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ABSTRACT
Remote Direct Memory Access (RDMA) is becoming widely avail-

able in data centers. This technology allows a process to directly

read and write the memory of a remote host, with a mechanism to

control access permissions. In this paper, we study the fundamental

power of these capabilities. We consider the well-known problem

of achieving consensus despite failures, and find that RDMA can im-

prove the inherent trade-off in distributed computing between fail-

ure resilience and performance. Specifically, we show that RDMA

allows algorithms that simultaneously achieve high resilience and

high performance, while traditional algorithms had to choose one

or another. With Byzantine failures, we give an algorithm that only

requires n ≥ 2fP + 1 processes (where fP is the maximum number

of faulty processes) and decides in two (network) delays in com-

mon executions. With crash failures, we give an algorithm that

only requires n ≥ fP + 1 processes and also decides in two delays.

Both algorithms tolerate a minority of memory failures inherent

to RDMA, and they provide safety in asynchronous systems and

liveness with standard additional assumptions.
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1 INTRODUCTION
In recent years, a technology known as Remote Direct Memory

Access (RDMA) has made its way into data centers, earning a

spotlight in distributed systems research. RDMA provides the tra-

ditional send/receive communication primitives, but also allows

a process to directly read/write remote memory. Research work

shows that RDMA leads to some new and exciting distributed algo-

rithms [3, 10, 25, 31, 45, 49].

RDMA provides a different interface from previous communi-

cation mechanisms, as it combines message-passing with shared-

memory [3]. Furthermore, to safeguard the remote memory, RDMA
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provides protectionmechanisms to grant and revoke access for read-

ing and writing data. This mechanism is fine grained: an application

can choose subsets of remote memory called regions to protect; it

can choose whether a region can be read, written, or both; and it

can choose individual processes to be given access, where different

processes can have different accesses. Furthermore, protections are

dynamic: they can be changed by the application over time. In this

paper, we lay the groundwork for a theoretical understanding of

these RDMA capabilities, and we show that they lead to distributed

algorithms that are inherently more powerful than before.

While RDMA brings additional power, it also introduces some

challenges.With RDMA, the remotememories are subject to failures

that cause them to become unresponsive. This behavior differs from

traditional shared memory, which is often assumed to be reliable
1
.

In this paper, we show that the additional power of RDMA more

than compensates for these challenges.

Our main contribution is to show that RDMA improves on the

fundamental trade-off in distributed systems between failure re-

silience and performance—specifically, we show how a consensus

protocol can use RDMA to achieve both high resilience and high

performance, while traditional algorithms had to choose one or

another. We illustrate this on the fundamental problem of achieving

consensus and capture the above RDMA capabilities as an M&M

model [3], in which processes can use both message-passing and

shared-memory. We consider asynchronous systems and require

safety in all executions and liveness under standard additional as-

sumptions (e.g., partial synchrony). We measure resiliency by the

number of failures an algorithm tolerates, and performance by the

number of (network) delays in common-case executions. Failure

resilience and performance depend on whether processes fail by

crashing or by being Byzantine, so we consider both.

With Byzantine failures, we consider the consensus problem

called weak Byzantine agreement, defined by Lamport [37]. We

give an algorithm that (a) requires only n ≥ 2fP + 1 processes

(where fP is the maximum number of faulty processes) and (b)

decides in two delays in the common case. With crash failures, we

give the first algorithm for consensus that requires only n ≥ fP + 1
processes and decides in two delays in the common case. With both

Byzantine or crash failures, our algorithms can also tolerate crashes

of memory—onlym ≥ 2fM + 1 memories are required, where fM
is the maximum number of faulty memories. Furthermore, with

crash failures, we improve resilience further, to tolerate crashes of

a minority of the combined set of memories and processes.

1
There are a few studies of failure-prone memory, as we discuss in related work.
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Our algorithms appear to violate known impossibility results: it

is known that with message-passing, Byzantine agreement requires

n ≥ 3fP +1 even if the system is synchronous [44], while consensus

with crash failures require n ≥ 2fP + 1 if the system is partially

synchronous [27]. There is no contradiction: our algorithms rely

on the power of RDMA, not available in other systems.

RDMA’s power comes from two features: (1) simultaneous access

to message-passing and shared-memory, and (2) dynamic permis-

sions. Intuitively, shared-memory helps resilience, message-passing

helps performance, and dynamic permissions help both.

To see how shared-memory helps resilience, consider the Disk

Paxos algorithm [29], which uses shared-memory (disks) but no

messages. Disk Paxos requires only n ≥ fP + 1 processes, matching

the resilience of our algorithm. However, Disk Paxos is not as fast:

it takes at least four delays. In fact, we show that no shared-memory

consensus algorithm can decide in two delays (Section 6).

To see how message-passing helps performance, consider the

Fast Paxos algorithm [39], which uses message-passing and no

shared-memory. Fast Paxos decides in only two delays in common

executions, but it requires n ≥ 2fP + 1 processes.
Of course, the challenge is achieving both high resilience and

good performance in a single algorithm. This is where RDMA’s

dynamic permissions shine. Clearly, dynamic permissions improve

resilience against Byzantine failures, by preventing a Byzantine

process from overwriting memory and making it useless. More

surprising, perhaps, is that dynamic permissions help performance,

by providing an uncontended instantaneous guarantee: if each pro-

cess revokes the write permission of other processes before writing

to a register, then a process that writes successfully knows that

it executed uncontended, without having to take additional steps

(e.g., to read the register). We use this technique in our algorithms

for both Byzantine and crash failures.

In summary, our contributions are as follows:

• We consider distributed systems with RDMA, and we pro-

pose a model that captures some of its key properties while

accounting for failures of processes and memories, with sup-

port of dynamic permissions.

• We show that the shared-memory part of our RDMA im-

proves resilience: our Byzantine agreement algorithm re-

quires only n ≥ 2fP + 1 processes.
• We show that the shared-memory by itself does not permit

consensus algorithms that decide in two steps in common

executions.

• We show that with dynamic permissions, we can improve

the performance of our Byzantine Agreement algorithm, to

decide in two steps in common executions.

