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Abstract

In C, low-level errors such as buffer overflow and use-
after-free are a major problem since they cause security
vulnerabilities and hard-to-find bugs. Libraries cannot
apply defensive programming techniques since objects
(e.g., arrays or structs) lack run-time information such as
bounds, lifetime, and types. To address this issue, we de-
vised introspection functions that empower C program-
mers to access run-time information about objects and
variadic function arguments. Using these functions, we
implemented a more robust, source-compatible version
of the C standard library that validates parameters to its
functions. The library functions react to otherwise unde-
fined behavior; for example, when detecting an invalid
argument, its functions return a special value (such as -1
or NULL) and set the errno, or attempt to still compute a
meaningful result. We demonstrate by examples that us-
ing introspection in the implementation of the C standard
library and other libraries prevents common low-level er-
rors, while also complementing existing approaches.

1 Introduction

Since the birth of C almost 50 years ago, programmers
have written many applications in it. Even the advent
of higher-level programming languages has not stopped
C’s popularity, and it remains widely used as the sec-
ond most popular programming language [32]. How-
ever, C provides few safety guarantees and suffers from
unique security issues that have disappeared in modern
programming languages. The most severe issue in C are
buffer overflow errors, where a pointer that exceeds the
bounds of an object is dereferenced [7]. Other security
issues include use-after-free errors, invalid free errors,
reading of uninitialized memory, and memory leaks. Nu-
merous approaches exist to prevent such errors in C pro-
grams by detecting these illegal patterns statically or dur-
ing run-time, or by making it more difficult to exploit

them [33, 31, 40]. When an error happens, run-time ap-
proaches abort the program which is more desirable than
risking incorrect execution, potentially leaking user data,
executing injected code, or corrupting program state.

However, we believe that programmers (especially
those writing libraries) could better respond to illegal ac-
tions in the application logic, if they could check such
invalid actions at run-time and prevent them from hap-
pening. For example, if programmers could check that
an access would go out-of-bounds

• in a user application, they could prevent the access,
and could call an application-specific error handling
function that would print an error message and abort
execution.

• in a server application, they could log the error and
ignore the invalid access to maintain availability of
the system.

• in the C standard library, they could set the global
integer variable errno to an error code, for example
to EINVAL for invalid arguments. Furthermore, a
special value (such as -1 or NULL) could be returned
to indicate that something went wrong.

In this paper, we present a novel approach that empowers
C programmers to query properties of an object (primi-
tive value, struct, array, union, or pointer), so that they
can perform explicit sanity checks and react accordingly
to invalid arguments or states. These properties comprise
the bounds of an object, the memory location, the num-
ber of arguments of a function with varargs, and whether
an object can be used in a certain way (e.g., called as
a function that expects and returns an int). Ultimately,
this increases the robustness of libraries and applications,
defined as “[t]he degree to which a system or component
can function correctly in the presence of invalid inputs or
stressful environmental conditions” [14].

We implemented such introspection capabilities for
Safe Sulong [23], an interpreter with a dynamic com-



piler for C. Safe Sulong prevents buffer overflows, use-
after-free, and other memory errors by checking accesses
and aborting execution upon an invalid action. By using
introspection, programmers can check and prevent ille-
gal actions, which enables them to override the default
behavior of aborting the program when an illegal action
occurs in order to maintain availability. Additionally, ex-
plicit checks prevent lurking flaws that could otherwise
stay undetected. For example, even in the case that a
function does not actually access an invalid position in
the buffer, most memory safety approaches cannot detect
when a wrong array size is passed to the function. Us-
ing introspection, the passed array size can be validated
against the actual one. The presented approach is com-
plementary to other means of preventing memory errors,
and does not aim to replace them.

As a case study, we demonstrate how the introspec-
tion functions facilitate re-implementing the C standard
library (libc) to validate input arguments. We use this
libc in Safe Sulong as a source-compatible, more robust
drop-in replacement for the GNU C Library. In contrast
to the GNU C Library and other implementations, it can
prevent illegal actions and react by returning special val-
ues and setting errno, or attempting to compute a mean-
ingful result. Our standard library correctly implements
the specification, since the introspection checks only re-
act to actions that would cause undefined behavior.

In summary, this paper contributes the following:

• We present introspection functions designed to al-
low programmers to prevent illegal actions that are
specific to C (Section 3).

• We demonstrate how we implemented the intro-
spection functions in Safe Sulong, a C interpreter
with a dynamic compiler (Section 4).

• As a case study, we show how using introspection
increases the robustness of the libc that we dis-
tribute with Safe Sulong (Section 5).

2 Background

In C, the lack of type and memory safety causes many
problems such as hard-to-find bugs and security issues.
Moreover, manual memory management puts the burden
of deallocating objects on the user. Consequently, C pro-
grams are plagued by vulnerabilities that are unique to
the language. Errors cause undefined behavior, so com-
piled code can crash, compute unexpected results, and
corrupt or read neighboring objects [35, 36]. It is often
not possible to design C functions in such a way that they
are secure against usage errors, since they cannot validate
passed arguments or global data. The following is an in-

void read_number(char* arr , size_t length) {
int i = 0;
if (length == 0) return;
int c = getchar ();
while (isdigit(c) && (i + 1) < length) {

arr[i++] = c;
c = getchar ();

}
arr[i] = '\0';

}
// ...
char buf [10];
read_number(buf , -1);
printf("%s\n", buf);

Figure 1: Out-of-bounds error example

complete list of errors and vulnerabilities in C programs
that we target in this paper.

Out-of-bounds errors. Out-of-bounds accesses in C
rank under the most dangerous software errors [26, 7],
since unlike higher-level languages, C does not specify
automatic bounds checks. Additionally, objects have no
run-time information attached to them, so functions that
operate on arrays require array size arguments. Alter-
natively, they need conventions such as terminating an
array by a special value.

Figure 1 shows a typical buffer overflow. The
read number() function reads digits entered by the user
into the passed buffer arr and validates that it does not
write beyond its bounds. However, its callee passes -1
as the length parameter which is (through the size t

type) treated as the unsigned number SIZE MAX. Thus,
the bounds check is rendered useless and if the user en-
ters more than nine digits the read number() function
overflows the passed buffer. A recent similar real-world
vulnerability includes CVE-2016-3186, where a function
in libtiff casted a negative value to size t. As another
example, in CVE-2016-6823 a function in ImageMagick
caused an arithmetic overflow that resulted in a wrong
image size. Both errors resulted in a subsequent buffer
overflow.

