Cybercrime and Trustworthy Computing Workshop. IEEE,
7–13.

[41] Zhiyuan Pan, Xing Hu, Xin Xia, Xian Zhan, David Lo, and Xiaohu Yang. 2024.
PPT4J: Patch Presence Test for Java Binaries. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24).
Association for Computing Machinery, New York, NY, USA, Article 225, 12 pages.
https://doi.org/10.1145/3597503.3639231

[42] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. 2020. A qualitative study of
dependency management and its security implications. In Proceedings of the 2020
ACM SIGSAC conference on computer and communications security. 1513–1531.

[43] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2020. Detection, assess-
ment and mitigation of vulnerabilities in open source dependencies. Empirical
Software Engineering 25, 5 (2020), 3175–3215.

[44] Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric
Dangremont. 2019. A manually-curated dataset of fixes to vulnerabilities of
open-source software. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 383–387.

[45] Steven Raemaekers, Arie Van Deursen, and Joost Visser. 2014. Semantic ver-
sioning versus breaking changes: A study of the maven repository. In 2014 IEEE
14th International Working Conference on Source Code Analysis and Manipulation.
IEEE, 215–224.

[46] John Rose. 2013. JEP 181: Nest-Based Access Control. https://openjdk.org/jeps/
181.

[47] Aleksey Shipilev. 2015. JEP 280: Indify String Concatenation. https://openjdk.
org/jeps/280.

[48] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. 2010. The qualitas corpus: A curated collec-
tion of java code for empirical studies. In 2010 Asia pacific software engineering
conference. IEEE, 336–345.

[49] Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and Roberto S
Bigonha. 2013. Qualitas.class Corpus: A compiled version of the Qualitas Corpus.
ACM SIGSOFT Software Engineering Notes 38, 5 (2013), 1–4.

[50] Ken Thompson. 1984. Reflections on trusting trust. Commun. ACM 27, 8 (1984),
761–763.

[51] Jiawen Xiong, Yong Shi, Boyuan Chen, Filipe R Cogo, and Zhen Ming Jiang. 2022.
Towards build verifiability for Java-based systems. In Proceedings of the 44th
International Conference on Software Engineering: Software Engineering in Practice.
297–306.

https://doi.org/10.1145/3605770.3625213
https://doi.org/10.1145/3597926.3598147
https://doi.org/10.5381/jot.2017.16.4.a2
https://docs.oracle.com/javase/specs/jvms/se17/html/index.html
https://docs.oracle.com/javase/specs/jvms/se17/html/index.html
https://doi.org/10.1145/3597503.3639231
https://openjdk.org/jeps/181
https://openjdk.org/jeps/181
https://openjdk.org/jeps/280
https://openjdk.org/jeps/280

	Abstract
	1 Introduction
	2 Background: Alternative Builds
	3 Binary Equivalence
	3.1 Definition
	3.2 Equivalence Oracles
	3.3 Non-Equivalence Oracles
	3.4 The Structure of the Benchmark
	3.5 The Benchmark API
	3.6 Downloading and Using the Benchmark

	4 Equivalence Oracles
	4.1 Compiler Selection
	4.2 Build Setup
	4.3 Project Selection
	4.4 Reduction
	4.5 Anonymous Inner Classes
	4.6 Derived EQ Oracles
	4.7 Build Time and Environment
	4.8 Observations

	5 Non-Equivalence Oracles
	5.1 NEQ1 – Breaking API Changes
	5.2 NEQ2 – Mutations
	5.3 NEQ3 – Vulnerability Patches
	5.4 Build Time and Environment

	6 Experiments
	7 Related Work
	8 Threats to Validity
	9 Conclusion
	10 Acknowledgements
	References