• We give similar results for the case of crash failures: decision

in two steps while requiring only n ≥ fP + 1 processes.
• Our algorithms can tolerate the failure of memories, up to a

minority of them.

The rest of the paper is organized as follows. Section 2 gives

an overview of related work. In Section 3 we formally define the

RDMA-compliant M&M model that we use in the rest of the paper,

and specify the agreement problems that we solve. We then proceed

to present the main contributions of the paper. Section 4 presents

our fast and resilient Byzantine agreement algorithm. In Section 5

we consider the special case of crash-only failures, and show an

improvement of the algorithm and tolerance bounds for this setting.

In Section 6 we briefly outline a lower bound that shows that the

dynamic permissions of RDMA are necessary for achieving our

results. Finally, in Section 7 we discuss the semantics of RDMA in

practice, and how our model reflects these features.

Due to space limitations, most proofs have been omitted from

this version, and appear in the full version of this paper [4].

2 RELATEDWORK
RDMA. Many high-performance systems were recently proposed

using RDMA, such as distributed key-value stores [25, 31], com-

munication primitives [25, 32], and shared address spaces across

clusters [25]. Kaminsky et al. [33] provides guidelines for designing
systems using RDMA. RDMA has also been applied to solve consen-

sus [10, 45, 49]. Our model shares similarities with DARE [45] and

APUS [49], which modify queue-pair state at run time to prevent

or allow access to memory regions, similar to our dynamic permis-

sions. These systems perform better than TCP/IP-based solutions,

by exploiting better raw performance of RDMA, without changing

the fundamental communication complexity or failure-resilience

of the consensus protocol. Similarly, Rüsch et al. [46] use RDMA as

a replacement for TCP/IP in existing BFT protocols.

M&M.Message-and-memory (M&M) refers to a broad class of mod-

els that combine message-passing with shared-memory, introduced

by Aguilera et al. in [3]. In that work, Aguilera et al. consider M&M

models without memory permissions and failures, and show that

such models lead to algorithms that are more robust to failures

and asynchrony. In particular, they give a consensus algorithm that

tolerates more crash failures than message-passing systems, but

is more scalable than shared-memory systems, as well as a leader

election algorithm that reduces the synchrony requirements. In

this paper, our goal is to understand how memory permissions and

failures in RDMA impact agreement.

Byzantine Fault Tolerance. Lamport, Shostak and Pease [40, 44]

show that Byzantine agreement can be solved in synchronous sys-

tems iff n ≥ 3fP + 1. With unforgeable signatures, Byzantine agree-

ment can be solved iff n ≥ 2fP +1. In asynchronous systems subject

to failures, consensus cannot be solved [28]. However, this result is

circumvented by making additional assumptions for liveness, such

as randomization [11] or partial synchrony [18, 27]. Many Byzan-

tine agreement algorithms focus on safety and implicitly use the

additional assumptions for liveness. Evenwith signatures, asynchro-

nous Byzantine agreement can be solved only if n ≥ 3fP + 1 [16].
It is well known that the resilience of Byzantine agreement varies

depending on various model assumptions like synchrony, signa-

tures, equivocation, and the exact variant of the problem to be

solved. A system that has non-equivocation is one that can prevent

a Byzantine process from sending different values to different pro-

cesses. Table 1 summarizes some known results that are relevant

to this paper.

Our Byzantine agreement results share similarities with results

for shared memory. Malkhi et al. [41] and Alon et al. [5] show
bounds on the resilience of strong and weak consensus in a model

with reliable memory but Byzantine processes. They also provide

consensus protocols, using read-write registers enhanced with
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Work Synchrony Signatures Non-Equiv Strong
Validity Resiliency

[40] ✓ ✓ ✗ ✓ 2f + 1
[40] ✓ ✗ ✗ ✓ 3f + 1
[5, 41] ✗ ✓ ✓ ✓ 3f + 1
[21] ✗ ✓ ✗ ✗ 3f + 1
[21] ✗ ✗ ✓ ✗ 3f + 1
[21] ✗ ✓ ✓ ✗ 2f + 1

This paper ✗ ✓
✗

(RDMA)
✗ 2f + 1

Table 1: Known fault tolerance results for Byzantine agree-
ment.

sticky bits (write-once memory) and access control lists not un-

like our permissions. Bessani et al. [12] propose an alternative to

sticky bits and access control lists through Policy-Enforced Aug-

mented Tuple Spaces. All these works handle Byzantine failures

with powerful objects rather than registers. Bouzid et al. [14] show
that 3fP +1 processes are necessary for strong Byzantine agreement

with read-write registers.

Some prior work solves Byzantine agreement with 2fP+1 pro-
cesses using specialized trusted components that Byzantine pro-

cesses cannot control [19, 20, 22, 23, 34, 48]. Some schemes decide

in two delays but require a large trusted component: a coordina-

tor [19], reliable broadcast [23], or message ordering [34]. For us,

permission checking in RDMA is a trusted component of sorts, but

it is small and readily available.

At a high-level, our improved Byzantine fault tolerance is achieved

by preventing equivocation by Byzantine processes, thereby ef-

fectively translating each Byzantine failure into a crash failure.

Such translations from one type of failure into a less serious one

have appeared extensively in the literature [9, 16, 21, 43]. Early

work [9, 43] shows how to translate a crash tolerant algorithm

into a Byzantine tolerant algorithm in the synchronous setting.

Bracha [15] presents a similar translation for the asynchronous

setting, in which n ≥ 3fP + 1 processes are required to tolerate fP
Byzantine failures. Bracha’s translation relies on the definition and

implementation of a reliable broadcast primitive; in this paper we

define and implement a similar, but weaker, broadcast primitive

that can tolerate more failures due to the capabilities of RDMA.

Faulty memory. Afek et al. [2] and Jayanti et al. [30] study the

problem ofmasking the benign failures of sharedmemory or objects.

We use their ideas of replicating data across memories. Abraham et
al. [1] considers honest processes but malicious memory.

Common-case executions. Many systems and algorithms toler-

ate adversarial scheduling but optimize for common-case execu-

tions without failures, asynchrony, contention, etc (e.g., [13, 24, 26,

35, 36, 39, 42]). None of these match both the resilience and perfor-

mance of our algorithms. Some algorithms decide in one delay but

require n ≥ 5fP + 1 for Byzantine failures [47] or n ≥ 3fP + 1 for
crash failures [17, 24].