Memory management errors. Objects that are allo-
cated in different ways (e.g., on the stack or by
malloc()) have different lifetimes which influences
how they can be used. For example, it is forbidden to
access memory after it has been freed (otherwise known
as an access to a dangling pointer). Other such errors
include freeing memory twice, freeing stack memory or
static memory, or calling free() on a pointer that points
somewhere into the middle of an object [22]. Figure 2
shows an example of a use-after-free and a double-free
error. Firstly, when err is non-zero, the allocated pointer
ptr is freed, and later accessed again as a dangling
pointer in logError(). Secondly, the code fragment at-
tempts to free the pointer again after logging the error,
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char* ptr = (char*) malloc(SIZE * sizeof(char));
if (err) {

abrt = 1;
free(ptr);

}
// ...
if (abrt) {

logError("operation aborted", ptr);
free(ptr);

}
// ...
void logError(const char* message , void* ptr) {

logf("error while processing %p", ptr);
}

Figure 2: Use-after-free error which is based on an ex-
ample from the CWE wiki

which results in a double free vulnerability. C does not
provide mechanisms to retrieve the lifetime of an object,
which would allow checking and preventing such condi-
tions. Consequently, use-after-free errors frequently oc-
cur in real-world code. For example, in CVE-2016-4473
the PHP Zend Engine attempted to free an object that
was not allocated by one of the libc’s allocation func-
tions. Other recent examples include a dangling pointer
access and a double free error in OpenSSL (CVE-2016-
6309 and CVE-2016-0705).

Variadic function errors. Variadic functions in C rely
on the user to pass a count of variadic arguments or a
format string. Furthermore, a user must pass the match-
ing number of objects of the expected type. Figure 3
shows an example that uses variadic arguments to print
formatted output, similar to C’s sprintf() function. It
is based on a function taken from the PHP Zend En-
gine. As arguments, the function expects a format string
fmt, the variadic arguments ap, and a buffer xbuf to
which the formatted output should be written. To use
the function, a C programmer has to invoke a macro
to set up and tear down the variadic arguments (respec-
tively va start() and va end()). Using the va arg()

macro, xbuf format converter() can then directly
access the variadic arguments. The example shows how
a string can be accessed (format specifier "%s") that is
then inserted into the buffer xbuf.

The function uses the format string to determine how
many variadic arguments should be accessed. For exam-
ple, for a format string "%s %s" the function attempts to
access two variadic arguments that are assumed to have a
string type. Accessing a variadic argument via va arg()

usually manipulates a pointer to the stack and pops the
number of bytes that correspond to the specified data
type (char * in our example). Attackers can exploit that
the function cannot verify the number and the types of
the passed variadic arguments in so-called format string
attacks where the function reads or writes the stack due

static void xbuf_format_converter(void *xbuf , ←↩
const char *fmt , va_list ap) {

char *s = NULL;
size_t s_len;
while (*fmt) {

if (*fmt != '%') {
INS_CHAR(xbuf , *fmt);

} else {
fmt ++;
switch (*fmt) {

// ...
case 's':
s = va_arg(ap, char *);
s_len = strlen(s);
break;
// ...

}
INS_STRING(xbuf , s, s_len);

}
}

}

Figure 3: Example usage of variadic functions taken
from the PHP Zend Engine

to nonexistent arguments [6, 27].

In CVE-2015-8617, this function was the sink
of a vulnerability that existed in PHP-7.0.0.
The zend throw error() function called
xbuf format converter() with a message string that
was under user-control. Following, an attacker could use
format specifiers without matching arguments to read
and write from memory, and thus execute arbitrary code.
As another example, in CVE-2016-4448 a vulnerability
in libxml2 existed because format specifiers from
untrusted input were not escaped.

Lack of type safety. Due to the lack of type safety a
user cannot ensure whether an object referenced by a
pointer corresponds to its expected type [16]. Figure 4
demonstrates this for function pointers. The apply()

function expects a function pointer that accepts and re-
turns an int. It uses the function to transform all ele-
ments of an array. However, its callee might pass a func-
tion that returns a double; a call on it would result in
undefined behavior. Such “type confusion” cannot be
avoided when calling a function pointer, since objects
have no types attached that could be used for validation.

Unterminated strings. Unterminated strings are a
problem, since the string functions of the libc (and
sometimes also application code) rely on strings ending
with a ‘\0’ (null terminator) character. However, C
standard library functions that operate on strings lack a
common convention on whether to add a null termina-
tor [21]. Additionally, it is not possible to verify whether
a string is properly terminated without potentially
causing buffer overreads. Figure 5 shows an example
of an unterminated string vulnerability. The read

function reads a file’s contents into a string inputbuf.
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int apply(int* arr , size_t n, int f(int arg1)) {
if (f == NULL) {

return -1;
}
for (size_t i = 0; i < n; i++) {

arr[i] = f(arr[i]);
}
return 0;

}

double square(int a) {
return a * a;

}

apply(arr , 5, square);

Figure 4: Example for type confusion

read(cfgfile , inputbuf , MAXLEN);
char buf[MAXLEN ];
strcpy(buf , inputbuf);
puts(buf);

Figure 5: Example fragment that may produce and copy
an unterminated string

After the call, inputbuf is unterminated if the file
was unterminated or if MAXLEN was exceeded. This is
likely to cause an out-of-bounds write in strcpy(),
since it copies characters to buf until a null terminator
occurs. Recent similar real-world vulnerabilities include
CVE-2016-7449 where strlcpy() was used to copy
untrusted (potentially unterminated) input in Graphic-
sMagick. Further examples include CVE-2016-5093
and CVE-2016-0055 where strings were not properly
terminated in the PHP Zend Engine as well as in Internet
Explorer and Microsoft Office Excel [19].

Unsafe functions. Some functions in common libraries
such as the libc have been designed in a way that “can
never be guaranteed to work safely” [5, 2]. The most
prominent example is the gets() function, which reads
user input from stdin into a buffer passed as an argu-
ment. Since gets() lacks a parameter for the size of the
supplied buffer, it cannot perform any bounds checking
and overflows the user-supplied buffer if the user input
is too large. Although C11 replaced gets() with the
more robust gets s() function, legacy code might still
require the unsafe gets() function. In general, func-
tions that lack size arguments which prevents safe access
to arrays cannot be made safe without breaking source
and binary compatibility.

