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User Interaction in
Language-Based Editing Systems

Michael Lee Van De Vanter
Abstract

Language-based editing systems allow users to create, browse, and modify structured
documents (programs in particular) in terms of the formal languages in which they are writ-
ten. Many such systems have been built, but despite steady refinement of the supporting
technology few programmers use them today. In this dissertation it is argued that realiz-
ing the potential of these systems demands a user-centered approach to their design and
construction. Pan, a fully-implemented experimental language-based editing and browsing
system, demonstrates the viability of the approach.

Careful consideration of the intended user population, drawing on evidence from psy-
chological studies of programmers, from current software engineering practice, and from
experience with earlier systems, motivates Pan’s design. Important aspects of that design
include functional requirements, metaphors that capture the feel of the system from the
perspective of users, and an architectural framework for implementation.

Unlike many earlier systems, Pan’s design hides the complexity of language-based tech-
nology behind a set of simple and appropriate conceptual models — models of the system
and of the documents being viewed. Responding to the true bottleneck in software pro-
duction, Pan’s services are designed to help users understand software rather than save
keystrokes writing it. Furthermore, Pan’s design framework provides services that degrade
gracefully in the presence of malformed documents, incomplete documents, and inconsistent
information.

This research has yielded new insight into the design problem at all levels: the suitability
of current language-based technology for interactive, user-centered applications; appropriate
kernel mechanisms for building coherent user services; new conceptual models of editing that
blend textual and structural operations without undue complexity; and the crucial role of
local, site-specific design in the delivery of language-based editing services.
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Chapter 1

Introduction

Software systems are unique among engineered artifacts: to commit a detailed design to a
suitable formal notation is to construct the system being designed. The natural preoccupa-
tion with notation in software engineering motivates a corresponding interest in tools that
help people create and manage increasingly complex software documents.

Language-based editing systems represent an important evolutionary thread in the de-
velopment of tools for the construction of software. These systems allow users to create,
browse, and modify software documents in terms of the formal languages and notations in
which they are written (for examples in terms of “statements,” “integer expressions,” and
“assignments with type-compatibility problems”) not just in terms of their superficially
textual characteristics. However a lack of widespread acceptance has proven something of
a disappointment to those who envision the potential contribution of these systems.

One part of the problem has been a lack of language-based technology appropriate for
interactive use, in contrast to the much better understood world of batch-oriented program
compilation. Several generations of experimental language-based editing systems have made
significant progress with the technology [7,17,29,94,104], and practical systems of this kind
are now within reach, for example the single-language SMARTSystem? for C [97].

Growing experience with these almost-practical systems suggests that more attention
now be given to another part of the problem: user interaction. This need goes far beyond the
superficial graphical user interface design issues such as the arrangement of menus and the
appearance of buttons. At issue are questions about how software professionals work, what
tools they already know and use, how they understand the notation, and what (human)
performance bottlenecks might profitably be addressed by language-based editing systems.

Asking user-centered rather than technology-centered questions casts new light on the
design of these systems, their internal software architecture, services offered to users, con-
figuration mechanisms, styles of interaction, and integration with other tools in the working
environment. It also raises new questions about the underlying language-based technology,
its usage, and what problems remain to be solved.

!SMARTSystem is a registered trademark of the ProCase Corp.



2 CHAPTER 1. INTRODUCTION

1.1 Thesis and Scope of This Research

The thesis of this investigation is that the success of language-based editing systems has
been limited by inattention to user-centered issues concerning the context in which the tools
are needed. When reconsidered from this perspective (drawing on evidence from software

engineering practice, human factors, and empirical experience), many usability problems
can be seen in past systems:

1. Annoying restrictions on text-based editing, the style of interaction most people prefer.

2. Failure to address the real productivity bottleneck, the difficulty people have under-
standing programs.

3. Exposure of underlying language-based technology to people, leading to inappropriate
user models of system state and document structure.

4. Monolithic document presentations that fail to exploit all the information available
in the programming environment.

5. Brittle system behavior in the presence of ill-formed programs or inconsistent system
information.

6. Awkward (or missing) mechanisms for incorporating new languages.
7. Inflexibility because of closed data models and weak extension facilities.

Each of these problems has been partially addressed by earlier systems, but usually at the
expense of other problems on the list. The tradeoffs are complex, however, and successful
solutions must take the entire list into account.