3 MODEL AND PRELIMINARIES
We consider a message-and-memory (M&M) model, which allows

processes to use both message-passing and shared-memory [3]. The

system has n processes P = {p1, . . . ,pn } andm (shared) memories

Figure 1: Our model with processes and memories, which
may both fail. Processes can send messages to each other or
access registers in the memories. Registers in a memory are
grouped into memory regions that may overlap, but in our
algorithms they do not. Each region has a permission indi-
catingwhat processes can read, write, and read-write the reg-
isters in the region (shown for two regions).

M = {µ1, . . . , µm }. Processes communicate by accessing memories

or sending messages. Throughout the paper, memory refers to the

shared memories, not the local state of processes.

The system is asynchronous in that it can experience arbitrary

delays. We expect algorithms to satisfy the safety properties of

the problems we consider, under this asynchronous system. For

liveness, we require additional standard assumptions, such as partial

synchrony, randomization, or failure detection.

Memory permissions. Each memory consists of a set of reg-
isters. To control access, an algorithm groups those registers into

a set of (possibly overlapping) memory regions, and then defines

permissions for those memory regions. Formally, a memory region

mr of a memory µ is a subset of the registers of µ. We often refer

to mr without specifying the memory µ explicitly. Each memory

region mr has a permission, which consists of three disjoint sets

of processes Rmr,Wmr, RWmr indicating whether each process can

read, write, or read-write the registers in the region. We say that

p has read permission on mr if p ∈ Rmr or p ∈ RWmr; we say that p
has write permission on mr if p ∈Wmr or p ∈ RWmr. In the special

case when Rmr = P \ {p},Wmr = ∅, RWmr = {p}, we say that mr
is a Single-Writer Multi-Reader (SWMR) region—registers in mr
correspond to the traditional notion of SWMR registers. Note that

a register may belong to several regions, and a process may have

access to the register on one region but not another—this models

the existing rdma behavior. Intuitively, when reading or writing

data, a process specifies the region and the register, and the system

uses the region to determine if access is allowed (we make this

precise below).

Permission change. An algorithm indicates an initial permis-

sion for each memory region mr. Subsequently, the algorithm may

wish to change the permission ofmr during execution. For that, pro-
cesses can invoke an operation changePermission(mr, new_perm),

where new_perm is a triple (R,W , RW). This operation returns no

results and it is intended to modify Rmr,Wmr, RWmr to R,W , RW.
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To tolerate Byzantine processes, an algorithm can restrict processes

from changing permissions. For that, the algorithm specifies a

function legalChange(p,mr, old_perm, new_perm) which returns a

boolean indicating whether process p can change the permission of

mr to new_perm when the current permissions are old_perm. More

precisely, when changePermission is invoked, the system evaluates

legalChange to determine whether changePermission takes effect

or becomes a no-op. When legalChange always returns false, we
say that the permissions are static; otherwise, the permissions are
dynamic.

Accessingmemories. Processes access the memories via opera-

tions write(mr, r ,v) and read(mr, r ) for memory regionmr, register
r , and value v . A write(mr, r ,v) by process p changes register r
to v and returns ack if r ∈ mr and p has write permission on mr;
otherwise, the operation returns nak. A read(mr, r ) by process p
returns the last value successfully written to r if r ∈ mr and p has

read permission on mr; otherwise, the operation returns nak. In
our algorithms, a register belongs to exactly one region, so we omit

the mr parameter from write and read operations.

Sendingmessages. Processes can also communicate by sending

messages over a set of directed links. We assume messages are

unique. If there is a link from process p to process q, then p can

send messages to q. Links satisfy two properties: integrity and no-
loss. Given two correct processes p and q, integrity requires that

a messagem be received by q from p at most once and only ifm
was previously sent by p to q. No-loss requires that a messagem
sent from p to q be eventually received by q. In our algorithms, we

typically assume a fully connected network so that every pair of

correct processes can communicate. We also consider the special

case when there are no links (see below).

Executions and steps.An execution is as a sequence of process
steps. In each step, a process does the following, according to its

local state: (1) sends amessage or invokes an operation on amemory

(read, write, or changePermission), (2) tries to receive a message or a

response from an outstanding operation, and (3) changes local state.

We require a process to have at most one outstanding operation on

each memory.

Failures. A memorym may fail by crashing, which causes sub-

sequent operations on its registers to hang without returning a

response. Because the system is asynchronous, a process cannot

differentiate a crashed memory from a slow one. We assume there is

an upper bound fM on the maximum number of memories that may

crash. Processes may fail by crashing or becoming Byzantine. If a

process crashes, it stops taking steps forever. If a process becomes

Byzantine, it can deviate arbitrarily from the algorithm. However,

that process cannot operate on memories without the required per-

mission. We assume there is an upper bound fP on the maximum

number of processes that may be faulty. Where the context is clear,

we omit the P andM subscripts from the number of failures, f .
Signatures.Our algorithms assume unforgeable signatures: there

are primitives sign(v) and sValid(p,v) which, respectively, signs a
value v and determines if v is signed by process p.

Messages and disks. The model defined above includes two

common models as special cases. In the message-passing model,

there are no memories (m = 0), so processes can communicate only

by sending messages. In the disk model [29], there are no links,

so processes can communicate only via memories; moreover, each

memory has a single region which always permits all processes to

read and write all registers.

Consensus
In the consensus problem, processes propose an initial value and

must make an irrevocable decision on a value. With crash failures,

we require the following properties:

• Uniform Agreement. If processes p and q decide vp and

vq , then vp = vq .
• Validity. If some process decidesv , thenv is the initial value

proposed by some process.

• Termination. Eventually all correct processes decide.

We expect Agreement and Validity to hold in an asynchronous

system, while Termination requires standard additional assump-

tions (partial synchrony, randomization, failure detection, etc).With

Byzantine failures, we change these definitions so the problem can

be solved. We consider weak Byzantine agreement [37], with the

following properties:

• Agreement. If correct processes p and q decide vp and vq ,
then vp = vq .