3 Introspection functions

To empower C programmers to validate arguments and
global data, we devised introspection functions to query
properties of C objects and the current function (see Ap-

       Runtime
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Primitives

introspection.h

 introspection.c

Introspection
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Implemented
by

Implemented
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uses

Figure 6: The introspection interface is implemented
through introspection primitives in the runtime and
through composites (written in C)

pendix A). The functions only allow programmers to in-
spect objects and not to manipulate them; therefore, the
presented functions are not a full reflection interface.

We designed the functions specifically to enable their
users to prevent buffer overflow, use-after-free, and other
common errors specific to C. Through introspection,
users can validate certain properties (memory location,
bounds, and types) before performing an operation on
an object. Additionally, introspection allows quering the
number of passed variadic arguments and validating their
types.

We built introspection based on several introspection
primitives (see Figure 6). These primitives are a mini-
mal set of C functions that require run-time support. We
also designed introspection composites, which are im-
plemented as normal C functions, and are based on the
introspection primitives or on other composites. The in-
trospection functions that we expose to the user contain
both selected primitives and composites. In the follow-
ing, we denote internal functions that are private to the
implementation with an underscore prefix.

3.1 Object Bounds
Most importantly, we provide functions that enable the
user to perform bounds checks before accessing an ob-
ject. Simply providing a function that returns the size of
an object is insufficient, since a pointer can point to the
middle of an object. Instead, we require the runtime
to provide two functions to return the space (in bytes) to
the left and to the right of a pointer target: size left()

and size right(). Their result is only defined for le-
gal pointers which we define as pointers that are pointing
to valid objects (not INVALID, see Section 3.2).

Figure 7 illustrates the function return values when
passing a pointer to the middle of an integer array
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int *arr = malloc(sizeof(int) * 10);
int *ptr = &(arr [4]);
printf("%ld\n", size_left(ptr)); // prints 16
printf("%ld\n", size_right(ptr)); // prints 24

Figure 7: Example on how to query the space to the left
and to the right of a pointee

_size_left _size_right

sizeof(int) * 10

Figure 8: Memory Layout of the Example in Figure 7

to these functions. For the pointer to the fourth ele-
ment of the ten-element integer array, size left() re-
turns sizeof(int) * 4, and size right() returns
sizeof(int) * 6. Figure 8 shows the corresponding
memory layout. On an architecture where an int is four
bytes large the functions return 16 and 24, respectively.

We do not expose these two functions to the user,
but base the composite functions size left() and
size right() on them which return -1 if the passed
argument is not a legal pointer or out-of-bounds. Fig-
ure 9 shows the implementation of size left(). First,
the function checks that the pointer is legal using
location() (see Section 3.2). Then, it checks that the
space to the left and to the right right of the pointer is not
negative, that is, the pointer is in-bounds. If both checks
succeed, the function returns the space to the left of the
pointer using size left(); otherwise, it returns -1.

Figure 10 shows how using size right() improves
read number()’s robustness (see Figure 1): if arr is
a valid pointer, but points to memory that cannot hold
length chars, we can prevent the out-of-bounds access
by aborting the program. Note, that the check also de-

long size_left(const void *ptr) {
if (location(ptr) == INVALID) {

return -1;
}
bool inBounds = _size_right(ptr) >= 0 &&

_size_left(ptr) >= 0;
if (! inBounds) {

return -1;
}
return _size_left(ptr);

}

Figure 9: Implementation of size left() us-
ing the functions location(), size left(), and
size right()

void read_number(char* arr , size_t length) {
int i = 0;
if (length == 0) return;
if (size_right(arr) < length) abort();
// ...

}

Figure 10: By using the size right() function we can
avoid out-of-bounds accesses in read number()

tects lurking bugs since it aborts even if less than length
characters are read. If arr is not a valid pointer the return
value of size right() is -1.

3.2 Memory location
Querying the memory location of an object (e.g., stack,
heap, global data) allows a user to obtain information
about the lifetime of an object. For example, it en-
ables users to prevent use-after-free errors by detecting
whether an object has already been freed. Another use
case is validating that no stack memory is returned by a
function. A user can also check whether a location refers
to dynamically allocated memory to ensure that free()
can be safely called on it. For this purpose, we provide
a function location() that determines where an object
lies in memory.

The function returns one of the following enum con-
stants:

• INVALID locations denote NULL pointers or deallo-
cated memory (freed heap memory or dead stack
variables). Programs must not access such objects.

• AUTOMATIC locations denote non-static stack allo-
cations. Functions must not return allocated stack
variables that were declared in their scope, since
they become INVALID when the function returns.
Also, stack variables must not be freed.

• DYNAMIC locations denote dynamically allocated
heap memory created by malloc(), realloc(), or
calloc(). Only memory allocated by these func-
tions can be freed.

• STATIC locations denote statically allocated mem-
ory such as global variables, string constants, and
static local variables. Static compilers usually place
such memory in the text or data section of an exe-
cutable. Programs must not free statically allocated
memory.

Figure 11 shows how differently allocated memory re-
lates to the enum constants used by location().

Based on location(), we provide a function
freeable() to conveniently check whether an alloca-
tion can be freed. As Figure 12 demonstrates, an freeable
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int a; // STATIC
void func() {

static int b; // STATIC
int c; // AUTOMATIC
int* d = malloc(sizeof(int) * 10); // DYNAMIC
free(d); // INVALID

}

Figure 11: Example on how the location() enum con-
stants relate to variables in a program

bool freeable(const void *ptr) {
return location(ptr) == DYNAMIC &&

_size_left(ptr) == 0;
}

Figure 12: By using location() and size left() we
can check whether an object can be freed

object’s location must be DYNAMIC and its pointer must
point to the beginning of an object. Figure 13 shows
how we can use the freeable() function to improve
the robustness of the code fragment shown in Figure 2.
It ensures that freeing the pointee is valid, and thus pre-
vents invalid free errors such as double freeing memory.
Still, the logError() function may receive a dangling
pointer as an argument. To resolve this, we can check in
logError() whether the pointer is valid (see Figure 14).