This investigation begins with the following observation about these usability problems:

The design of a language-based editing system presents a user interface problem,
not only between user and system (in the conventional sense of the term) but
between user and software documents (the more important meaning in this
context).

With the design challenge posed in this way, new questions must be asked and new balances
struck on fundamental choices such as text- versus structure-based interaction, language-
specific versus generic services, and frequent versus infrequent analysis. The application of
user-centered system design principles [92] casts new light on the issues and suggests that
a well-founded, principled, and coherent approach to the design of language-based editing
systems is possible.

This dissertation presents a new design framework for language-based editing systems,
one that begins with a basic separation of design concerns: internal document represen-
tation and analyzer implementation; configurable, language-independent mechanisms to
support user interaction with documents; a coherent and flexible set of user-visible system
features and policies; and adaptation of the system to particular working contexts. Pan
is a fully implemented, multi-lingual, language-based editing and browsing system devel-
oped at the University of California, Berkeley [12,31,132] that embodies this framework and
demonstrates the viability of the approach.

¢ ®e
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An important goal of Pan’s design framework is to “decouple” user interaction in these
systems from the linguistic and implementation details of their enabling technologies, and
in particular from the compiler-oriented approach that has dominated their design in the
past. Users do not think of programs in the same terms that are useful for designers of
compilers. For example, a person confronted with a new program first reads comments and
then examines the names of program entities [20], for example procedures and variables.
A compiler confronted with the same program first discards comments and then abstracts
away all names. This example is not meant to imply that a language-based editing system
should analyze comments, but it does suggest the depth of the conceptual challenge for
designers who seek appropriate application of the technology.

Adaptation to working contexts is captured in Pan’s design framework by the notion
of multiple view styles for user interaction, each specialized for a particular combination
of user population, task at hand, and language being used. A view style: (a) includes
traditional syntax and static-semantic language descriptions, but may extend to extra-
lingual analysis such as stylistic and usage guidelines; (b) specifies services to be provided
and specializes generic services for the particular language; (c) defines a visual context,
including typography and use of color; and (d) configures details of interaction, including
keystroke and menu-bindings. A human designer creates view styles. A working Pan system
includes a suite of view styles that collectively offers appropriate services and uniform user
interaction. Pan’s design framework provides tools, guidelines, and examples, among which
are solutions to usability problems that plague earlier generations of systems.

Finally, Pan’s design framework is open. To realize the full power of language-based
interaction, the editor must function as an interface through which an open-ended collection
of language-related services can be delivered to users. Known as applications in the Pan
framework, these additional services can be added to Pan using its extension language,
rich configuration mechanisms, and an extensible data repository. Alternately they can
be delivered by integration with other tools, for example allowing Pan to serve as a user
interface for compilers, profilers, and debuggers.

1.2 Overview of Dissertation

Chapter 2 begins with an introduction to the context of this research: the intended users,
the class of tools involved, and the ultimate role to be played by such tools. The chapter
then reviews the list of usability problems identified above, bringing outside perspectives to
bear on the history of language based editing systems. The software engineering perspective
casts light on the working environment and the nature of software systems. The individual
perspective examines what is known about the mental processes of the people who carry
out those tasks. From the list of shortcomings are derived a set of proposed requirements
for language-based editing systems that will correct those problems, requirements addressed
by the prototype system designed and built for this research.

Chapter 3 introduces Pan, beginning with a few short scenarios that show it in action.
An introduction to Pan’s design framework follows: guiding principles, a four-layered ar-
chitectural model, and five design metaphors that capture the spirit of the system from the
perspective of its users.

In Chapter 4 the design and construction of Pan are described in more detail, addressing
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in turn each layer in the architectural model, beginning with the lowest: (1) language-based
infrastructure; (2) kernel mechanisms; (3) elements of user interaction; and (4) view style
design. This model enables an implementation that delivers language-based functionality
without allowing the design of the analyzers to dictate models for user interaction. This
chapter presents a “structural” description of the system, reflecting a point of view con-
cerned with implementation: how the system is constructed and how it works. Sections 4.1
and 4.2 focus on internal issues, Sections 4.3 and 4.4 on those aspects presented to users.