• Validity. With no faulty processes, if some process decides

v , then v is the input of some process.

• Termination. Eventually all correct processes decide.

Complexity of algorithms. We are interested in the perfor-

mance of algorithms in common-case executions, when the system is

synchronous and there are no failures. In those cases, we measure

performance using the notion of delays, which extends message-

delays to our model. Under this metric, computations are instanta-

neous, each message takes one delay, and each memory operation

takes two delays. Intuitively, a delay represents the time incurred by

the network to transmit a message; a memory operation takes two

delays because its hardware implementation requires a round trip.

We say that a consensus protocol is k-deciding if, in common-case

executions, some process decides in k delays.

4 BYZANTINE FAILURES
We now consider Byzantine failures and give a 2-deciding algorithm

for weak Byzantine agreement with n ≥ 2fP + 1 processes and

m ≥ 2fM + 1 memories. The algorithm consists of the composition

of two sub-algorithms: a slow one that always works, and a fast

one that gives up under hard conditions.

The first sub-algorithm, called Robust Backup, is developed in

two steps. We first implement a primitive called non-equivocating
broadcast, which prevents Byzantine processes from sending dif-

ferent values to different processes. Then, we use the framework

of Clement et al. [21] combined with this primitive to convert

a message-passing consensus algorithm that tolerates crash fail-

ures into a consensus algorithm that tolerates Byzantine failures.

This yields Robust Backup.
2
It uses only static permissions and

assumes memories are split into SWMR regions. Therefore, this

sub-algorithm works in the traditional shared-memory model with

SWMR registers, and it may be of independent interest.

2
The attentive reader may wonder why at this point we have not achieved a 2-deciding

algorithm already: if we apply Clement et al. [21] to a 2-deciding crash-tolerant algo-

rithm (such as Fast Paxos [13]), will the result not be a 2-deciding Byzantine-tolerant

algorithm? The answer is no, because Clement et al. needs non-equivocated broadcast,

which incurs at least 6 delays.

Session 9 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

412



The second sub-algorithm is called Cheap Quorum. It uses dy-

namic permissions to decide in two delays using one signature in

common executions. However, the sub-algorithm gives up if the

system is not synchronous or there are Byzantine failures.

Finally, we combine both sub-algorithms using ideas from the

Abstract framework of Aublin et al. [8]. More precisely, we start by

running Cheap Quorum; if it aborts, we run Robust Backup. There

is a subtlety: for this idea to work, Robust Backup must decide

on a value v if Cheap Quorum decided v previously. To do that,

Robust Backup decides on a preferred value if at least f +1 processes
have this value as input. To do so, we use the classic crash-tolerant

Paxos algorithm (run under the Robust Backup algorithm to ensure

Byzantine tolerance) but with an initial set-up phase that ensures

this safe decision. We call the protocol Preferential Paxos.

4.1 The Robust Backup Sub-Algorithm
We develop Robust Backup using the construction by Clement

et al. [21], which we now explain. Clement et al. show how to

transform a message-passing algorithm A that tolerates fP crash

failures into a message-passing algorithm that tolerates fP Byzan-

tine failures in a system where n ≥ 2fP + 1 processes, assuming

unforgeable signatures and a non-equivocation mechanism. They

do so by implementing trusted message-passing primitives, T-send
and T-receive, using non-equivocation and signature verification

on every message. Processes include their full history with each

message, and then verify locally whether a received message is

consistent with the protocol. This restricts Byzantine behavior to

crash failures.

To apply this construction in our model, we show that our model

can implement non-equivocation and message passing. We first

show that shared-memory with SWMR registers (and no memory

failures) can implement these primitives, and then show how our

model can implement shared-memory with SWMR registers.

Consider a shared-memory system. While Clement et al. receive
and verify a message separately, we combine the two steps into one

primitive called non-equivocating broadcast.

Definition 1. Non-equivocating broadcast is defined in terms of
two primitives, broadcast(k,m) and deliver(k,m,q). When a process
p invokes broadcast(k,m) we say that p broadcasts (k,m). When a
process p invokes deliver(k,m,q) we say that p delivers (k,m) from q.
Each correct process p must invoke broadcast(k, ∗) with k one higher
than p’s previous invocation (and first invocation with k=1). The
following holds:

(1) If a correct processp broadcasts (k,m), then all correct processes
eventually deliver (k,m) from p.

(2) If p and q are correct processes, p delivers (k,m) from r , and q
delivers (k,m′) from r , thenm=m′.

(3) If a correct process delivers (k,m) fromp,pmust have broadcast
(k,m).

A correct implementation of non-equivocating broadcast re-

places the send and receive primitives with broadcast and deliver

respectively in Clement et al.’s implementation of T-send and T-

receive.

We now show how to implement non-equivocating broadcast in

shared-memory. The idea of the algorithm is that before delivering

a message (k,m) fromq, each processp checks that no other process

Algorithm 2: Non-Equivocating Broadcast
1 SWMR slots[n,M,n]; initialized to ⊥. slots[p] is array of SWMR(

↪→ p) registers.

3 Code for process p to broadcast (k,m)
4 write(slots[p,j,p], sign((k,m)));

6 Code for process p
7 Last[n] is local array with last k delivered from each process
8 while true {
9 for q in Π {
10 try_deliver(q); } }

12 try_deliver(q) {
13 k = Last[q]
14 val = (key,msg) = read(slots[q,k,q]);
15 if (val == ⊥ || !sValid(p, val) || key,k)
16 return; //q hasn't written anything or is Byzantine. Will

↪→ retry later.
17 Write(slots[p,k,q], val);
18 for i in Π {
19 otherV = (otherK, otherM) = read(slots[i,k,q]);
20 if (otherV , val && otherV , ⊥ && sValid(q, otherV) &&

↪→ otherK == key)
21 return; } //q is Byzantine; no delivery.
22 deliver(k,msg, q)
23 Last[q] += 1 }

saw a different value from q. More specifically, each process p has

n memory slots per sequence number, that only p can write to, but

all processes can read from. These slots are initialized to ⊥, and

p uses them to write the values that it has seen. To broadcast its

k-th message, p simply writes a signed version of the message in

slot (k,p) of its memory. To deliver a messagem from process q
with sequence number k , process p does three things: (1) p reads

slot (q,k) from q’s memory. If p reads ⊥ from q’s (k,q) slot, then
q has not yet sent any message with sequence number k ; p retries

at a later time. If p reads a value that is not signed by q, it also
restarts, pretending that it did not see any value. (2) Otherwise, if p
read some signed valuem from q’s (k,q) slot, p writesm into slot

(k,q) in its own memory, and (3) p reads slot (k,q) in every other

process’s memory. If, for every other process r , p reads eitherm or

⊥ in (k,q) in r ’s memory, then p delivers q’s message. Otherwise,

since other processes cannot forge q’s signature, this means that q
has tried to equivocate, as some other process saw a different value

when it read from q. p handles this case by ignoring the value from

q.