Note, that some libraries such as OpenSSL use custom
allocators to manage their memory. Custom allocators
are out of scope for this paper, but could be supported
by providing source-code annotations for allocation and
free functions; this information could then be used by
the runtime to track the memory. The annotations for the
allocation functions would need to specify how to com-
pute the size of the allocated object, and the location of
the allocated memory. Additionally, it might be desirable
to add further enum constants, for example, for shared,
file-backed, or protected memory. We omitted additional
constants for simplicity.

char* ptr = (char*) malloc(SIZE * sizeof(char));
if (err) {

abrt = 1;
if (freeable(ptr)) free(ptr);

}
// ...
if (abrt) {

logError("operation aborted", ptr);
if (freeable(ptr)) free(ptr);

}

Figure 13: By using the freeable() function we can
avoid double-free errors

void logError(const char* message , void* ptr) {
if (location(ptr) == INVALID) {

log("dangling pointer passed to logError!");
} else {

logf("error while processing %p", ptr);
}

}

Figure 14: By using the location() function we can
avoid use-after-free errors

3.3 Type

We provide a function that allows the programmer to val-
idate whether an object is compatible to (can be treated
as being of) a certain type. Such a function enables pro-
grammers to check whether a function pointer actually
points to a function object (and not to a long, for exam-
ple), and whether it has the expected function signature.
As another example, programmers can use the function
as an alternative to size right() and size left() to
verify that a pointer of a certain type can be dereferenced.

C only has a weak notion of types which makes it dif-
ficult to design expressive type introspection functions.
For example, it is ambiguous whether a pointer of type
int* that points to the middle of an integer array should
be considered as a pointer to an integer or as a pointer to
an integer array. Another example is heap memory which
lacks a dynamic type; although programmers usually co-
erce them to the desired type, objects of different types
can be stored. Even worse, when writing to memory, ob-
jects can be partially overwritten; for instance, half of a
function pointer can be overwritten with an integer value
making it difficult to decide whether the pointer points is
still a valid function pointer.

Instead of assuming that a memory region has a
specific type we designed a function that allows the
programmer to check whether the memory region is
compatible with a certain type (similar to [16]). The
try cast() function expects a pointer to an object as
the first argument and tries to cast it to the Type speci-
fied by the second argument. If the run-time determines
that the cast is possible it returns the passed pointer, oth-
erwise it returns NULL. The cast is only possible if the
object can be read, written to, or called as the specified
type.

The Type object is a recursive struct which makes it
possible to describe nested types (known as type expres-
sions [1]). For example, a function pointer with an int

parameter and double as the return type can be repre-
sented by a tree of three Type structs. The root struct
specifies a function type and references a struct with
an int type as the argument type as well as a struct with
a double type as the return type. Since manually con-
structing Type structs is tedious, we specified an optional
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int apply(int* arr , size_t n, int f(int arg1)) {
if (size_right(arr) < sizeof(int) * n || ←↩

try_cast (&f, type(f)) == NULL) {
return -1;

}
for (size_t i = 0; i < n; i++) {

arr[i] = f(arr[i]);
}
return 0;

}

Figure 15: By using try cast() we can ensure that we
can perform an indirect call on the function pointer in
apply()

operator type(). As an argument, it requires an expres-
sion example value whose declared type is returned as
a Type run-time data structure. The declared type is a
compile-time property, so we want to resolve the type()
operator during compile-time; following, the user cannot
take type()’s address and call it indirectly. The operator
is similar to the GNU C extension typeof which yields
a type that can be directly used in variable declarations
or casts.

Figure 15 shows how the type introspection functions
make the function apply() (see Figure 4) more robust:
apply() uses try cast() to check whether the run-
time can treat its first argument as the specified func-
tion pointer. Its second argument is the Type object
that the type operator constructs from the declared func-
tion pointer type. The try cast() function returns the
first argument if it is compatible to the specified function
pointer type; otherwise, it returns NULL. Besides prevent-
ing calling invalid function pointers, apply() prevents
out-of-bounds accesses by validating the array size.

The try cast() function is similar to C++’s
dynamic cast(). However, we want to point out that
C++’s dynamic cast() works only for class checks
(which are well-defined), while our approach works for
all C objects. We believe that the exact semantics of
try cast() should be implementation-defined, since
runtime information could differ between implementa-
tions. For example, depending on the runtime’s knowl-
edge of data execution prevention, it might either allow
or reject the cast of a non-executable char array filled
with machine instructions to a function pointer. Also,
different use cases exist and a security-focused runtime
might have more sources of run-time information and
be more restrictive than a performance-focused runtime.
For example, a traditional runtime would (for compat-
ibility) allow dereferencing a hand-crafted pointer, as
long as it corresponds to the address of an object, while
a security-focused runtime could disallow it. Thus, de-
pending on the underlying runtime, compiler, and ABI
the try cast() can return different results.

double avg(int count , ...) {
if (count == 0 || count != count_varargs ()) {

return 0;
}
int sum = 0;
for (int i = 0; i < count; i++) {

int *arg = get_vararg(i, type(&sum));
if (arg == NULL) {

return 0;
} else {

sum += *arg;
}

}
return (double) sum / count;

}

Figure 16: By using count varargs() and
get varargs() we can use variadics in a robust
way

3.4 Variadic arguments

Our introspection interface provides macros to query the
number of variadic arguments and enables programmers
to access them in a type-safe way. They are implemented
as macros and not as functions, since they need to access
the current function’s variadic arguments. The introspec-
tion macros make using variadic functions more robust
and are, for example, effective to prevent format string
attacks [6].

Querying the number of variadic arguments can be
achieved by calling count varargs(). The standard
va arg() macro reads values from the stack while as-
suming that they correspond to the user-specified type.
As a robust alternative, introspection composites can
use get vararg() to directly access the passed vari-
adic arguments by an argument index. To access the
variadic arguments in a type-safe way, we introduced a
get vararg() macro that is exposed to the user and ex-
pects a type that it uses to call try cast(). Figure 16
shows an example of a function that computes the aver-
age of int arguments. It uses count varargs() to ver-
ify the number of variadic arguments and ensures that the
ith argument is in fact an int by calling get vararg()

with type(&sum). If an unexpected number of parame-
ters or an object with an unexpected type is passed, the
function returns 0.