Lemma 4.1. Non-equivocating broadcast is implementable in shared-
memory with SWMR regular registers.

The result of Clement et al. [21] and Lemma 4.1 immediately

imply the following result.

Theorem 4.2. There exists an algorithm for weak Byzantine agree-
ment in a shared-memory system with SWMR regular registers, sig-
natures, and up to fP process crashes where n ≥ 2fP + 1.

In particular, we can implement weak Byzantine agreement by

taking any correct consensus algorithm A for the classic crash-

only message passing model, and replacing all its sends and re-

ceives by non-equivocating broadcast and deliver (respectively)
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that also attach a process’s entire execution history to each mes-

sage. We call this method of communication trusted sends and re-
ceives, or simply T-send and T-receive primitives. Clement et al.

[21] show that implementing such T-send and T-receive primitives

with non-equivocation and signatures yields a Byzantine-tolerant

replacement for classic sends and receives. In the full version of

this paper, we present a pseudocode for T-send and T-receive with

non-equivocating broadcast.

Non-equivocation in our model. To convert the above algorithm

to our model, where memory may fail, we use the ideas in [2, 7, 30]

to implement failure-free SWMR regular registers from the fail-

prone memory, and then run weak Byzantine agreement using

those regular registers. To implement an SWMR register, a process

writes or reads all memories, and waits for a majority to respond.

When reading, if p sees exactly one distinct non-⊥ value v across

the memories, it returns v ; otherwise, it returns ⊥.

Definition 2. Let A be a message-passing algorithm. Robust
Backup(A) is the algorithm A in which all send and receive opera-
tions are replaced by T-send and T-receive operations (respectively)
implemented with non-equivocating broadcast.

From the result of Clement et al. [21], Lemma 4.1, and the above

handling of memory failures, it is easy to see that with A being

a correct consensus algorithm for the crash-only setting, Robust

Backup(A) solves weak Byzantine agreement with the desired

fault tolerance in our dynamic permission M&M model. This is

summarized in the follow theorem.

Theorem 4.3. There exists an algorithm for Weak Byzantine
Agreement in a message-and-memory model with up to fP Byzan-
tine processes and fM memory crashes, where n ≥ 2fP + 1 and
m ≥ 2fM + 1.

4.2 The Cheap Quorum Sub-Algorithm
We now give an algorithm that decides in two delays in common

executions in which the system is synchronous and there are no fail-

ures. It requires only one signature for a fast decision, whereas the

best prior algorithm requires 6fP +2 signatures and n ≥ 3fP +1 [8].
Our algorithm, called Cheap Quorum, is not in itself a complete

consensus algorithm; it may abort in some executions. If Cheap

Quorum aborts, it outputs an abort value, which is used to initial-

ize the Robust Backup so that their composition preserves weak

Byzantine agreement. This composition is inspired by the Abstract

framework of Aublin et al. [8].
The algorithm has a special process ℓ, say ℓ = p1, which serves

both as a leader and a follower. Other processes act only as followers.
The memory is partitioned into n + 1 regions denoted Region[p]
for each p ∈ Π, plus an extra one for p1, Region[ℓ] in which it

proposes a value. Initially, Region[p] is a regular SWMR region

where p is the writer. Unlike in Algorithm 2, some of the permis-

sions are dynamic; processes may remove p1’s write permission to

Region[ℓ] (i.e., the legalChange function returns false to any per-

mission change requests, except for ones revoking p1’s permission

to write on Region[ℓ]).
Processes initially execute under a normal mode in common-case

executions, but may switch to panic mode if they intend to abort,

as in [8]. The pseudo-code of the normal mode is in Algorithm 3.

Algorithm 3: Cheap Quorum normal operation—code for
process p
1 Leader code
2 propose(v) {
3 sign(v);
4 status = Value[ℓ].write(v);
5 if (status == nak) Panic_mode();
6 else decide(v); }

8 Follower code
9 propose(w){
10 do {v = read(Value[ℓ]);
11 for all q ∈ Π do pan[q] = read(Panic[q]);
12 } until (v , ⊥ || pan[q] == true for some q || timeout);
13 if (v , ⊥ && sValid(p1,v)) {
14 sign(v);
15 write(Value[p],v);
16 do {for all q ∈ Π do val[q] = read(Value[q]);
17 if |{q : val[q] == v}| ≥ n then {
18 Proof[p].write(sign(val[1..n]));
19 for all q ∈ Π do prf[q] = read(Proof[q]);
20 if |{q : verifyProof(prf[q]) == true}| ≥ n {

↪→ decide(v); exit; } }
21 for all q ∈ Π do pan[q] = read(Panic[q]);
22 } until (pan[q] == true for some q || timeout); }
23 Panic_mode();}

Algorithm 4: Cheap Quorum panic mode—code for process
p

1 panic_mode (){
2 Panic[p] = true;
3 changePermission(Region[ℓ], R: Π, W: {}, RW: {});

↪→ // remove write permission
4 v = read(Value[p]);
5 prf = read(Proof[p]);
6 if (v , ⊥){ Abort with ⟨v, prf ⟩ ; return; }
7 LVal = read(Value[ℓ]);
8 if (LVal , ⊥) {Abort with ⟨LVal , ⊥⟩ ; return ;}
9 Abort with ⟨myInput , ⊥⟩ ; }

Region[p] contains three registers Value[p], Panic[p], Proof[p] ini-
tially set to ⊥, false, ⊥. To propose v , the leader p1 signs v and

writes it to Value[ℓ]. If the write is successful (it may fail because

its write permission was removed), then p1 decides v ; otherwise p1
calls Panic_mode(). Note that all processes, including p1, continue
their execution after deciding. However, p1 never decides again if

it decided as the leader. A follower q checks if p1 wrote to Value[ℓ]
and, if so, whether the value is properly signed. If so, q signs v ,
writes it to Value[q], and waits for other processes to write the same

value to Value[∗]. If q sees 2f + 1 copies of v signed by different

processes, q assembles these copies in a unanimity proof, which
it signs and writes to Proof[q]. q then waits for 2f + 1 unanimity

proofs for v to appear in Proof[∗], and checks that they are valid,

in which case q decides v . This waiting continues until a timeout

expires
3
, at which time q calls Panic_mode(). In Panic_mode(), a

process p sets Panic[p] to true to tell other processes it is panicking;
other processes periodically check to see if they should panic too.

p then removes write permission from Region[ℓ], and decides on a

value to abort: either Value[p] if it is non-⊥, Value[ℓ] if it is non-⊥,

3
The timeout is chosen to be an upper bound on the communication, processing and

computation delays in the common case.

Session 9 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

414



Fast & Robust Algorithm

Cheap 
Quorum

RDMA

abort value

commit value commit value

Robust Backup
Non-equivocating

broadcast

RDMA

Preferential Paxos

Figure 5: Interactions of the components of the Fast & Ro-
bust Algorithm.

or p’s input value. If p has a unanimity proof in Proof[p], it adds it
to the abort value.

In the full version of this paper [4], we prove the correctness

of Cheap Quorum, and in particular we show the following two

important agreement properties:

Lemma 4.4 (CheapQuorum Decision Agreement). Let p and q
be correct processes. If p decides v1 while q decides v2, then v1 = v2.

Lemma 4.5 (CheapQuorum Abort Agreement). Let p and q be
correct processes (possibly identical). If p decides v in Cheap Quorum
while q aborts from Cheap Quorum, then v will be q’s abort value.
Furthermore, if p is a follower, q’s abort proof is a correct unanimity
proof.

The above construction assumes a fail-free memory with regular

registers, but we can extend it to tolerate memory failures using

the approach of Section 4.1, noting that each register has a single

writer process.

4.3 Putting it Together: the Fast & Robust
Algorithm

The final algorithm, called Fast & Robust, combines Cheap Quo-

rum (§4.2) and Robust Backup (§4.1), as we now explain. Recall

that Robust Backup is parameterized by a message-passing consen-

sus algorithm A that tolerates crash-failures. A can be any such

algorithm (e.g., Paxos).

Roughly, in Fast & Robust, we run Cheap Quorum and, if it aborts,

we use a process’s abort value as its input value to Robust Backup.

However, we must carefully glue the two algorithms together to

ensure that if some correct process decided v in Cheap Quorum,

then v is the only value that can be decided in Robust Backup.

For this purpose, we propose a simplewrapper for Robust Backup,

called Preferential Paxos. Preferential Paxos first runs a set-up phase,
in which processes may adopt new values, and then runs Robust

Backup with the new values. More specifically, there are some pre-
ferred input values v1 . . .vk , ordered by priority. We guarantee

that every process adopts one of the top f + 1 priority inputs. In

particular, this means that if a majority of processes get the highest

priority value, v1, as input, then v1 is guaranteed to be the decision
value. The set-up phase is simple; all processes send each other

their input values. Each process p waits to receive n − f such mes-

sages, and adopts the value with the highest priority that it sees.

This is the value that p uses as its input to Paxos. The pseudocode

for Preferential Paxos is given in the full version of our paper [4],

where we also prove the following lemma about Preferential Paxos:

Lemma 4.6 (Preferential Paxos Priority Decision). Preferen-
tial Paxos implements weak Byzantine agreement with n ≥ 2fP + 1
processes. Furthermore, let v1, . . . ,vn be the input values of an in-
stance C of Preferential Paxos, ordered by priority. The decision value
of correct processes is always one of v1, . . . ,vf +1.

We can now describe Fast & Robust in detail. We start executing

Cheap Quorum. If Cheap Quorum aborts, we execute Preferential

Paxos, with each process receiving its abort value from Cheap

Quorum as its input value to Preferential Paxos. We define the

priorities of inputs to Preferential Paxos as follows.

Definition 3 (Input Priorities for Preferential Paxos). The
input values for Preferential Paxos as it is used in Fast & Robust are
split into three sets (here, p1 is the leader of Cheap Quorum):

• T = {v | v contains a correct unanimity proof }
• M = {v | v < T ∧v contains the signature of p1}
• B = {v | v < T ∧v < M}

The priority order of the input values is such that for all values
vT ∈ T , vM ∈ M , and vB ∈ B, priority(vT ) > priority(vM ) >

priority(vB ).

Figure 5 shows how the various algorithms presented in this

section come together to form the Fast & Robust algorithm. In

the full version, we show that Fast & Robust is correct, with the

following key lemma:

Lemma 4.7 (Composition Lemma). If some correct process decides
a value v in Cheap Quorum before an abort, then v is the only value
that can be decided in Preferential Paxos with priorities as defined in
Definition 3.

Theorem 4.8. There exists a 2-deciding algorithm forWeak Byzan-
tine Agreement in amessage-and-memorymodel with up to fP Byzan-
tine processes and fM memory crashes, where n ≥ 2fP + 1 and
m ≥ 2fM + 1.

5 CRASH FAILURES
We now restrict ourselves to crash failures of processes and memo-

ries. Clearly, we can use the algorithms of Section 4 in this setting,

to obtain a 2-deciding consensus algorithm with n ≥ 2fP + 1 and
m ≥ 2fM + 1. However, this is overkill since those algorithms use

sophisticated mechanisms (signatures, non-equivocation) to guard

against Byzantine behavior. With only crash failures, we now show

it is possible to retain the efficiency of a 2-deciding algorithm while

improving resiliency. In Section 5.1, we first give a 2-deciding al-

gorithm that allows the crash of all but one process (n ≥ fP + 1)
and a minority of memories (m ≥ 2fM + 1). In Section 5.2, we

improve resilience further by giving a 2-deciding algorithm that

tolerates crashes of a minority of the combined set of memories

and processes.