For backwards compatibility, we used the introspec-
tion intrinsics to make the standard vararg macros
(va start(), va arg(), and va end()) more robust.
Firstly, va start() initializes the retrieval of variadic
arguments. We modified it such that it allocates a struct
(using the alloca() stack allocation function) and pop-
ulates it using get vararg() and count varargs().
The struct comprises the number of variadic arguments,
an array of addresses to the variadic arguments, and a
counter to index them. Secondly, va arg() retrieves
the next variadic argument. We modified it such that it
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checks that the counter does not exceed the number of ar-
guments, increments the counter, indexes the array, and
casts the variadic argument to the specified type using
try cast(). If the cast succeeds, the argument is re-
turned; otherwise a call to abort() exits the program.
Finally, va end() performs a cleanup of the data initial-
ized by va start(). We modified it such that it resets
the variadic arguments counter.

Using the enhanced vararg macros improves the ro-
bustness of the xbuf format converter() function
(see Figure 3), since the number of format specifiers
has to correspond with the number of arguments. Thus,
it would be impossible to exploit the function through
format string attacks. Note that the modified standard
macros abort when they process invalid types or an in-
valid number of arguments, while the intrinsic functions
allow users to react to invalid arguments in other ways.

4 Implementation

We implemented the introspection primitives in Safe Su-
long [23], which is an execution system for low-level
languages such as C. Its core is an interpreter written
in Java that runs on top of the JVM. Unlike its counter-
part Native Sulong [24], Safe Sulong uses Java objects
to represent C objects. By relying on Java’s bounds and
type checks, Safe Sulong efficiently and reliably detects
out-of-bounds accesses, use-after-free, and invalid free.
When detecting such an invalid action, it aborts execu-
tion of the program. Section 4.1 gives an overview of the
system, and Section 4.2 describes how we implemented
the introspection primitives.

4.1 System Overview
Figure 17 shows the architecture of Safe Sulong. It com-
prises the following components (most of them are avail-
able under open-source licenses):

Clang. Safe Sulong executes LLVM Intermediate Rep-
resentation (IR), which represents C functions in a sim-
pler, but lower-level format. LLVM is a flexible com-
pilation infrastructure [18], and we use LLVM’s front
end Clang to compile the source code (libraries and
the user application) to the IR. LLVM is available at
http://llvm.org/.

LLVM IR. LLVM IR retains all C characteristics that
are important for the content of this paper. It can, for
instance, contain external function definitions and func-
tion calls. By executing LLVM IR, Safe Sulong can exe-
cute all languages that can be compiled to this IR, includ-
ing C++ and Fortran. It is even possible to execute pro-
grams without available source code using binary trans-

Clang

program.c

LLVM IR

Truffle

Java Virtual Machine

LLVM IR Interpreter

compile to

runs on

Graal compiler

libc.c

Figure 17: Overview of Safe Sulong

lators that convert binary code to LLVM IR. For exam-
ple, MC-Semantics [9] and QEMU [4] support x86, and
LLBT [28] supports the translation of ARM code. Bi-
nary libraries that are converted to LLVM IR can then
profit from enhanced libraries that Safe Sulong can exe-
cute such as the enhanced libc.

Truffle. We used Truffle [38] to implement our LLVM
IR interpreter. Truffle is a language implementation
framework written in Java. To implement a language, a
programmer writes an Abstract Syntax Tree (AST) inter-
preter in which each operation is implemented as an exe-
cutable node. Nodes can have children that parent nodes
can execute to compute their results. Truffle is available
at https://github.com/graalvm/truffle.

Graal. Truffle uses Graal [39], a dynamic compiler,
to compile frequently executed Truffle ASTs to ma-
chine code. Graal applies aggressive optimistic opti-
mizations based on assumptions that are later checked
in the machine code. If an assumption no longer holds,
the compiled code deoptimizes [13], that is, control
is transferred back to the interpreter and the machine
code of the AST is discarded.. Graal is available at
https://github.com/graalvm/graal-core.

LLVM IR Interpreter. The LLVM IR interpreter is the
core of Safe Sulong; it executes both the user applica-
tion as well as the enhanced libc. First, a front end
parses the LLVM IR and constructs a Truffle AST for
each LLVM IR function. Then, the interpreter starts
executing the main function AST, which can invoke
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other ASTs. During execution, Graal compiles fre-
quently executed functions to machine code. We have
not yet made Safe Sulong’s interpreter available un-
der an open-source license. However, the basic Su-
long interpreter without the safety features is available at
https://github.com/graalvm/sulong.

JVM. The system can run efficiently on any JVM
that implements the Java based JVM compiler interface
(JVMCI [25]). JVMCI supports Graal and other compil-
ers written in Java.

4.2 Objects and Introspection
The LLVM IR interpreter uses Java objects instead of na-
tive memory to represent LLVM IR objects (and thus C
objects). Figure 18 illustrates our type hierarchy. Every
LLVM IR object is a ManagedObject which has sub-
classes for the different types. For example, an int is
represented by a I32 object which stores the int’s value
in the value field. Similarly, there are subclasses for ar-
rays, functions, pointers, structs, and other types. In the
introspection implementation we needed to expose prop-
erties of these Java objects to the user:

Bounds. The ManagedObject class provides a method
getByteSize() which returns the size of an object.
We represent pointers as objects of a ManagedAddress

class that holds a reference to the pointee and a pointer
offset that is updated through pointer arithmetics
(pointee and pointerOffset). For example, for the
pointer to 4th element of an integer array in Figure 7,
the pointerOffset is 16 and pointee references a
I32Array that holds a Java int array (see Figure 19). If
a user wanted to dereference the pointer, the interpreter
would compute pointerOffset / sizeof(int) to
index the array. We implemented the size right()

function by ptr.pointee.getByteSize() -

ptr.pointerOffset.

Memory location. Although ManagedObjects live on
the managed Java heap, the location() function needs
to return their logical memory location. This loca-
tion is stored in a field of the ManagedObject class.
Depending on whether an object is allocated through
malloc(), as a global variable, as a static local vari-
able, or as a constant, we assign a different flag to its
location field; calls to free() and deallocation of
automatic variables assign INVALID to this field. For
instance, for an integer array that lives on the stack,
the interpreter allocates an I32Array object and assigns
AUTOMATIC to its location. After leaving the function
scope, its location is updated to INVALID. When the
location() function is called with a pointer to the inte-
ger array, it returns the location field’s value.