5.1 Protected Memory Paxos
Our starting point is the Disk Paxos algorithm [29], which works in

a system with processes and memories where n ≥ fP + 1 andm ≥
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Algorithm 6: Protected Memory Paxos—code for process p
1 Regions: for i=1..m, Region[i] is all of memory i,
2 with initial permission (R:

↪→ Π − {p1 }, W: ∅, RW: {p1 } )
3 Registers: for i=1..m, p ∈ Π,
4 slot[i,p]: tuple (minProp ,accProp , value)

↪→ in Region[i] // in memory i
5 Ω: failure detector that returns current leader

7 propose(v) {
8 repeat forever {
9 wait until Ω == p; // wait to become leader
10 propNr = choose number higher than any proposal

↪→ numbers seen before;
11 if (p , p1){
12 pfor i=1..m { // for each memory i
13 changePermission(Region[i], R:{Π-{p}},W:

↪→ ∅, RW:{p}); //get write perm
14 write1Success[i] = write(slot[i,p], {

↪→ propNr , ⊥, ⊥})
15 for all q ∈ Π do localInfo[i,q] = read(

↪→ slot[i,q]) }
16 wait for completion of m - fM iterations of

↪→ pfor loop
17 if (! write1Success[i] for some i) then

↪→ continue;
18 if (localInfo[i,q]. minProp > propNr for some

↪→ i,q) continue;
19 if (localInfo[i,q].value = ⊥ for all i,q)

↪→ myValue = v
20 else myValue = localInfo[i,q].value where i,q

↪→ maximizes localInfo[i,q]. accProp }
21 pfor i=1..m do write2Success[i] = write(slot[i,p

↪→ ], {propNr , propNr , myValue })
22 wait for completion of m - fM iterations of pfor

↪→ loop
23 if !write2Success[j] for some j then continue;
24 decide myValue }}

2fM +1. This is our resiliency goal, but Disk Paxos takes four delays
in common executes. Our new algorithm, called Protected Memory

Paxos, removes two delays; it retains the structure of Disk Paxos but

uses permissions to skip steps. Initially some fixed leader ℓ = np1
has exclusive write permission to all memories; if another process

becomes leader, it takes the exclusive permission. Having exclusive

permission permits a leader ℓ to optimize execution, because ℓ can

do two things simultaneously: (1) write its consensus proposal and

(2) determine whether another leader took over. Specifically, if ℓ

succeeds in (1), it knows no leader ℓ′ took over because ℓ′ would

have taken the permission. Thus ℓ avoids the last read in Disk Paxos,

saving two delays. Of course, care must be taken to implement this

without violating safety.

The pseudocode of Protected Memory Paxos is in Algorithm 6.

Each memory has one memory region, and at any time exactly

one process can write to a region. Each memory i holds a register
slot[i,p] for each process p. Intuitively, slot[i,p] is intended for p to

write, but p may not have write permission to do that if it is not the

leader—in that case, no process writes slot[i,p].
When a process p becomes leader, it executes a special phase

(the first leader p1 can skip this phase), where p acquires exclusive

write permission for a majority of memories, writes a new proposal

number in its slot in a majority of memories, and then reads all

slots in a majority of memories. If any of p’s writes fail or p finds a

proposal with a higher proposal number, thenp gives up. Otherwise,

p adopts the value with highest proposal number. In the next phase,

p writes its value to its slot in a majority of memories. If a write

fails, p gives up (then the current leader restarts the algorithm). If

p succeeds, this is where we optimize time: p can simply decide,

whereas Disk Paxos must read the memories again.

The code ensures that some correct process eventually decides,

but it is easy to extend it so all correct processes decide [18]. Also,

the code shows one instance of consensus, with p1 as initial leader.
With many consensus instances, the leader terminates one instance

and becomes the default leader in the next.

Theorem 5.1. Consider a message-and-memory model with up to
fP process crashes and fM memory crashes, where n ≥ fP + 1 and
m ≥ 2fM + 1. There exists a 2-deciding algorithm for consensus.

5.2 Aligned Paxos
We now further enhance the failure resilience. We show that mem-

ories and processes are equivalent agents, in that it suffices for a

majority of the agents (processes and memories together) to re-

main alive to solve consensus. Our new algorithm, Aligned Paxos,
achieves this resiliency. To do so, the algorithm relies on the ability

to use both the messages and the memories in our model; permis-

sions are not needed. The key idea is to align a message-passing

algorithm and a memory-based algorithm to use any majority of

agents. We align Paxos [38] and Protected Memory Paxos so that

their decisions are coordinated. More specifically, Protected Mem-

ory Paxos and Paxos have two phases. To align these algorithms,

we factor out their differences and replace their steps with an ab-

straction that is implemented differently for each algorithm. The

result is our Aligned Paxos algorithm, which has two phases, each

with three steps: communicate, hear back, and analyze. Each step

treats processes and memories separately, and translates the results

of operations on different agents to a common language. We im-

plement the steps using their analogues in Paxos and Protected

Memory Paxos
4
. The pseudocode of Aligned Paxos is given in the

full version of our paper [4].

6 DYNAMIC PERMISSIONS ARE NECESSARY
FOR EFFICIENT CONSENSUS

In §5.1, we showed how dynamic permissions can improve the

performance of Disk Paxos. Are dynamic permissions necessary?

We prove that with shared memory (or disks) alone, one cannot

achieve 2-deciding consensus, even if the memory never fails, it

has static permissions, processes may only fail by crashing, and

the system is partially synchronous in the sense that eventually

there is a known upper bound on the time it takes a correct process

to take a step [27]. This result applies a fortiori to the Disk Paxos

model [29].

Theorem 6.1. Consider a partially synchronous shared-memory
model with registers, where registers can have arbitrary static per-
missions, memory never fails, and at most one processes may fail by
crashing. No consensus algorithm is 2-deciding.

4
We believe other implementations are possible. For example, replacing the Protected

Memory Paxos implementation for memories with the Disk Paxos implementation

yields an algorithm that does not use permissions.
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Proof. Assume by contradiction that A is an algorithm in the

stated model that is 2-deciding. That is, there is some execution E
of A in which some process p decides a value v with 2 delays. We

denote by R andW the set of objects which p reads and writes in

E respectively. Note that since p decides in 2 delays in E, R andW
must be disjoint, by the definition of operation delay and the fact

that a process has at most one outstanding operation per object.

Furthermore, p must issue all of its read and writes without waiting

for the response of any operation.

Consider an execution E ′ in which p reads from the same set

R of objects and writes the same values as in E to the same set

W of objects. All of the read operations that p issues return by

some time t0, but the write operations of p are delayed for a long

time. Another process p′ begins its proposal of a value v ′ , v
after t0. Since no process other than p′ writes to any objects, E ′ is
indistinguishable to p′ from an execution in which it runs alone.

Since A is a correct consensus algorithm that terminates if there

is no contention, p′ must eventually decide value v ′
. Let t ′ be the

time at which p′ decides. All of p’s write operations terminate and

are linearized in E ′ after time t ′. Execution E ′ is indistinguishable
to p from execution E, in which it ran alone. Therefore, p decides

v , v ′
, violating agreement. □

Theorem 6.1, together with the Fast Paxos algorithm of Lam-

port [39], shows that an atomic read-write shared memory model

is strictly weaker than the message passing model in its ability to

solve consensus quickly. This result may be of independent inter-

est, since often the classic shared memory and message passing

models are seen as equivalent, because of the seminal computa-

tional equivalence result of Attiya, Bar-Noy, and Dolev [7]. In-

terestingly, it is known that shared memory can tolerante more

failures when solving consensus (with randomization or partial syn-

chrony) [6, 16], and therefore it seems that perhaps shared memory

is strictly stronger than message passing for solving consensus.

However, our result shows that there are aspects in which message

passing is stronger than sharedmemory. In particular, message pass-

ing can solve consensus faster than shared memory in well-behaved

executions.

7 RDMA IN PRACTICE
Our model is meant to reflect capabilities of RDMA, while providing

a clean abstraction to reason about. We now give an overview of

how RDMA works, and how features of our model can be imple-

mented using RDMA.

RDMA enables a remote process to access local memory directly

through the network interface card (NIC), without involving the

CPU. For a piece of local memory to be accessible to a remote

process p, the CPU has to register that memory region and associate

it with the appropriate connection (called Queue Pair) for p. The
association of a registered memory region and a queue pair is

done indirectly through a protection domain: both memory regions

and queue pairs are associated with a protection domain, and a

queue pair q can be used to access a memory region r if q and r
and in the same protection domain. The CPU must also specify

what access level (read, write, read-write) is allowed to the memory

region in each protection domain. A local memory area can thus be

registered and associated with several queue pairs, with the same or

different access levels, by associating it with one or more protection

domains. Each RDMA connection can be used by the remote server

to access registered memory regions using a unique region-specific

key created as a part of the registration process.

As highlighted by previous work [45], failures of the CPU, NIC

and DRAM can be seen as independent (e.g., arbitrary delays, too

many bit errors, failed ECC checks, respectively). For instance, zom-
bie servers in which the CPU is blocked but RDMA requests can

still be served account for roughly half of all failures [45]. This

motivates our choice to treat processes and memory separately in

our model. In practice, if a CPU fails permanently, the memory will

also become unreachable through RDMA eventually; however, in

such cases memory may remain available long enough for ongoing

operations to complete. Also, in practical settings it is possible for

full-system crashes to occur (e.g., machine restarts), which corre-

spond to a process and a memory failing at the same time—this is

allowed by our model.

Memory regions in our model correspond to RDMA memory

regions. Static permissions can be implemented by making the

appropriate memory region registration before the execution of the

algorithm; these permissions then persist during execution without

CPU involvement. Dynamic permissions require the host CPU to

change the access levels; this should be done in the OS kernel: the

kernel creates regions and controls their permissions, and then

shares memory with user-space processes. In this way, Byzantine

processes cannot change permissions illegally. The assumption is

that the kernel is not Byzantine. Alternatively, future hardware

support similar to SGX could even allow parts of the kernel to be

Byzantine.

Using RDMA, a process p can grant permissions to a remote

process q by registering memory regions with the appropriate ac-

cess permissions (read, write, or read/write) and sending the corre-

sponding key to q. p can revoke permissions dynamically by simply

deregistering the memory region.

For our non-equivocation algorithm, each process can register

the two dimensional array of values in read-only mode with a

protection domain. All the queue pairs used by that process are also

created in the context of the same protection domain. Additionally,

the process can preserve write access permission to its row via

another registration of just that row with the protection domain,

thus enabling single-writer multiple-reader access. Thereafter the

non-equivocation algorithm can be implemented trivially by using

RDMA reads and writes by all processes. Non-equivocation with

unreliable memories is similarly straightforward since failure of the

memory ensures that no process will be able to access the memory.

For Cheap Quorum, the static memory region registrations are

straightforward as above. To revoke the leader’s write permission, it

suffices for a region’s host process to deregister the memory region.

Panic messages can be relayed using RDMA message sends.

In our crash-only consensus algorithm, we leverage the capa-

bility of registering overlapping memory regions in a protection

domain. As in above algorithms, each process uses one protection

domain for RDMA accesses. Queue pairs for connections to all

other processes are associated with this protection domain. The

process’ entire slot array is registered with the protection domain in

read-only mode. In addition, the same slot array can be dynamically

registered (and deregistered) in write mode based on incomingwrite
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permission requests: A proposer requests write permission using

an RDMA message send. In response, the acceptor first deregisters

write permission for the immediate previous proposer. The acceptor

thereafter registers the slot array in write mode and responds to the

proposer with the new key associated with the newly registered slot

array. Reads of the slot array are performed by the proposer using

RDMA reads. Subsequent second phase RDMA write of the value

can be performed on the slot array as long as the proposer contin-

ues to have write permission to the slot array. The RDMA write

fails if the acceptor granted write permission to another proposer

in the meantime.
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