Type. For implementing the try cast() function, we
check if the type of the passed object (given by its Java
class) is compatible with the type specified by the Type

struct. For example, to check whether we can call a
pointer as a function with a certain signature, we first
compare the passed pointer with a Type that describes
this signature. If the pointer references a Sulong ob-
ject of type Function, the argument and return types
are compared. This is possible, since Function ob-
jects retain run-time information about their arguments
and return types, which can be retrieved via the method
getSignature().

Variadic arguments. In Safe Sulong, a caller explicitly
passes its arguments as an object array (i.e., a Java array
of known length) to its callee. Based on the function
signature and the object array, the callee can count the
variadic arguments to implement count varargs() and
extract them to implement get vararg().

5 Case Study: Safe Sulong’s Standard Li-
brary

We distribute an implementation of the libc together
with Safe Sulong. This libc uses introspection for
checks that make it more robust against usage errors and
attacks. For instance, its functions identify invalid pa-
rameters that would otherwise cause out-of-bounds ac-
cesses or use after frees. In such a case, the functions
return special values to indicate that something went
wrong, and then set errno to an error code. However,
for functions where no special value can be returned (e.g.
because the return type is void) setting errno would
be meaningless, since functions are allowed to arbitrarily
change errno even if no error occurred. In these cases,
the functions still attempt to compute a meaningful re-
sult. Such behavior is compliant with the C standards,
since we prevent illegal actions with undefined behavior
that could crash the program or corrupt memory.

For applications and libraries that run on Safe Su-
long, the distribution format is LLVM IR and not exe-
cutable code. Our standard library improvements are bi-
nary compatible on the IR level which means that users
do not have to recompile their applications when using
our enhanced libc. In addition, this standard library is
source-compatible, so a user is not required to change
the program when using it. In the following, we give an
overview of our enhanced library functions:

String functions. We made all functions that operate on
strings (strlen(), atoi(), strcmp(), printf(), ...)
more robust by computing meaningful results even when
a string lacks a null terminator. They do not read or write
outside the boundaries of unterminated strings, which
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ManagedObjectManagedObject

getByteSize(): int

ManagedAddressManagedAddress

pointee: ManagedObject
pointerOffset: int

I32ArrayI32Array

values: int[]

FunctionFunction

signature: LLVMType[]

location: byte

I32I32

value: int

DoubleArrayDoubleArray

values: double[]

Figure 18: Sketch of the ManagedObject Class Hierarchy

ptr: ManagedAddressptr: ManagedAddress

pointerOffset = 16
pointee

arr: I32Arrayarr: I32Array

values = 

Figure 19: Representation of a pointer to the 4th element
of an int array (resulting from pointer arithmetics)

size_t strlen(const char *str) {
size_t len = 0;
while (size_right(str) > 0 && *str != '\0') {

len ++;
str ++;

}
return len;

}

Figure 20: Robust implementation of strlen() that also
works for unterminated strings

makes them robust against common string vulnerabili-
ties. The functions increase availability of the system
since unterminated strings passed to the libc do not
cause crashes. Note, that when a function outside the
libc relies on a terminated string, it will still cause an
out-of-bounds access which causes Safe Sulong to abort
execution. Thus, increased availability does not harm
confidentiality (e.g., by leaking data of other objects) and
integrity (e.g., by overwriting other objects).

For instance, Figure 20 shows how we improved
strlen() by preventing buffer overflows when iterat-
ing over the string, as well as non-legal pointers (where
size right() returns -1). For terminated strings,
strlen() iterates until the first ‘\0’ character to re-
turn the length of the string. For unterminated strings,
the function cannot return -1 to indicate an error, since
size t is unsigned, so we also do not set errno. In-
stead, it iterates until the end of the buffer and returns the
size of the string until the end of the buffer.

void *realloc(void *ptr , size_t new_size) {
if (location(ptr) == INVALID) {

return malloc(new_size);
} else {

void *new = malloc(new_size);
size_t old_size = size_right(ptr);
size_t copy_size = new_size > old_size ? ←↩

old_size : new_size;
memcpy(new , ptr , copy_size);
if (freeable(ptr)) {

free(ptr);
}
return new;

}
}

Figure 21: Robust implementation of realloc() that
prevents invalid frees and other memory errors

The enhanced string functions also allow the execution
of the code fragment in Figure 5. Even though the
source string may be unterminated, strcpy() will not
produce an out-of-bounds read, since it stops copying
when reaching the end of the source or destination buffer.
The call to puts() also works as expected, and prints the
unterminated string.

Functions that free memory. We made functions that
free memory (realloc() and free()) more robust by
checking if their argument can safely be freed. For exam-
ple, Figure 21 shows how we implemented realloc()

in terms of malloc() and made it more robust. Apart
from verifying that the argument can be freed using
freeable(), it also uses location() to check whether
the passed pointer is valid. In Safe Sulong, malloc()
is written in Java and allocates a Java object. By using
the introspection functions we could conveniently and
robustly implement realloc() in C, without having to
maintain a list of allocated and freed objects.

Format string functions. We made input and output
functions that expect format strings more robust.
Examples are the printf() functions (printf(),
fprintf(), sprintf(), vfprintf(), vprintf(),
vsnprintf(), vsprintf()) and the scanf() func-
tions (scanf(), fscanf(), ...). These functions expect
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void qsort(void *base , size_t nitems , size_t ←↩
size , int (*f)(const void *, const void*)) {

int (* verifiedPointer)(const void *, const ←↩
void*) = try_cast (&f, type(f));

if (size_right(base) < nitems * size || ←↩
verifiedPointer == NULL) {

errno = EINVAL;
} else {

// qsort implementation
}

}

Figure 22: Robust qsort() implementation that checks
whether it can call the supplied function pointer

char *gets(char *str) {
int size = size_right(str);
return gets_s(str , size == -1 ? 0 : size);

}

Figure 23: Robust implementation of gets() that uses
the more robust gets s() in its implementation

format strings that contain format specifiers, and match-
ing arguments that are used to produce the formatted out-
put. Since the functions are variadic, we added checks to
verify that the number of format specifiers is equal to the
actual number of arguments using count varargs().
Also, the functions use get vararg() to verify the ar-
gument types. This prevents format string vulnerabilities
and out-of-bounds reads in the format string as demon-
strated in the implementation of strlen().

Higher-order functions. We enhanced functions
that receive function pointers such as qsort() or
bsearch(). Figure 22 shows how qsort() can use
try cast() to verify that f is a function pointer that is
compatible with the specified signature. Furthermore,
the functions verify that no memory errors such as buffer
overflows can occur.

gets() and gets s(). While C11 replaced the gets()

function with gets s(), Safe Sulong can still provide a
robust implementation for gets() (see Figure 23). Since
size right() can determine the size of the buffer to the
right of the pointer we can call it and use the returned size
as an argument to the more robust gets s() function. If
the pointer is not legal we pass 0 which gets s() han-
dles as an error. We also made gets s() more robust
against erroneous parameters (see Figure 24). By using
size right() we can validate that the size parameter
n is at least as large as the remaining space right to the
pointer. The check prevents buffer overflows for gets()
and gets s(), and also passing of dead stack memory
or freed heap memory.

char *gets_s(char *str , rsize_t n) {
if (size_right(str) < (long) n) {

errno = EINVAL;
return NULL;

} else {
// original code

}
}

Figure 24: Robust implementation of gets s() that ver-
ifies the passed size argument

6 Limitations

We presented an implementation of the introspection
functions, and showed how it can be used to provide an
enhanced version of the C standard library. However, we
identified the following limitations:

Performance. Using our enhanced libc, Safe Sulong’s
performance is currently 2.3× slower than executables
compiled by Clang with all optimizations turned on (-O3
flag). To measure the performance impact of intro-
spection in our safe implementation of the libc, we
ran six benchmarks of the Computer Language Bench-
mark Game (see https://benchmarksgame.alioth.
debian.org/) and the whetstone benchmark, once with
the enhanced libc and once with the original libc. We
could not find any observable overhead. This comes
partly from the fact that Sulong’s interpreter caches ob-
jects and classes that occur during execution, a tech-
nique known as dispatch chains [20]. Our dynamic com-
piler identifies checks against such cached objects as re-
dundant (e.g., through conditional elimination [29]) and
eliminates them. In future work, we want to evaluate
Safe Sulong on larger benchmarks and lower its perfor-
mance overhead.

Runtime support. Introspection requires information
about run-time properties of objects in the program.
While interpreters and virtual machines often maintain
this information, runtimes that execute native programs
compiled by static compilers such as Clang or GCC do
not. We want to point out that debug metadata (ob-
tained by compiling with the -g flag) cannot provide per-
object type information needed for introspection. How-
ever, it has been shown that per-object information (such
as types) can be added with low costs to static compila-
tion approaches [16], and hence make it feasible to im-
plement the introspection functions in their runtimes.

Fully-reflective environment. Our approach exposes
introspection functions that retrieve information about
objects and variadic functions. It lacks a fully-fledged
reflection mechanism, since we only expose information
that we deemed useful for preventing common low-level
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security issues. However, our implementation has no
conceptual limitations that would restrict exposing other
dynamic information, or would allow the manipulation
of objects.

Other security errors. Our approach cannot be used to
check all actions that can be performed in C. For exam-
ple, the introspection interface lacks functions to deter-
mine read and write permissions for memory locations,
and to identify uninitialized stack variables which must
not be read. Such errors are less commonly exploited, or
result in buffer overflows that the user can again check
and prevent. Thus, we omitted such functions.

C is used for efficiency. Two of the C/C++ tenets are
that “you don’t pay for what you don’t use” [30], and
to “trust the programmer” [3]. Hence, programmers of-
ten eschew checks that are possible even without intro-
spection functions [11]. Furthermore, it has been ar-
gued that security techniques that introduce overheads of
roughly more than 10% do not tend to gain wide adop-
tion in production [31]. However, C library functions
often crash or compute erroneous results. For example,
for 2016 an all-time high of 1326 overflow vulnerabili-
ties was recorded [8]. In the context of the Internet of
Things [37], this number is likely to grow as increasingly
many devices are exposed to the web. Consequently,
we believe that there is a need for the safe execution of
legacy C code (at the expense of performance) as an al-
ternative to porting programs to safer languages.

Existing code. Some approaches allow enhancing exist-
ing libraries that are only available as binaries [11]. By
using the enhanced libc instead of other C standard li-
braries, our approach makes the interaction between the
application and libc safer. However, it requires the user
to actively make use of introspection to make application
functions more robust.

7 Related Work

C Memory safety approaches. For decades, academia
and industry has been coming up with approaches to
tackle errors specific to C, especially memory safety
errors. Thus, there is a plethora of approaches that
deal with these issues, both static and run-time ap-
proaches, both hardware- and software-based. We con-
sider our approach as a run-time approach since the
checks (specified by programmers in their programs) are
executed during run time. Existing run-time approaches
include Address Space Layout Randomization (ASLR),
canaries, data execution prevention, data space random-
ization, and bounds checkers. Literature already exten-
sively describes these approaches and provides a his-
torical overview of memory errors and defense mecha-

nisms [33], an investigation of the weaknesses of current
memory defense mechanisms including a general model
for memory attacks [31], and a survey of vulnerabilities
and run-time countermeasures [40]. Using introspection
to prevent memory errors is a novel approach that is com-
plementary to existing approaches. It is complementary,
since the programmer can check for and prevent an in-
valid action; if the check is omitted and an invalid ac-
cess occurs, an existing memory safety solution could
still prevent the access. This allows, for example, main-
taining availability of a system.

Run-time types for C. The closest and most recent re-
lated work is libcrunch [16], a system that de-
tects type cast errors at run time. It is based on
liballocs [15], a run-time system that augments Unix
processes with allocation-based types. libcrunch pro-
vides an is a() introspection function that exposes the
type of an object. It uses this function to validate type
casts and issues a warning on unsound casts. In contrast
to our approach, libcrunch checks for invalid casts au-
tomatically, so the is a() function is not exposed to
the programmer nor are there other introspection func-
tions. However, we believe that the system could be
extended to provide additional run-time information that
could be used to implement the introspection primitives.
Typical overheads of collecting and using the type in-
formation are between 5-35%, which demonstrates that
introspection functions are feasible in static compilation
approaches.

Our try cast() introspection function resembles
librunch’s is a() function. However, the exact
semantics of our try cast() function are dependent
on the runtime, while is a() is strictly specified.
libcrunch pragmatically assumes that all memory has
a type, and infers types for untyped allocations such
as those allocated by malloc(). To accommodate real
world code, libcrunch relaxes some of the rules about
which type casts are possible and notes that it has not
always been straightforward to decide which type casts
should be considered valid. While libcrunch’s cast as-
sumptions work well for checking type errors, we also
wanted to allow other use cases of try cast() and thus
refrained from a strict specifiction of it. Note, however,
that a run-time that uses libcrunch could implement
the try cast() function using is a().

Static vulnerability scanners. Static vulnerability
scanners can identify calls to unsafe functions such
as gets() depending on a security policy specified in
a vulnerability database [34]. Such approaches have
to conservatively decide whether a call is allowed,
instead of validating parameters at run-time through
introspection, such as our approach does. Nowadays,
most compilers issue a warning when they identify
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a call to an unsafe function such as gets(), but not
necessarily for other, slightly safer functions, such as
strcpy().

Fault injection to increase library robustness. Fault
injection approaches generate a series of test cases
that exercise library functions in an attempt to trigger
a crash (or other erroneous behavior) in them. After
identifying a non-robust function, these approaches
allow programmers to manually or automatically harden
their libraries by introducing checks that verify the
function parameters. For instance, HEALERS [11, 12]
automatically generates a wrapper that sits between
the application and its shared libraries to handle or
prevent illegal parameters. To check the bounds of
heap objects passed to the functions, the approach
instruments malloc() and stores bounds information.
In contrast to our solution, the approaches above support
pre-compiled libraries. However, they can only generate
wrapper checks where run-time information is explicitly
available in the program. Additionally, they refrain from
allowing the user to specify the action in case of an error,
and always set errno and return an error code.

Replacing (parts of) the libc. SFIO [17] is a libc re-
placement and addresses several of its problems. It
mainly improved completeness and efficiency, however,
it also introduced safer routines for functions that oper-
ate on format strings. Additionally, the SFIO standard
library functions are more consistent in their arguments
and argument order, and thus less error-prone to use than
some of the libc functions. [21] presented the less error-
prone strlcpy() and strlcat() functions as replace-
ments for the strcpy() and strncat() functions. Un-
like our improved C standard library, these approaches
lack source compatibility.

Safer implementation of library functions. To pre-
vent format string vulnerabilities in the printf family
of functions, FormatGuard [6] uses the preprocessor
to count the arguments to variadic functions during
compile time, and checks that the number complies with
the actual number at run time. FormatGuard replaces the
printf functions in the C standard library with more
secure versions, while retaining compatibility with most
programs. From a user perspective, FormatGuard is sim-
ilar to Safe Sulong’s standard library, since both provide
more robust C standard library functions. However, our
approach only works for runtimes that implement the
introspection primitives, while StackGuard works for
arbitrary compilers and runtimes. On the other hand, our
approach can also verify bounds, memory location, and
types of objects.

Restricting buffer overflows in library functions.
Libsafe [2] replaces calls to unsafe library functions

(such as strcpy() and gets()) by wrappers that
ensure that potential buffer overflows are contained
within the current stack frame. It can only prevent stack
buffer overflows, since it checks that write accesses do
not extend beyond the end of the buffer’s stack frame.
In contrast to that, approaches exist that only protect
against heap buffer overflows caused by C standard
library functions [10]. By intercepting C standard
library calls, the approach keeps track of heap memory
allocations and performs bounds checking before calling
the C standard library functions that operate on buffers.
Both approaches work with any existing pre-compiled
library, but do not protect against all kinds of buffer
overflows. With our approach, a programmer can
implement checks that prevent both heap and stack
overflows, and use the introspection interface to also
prevent use-after-free and other errors.

8 Conclusion

We presented an introspection interface for C that pro-
grammers can use to make their applications and libraries
more robust. The introspection functions expose proper-
ties of objects (bounds, memory location, and type) as
well as properties of variadic functions (number of vari-
adic arguments and their types). We described an imple-
mentation of the introspection primitives in Safe Sulong,
a system that provides memory-safe execution of C code.
We demonstrated that the approach is complementary to
existing memory safety approaches since programmers
can use it to react to and prevent errors in the application
logic. Finally, we showed how we used the introspection
interface to provide a safe, source-compatible C standard
library.
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A Introspection functions

Table 1 shows the functions and macros of the introspec-
tion interface. Internal functions that are private to the
implementation are denoted with an underscore prefix.
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Object bounds functions
long size right(void *) Primitive internal Returns the space in bytes from the pointer target to the end

of the pointed object. This function is undefined for illegal
pointers.

long size left(void *) Primitive internal Returns the space in bytes from the pointer target to the be-
ginning of the pointed object. This function is undefined for
illegal pointers.

long size right(void *) Composite Returns the remaining space in bytes to the right of the
pointer. Returns -1 if the pointer is not legal or out-of-
bounds.

long size left(void *) Composite Returns the remaining space in bytes to the left of the pointer.
Returns -1 if the pointer is not legal or out-of-bounds.

Memory location functions
Location location(void *) Primitive Returns the kind of the memory location of the referenced

object. Returns -1 if the pointer is NULL.
bool freeable(void *) Composite Returns whether the pointer is freeable (i.e., DYNAMIC non-

null memory; pointer referecing the beginning of an object).
Type functions

void* try cast(void *,

struct Type *)

Primitive Returns the first argument if the pointer is legal, if it is within
bounds, and if the referenced object can be treated as being
of the specified type, NULL otherwise.

Variadic function macros
int count varargs() Primitive Returns the number of variadic arguments that are passed to

the currently executing function.
void* get vararg(int i) Primitive internal Returns the ith variadic argument (starting from 0) and re-

turns NULL if i is greater or equal to count varargs().
void* get vararg(int i,

Type* type)

Composite Returns the ith variadic argument (starting from 0) as the
specified type. Returns NULL if the object cannot be
treated as of the specified type or if i is greater or equal to
count varargs().

Table 1: Functions and macros of the introspection interface
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