Chapter 5, in contrast, represents a “functional” description of Pan that focuses on users
and their tasks: what the system can do and how it can be used. Each section examines a
particular aspect of user interaction: potential benefits with reference to the goals discussed
in Chapter 3 and challenges to effective implementation. Some of the challenges result from
conflicting goals, others from particular language-based technology. In each case Pan’s
framework provides mechanisms, services, and design guidelines to solve the problems in
accordance with general principles of user-centered design.

¢ Text Presentation An important step toward enhancing program comprehension by
users is to exploit the full potential of human visual bandwidth; Section 5.1 describes
how this can be done using a high-quality, configurable, text-based display. A unifying
theme for Pan’s text-based services is to provide as many visual channels as possible
for the conveyance of meta-information, that is, information about programs being
viewed.

e User Models Section 5.2 turns to problems that arise when browsing and editing
services operate over a domain whose structure is not isomorphic to the visual field
presented to users. This is a particular problem for language-based editors, where
the customary approach is to display programs in the conventional two-dimensional
textual field, but to provide operations over the domain of a tree that represents
an abstraction of a program’s formally-specified context-free syntax. Pan’s design
supports a model that more closely approximates how programmers actually think
about program structure, thereby avoiding many usability problems associated with
earlier systems.

¢ Mixing Modes A commitment to unrestricted text editing combined with language-
based operations runs the risk of exacerbating the problem of hidden state: informa-
tion in the dynamic editing context that is important to the user, but which has no
direct visual analogue. These problems are minimized in Pan’s design by presenting
to the user a model of language-based services that appears to be a simple extension
of the familiar text-based model, accompanied by a metaphor to explain the relation-
ship between the two. A Pan user may mix text-based and structure-based operations
freely. Experience with this model, combined with further task-based analysis, has
led to a novel design for structural selection; the new model promises to simplify user
interaction and to permit convenient delivery of many useful services not otherwise
possible.

o Ill-Formedness Unrestricted text editing, an important commitment in Pan’s design,
implies that a program being modified is often ill-formed with respect to the definition
of the formal language in which it is written. Many language-based editing systems
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treat these as aberrant situations, and they restrict or otherwise penalize the user
until the problems are corrected. In Pan’s design ill-formed programs are presumed
to represent the normal case, and services are designed to keep operating as usual. In
fact, it is crucial that one distinguished set of services, those concerned with diagnosing
and communicating about language errors, continue to be available whenever the user
requests them, as described in Section 5.4.

¢ Incompleteness Section 5.5 shows how incompleteness, a special case of ill-formedness,
can be addressed by Pan’s variant on strict structure-based or top-down editing: place-
holders and templates. Like all Pan’s services, these add to the user’s options rather
than restricting them.

¢ Inconsistency A more subtle problem with the commitment to unrestricted text
editing arises in the form of difficult choices about when and how to attempt in-
cremental reanalysis following textual modifications. These choices involve issues as
diverse as the cognitive structure of the user’s tasks, the ability of analysis algorithms
to recover from program errors, and the speed of computational platforms. The ap-
proach taken in Pan’s design is to adopt a lazy policy, deferring analysis until the
user requests it, either explicitly or implicitly, by invoking an operation that requires
current information. In the interim, between a textual modification and a subsequent
reanalysis, the program state in Pan is said to be tnconsistent. Section 5.6 describes
several approaches that help make this state tractable for users.

e Views Section 5.7 shows how more than one view of documents can be useful to
users. An alternate view in Pan typically presents some subset of the information
available about a document, organized and presented in a form helpful for particular
tasks. Connections among all views of a single document, however, permit the user
to associate the different kinds of information when needed.

e Applications In Section 5.8 a number of more advanced services are described. These
services have been or could be implemented using the basic elements of Pan’s design.
The breadth of these applications demonstrates the flexibility of Pan’s model for
language-based interaction.

A reflection on the success of the Pan prototype in meeting its research goals appears
in Chapter 6. For example, some aspects of user interaction have shown themselves to
be unsatisfactory in the current prototype, based on both experience with the system and
ongoing analysis. An important kind of insight gained through work on Pan’s infrastructure
concerns the degree to which language-based mechanisms must be recast in pursuit of user-
centered goals.

Finally, Chapter 7 summarizes the lessons learned during this research, and includes
suggestions concerning promising areas for further work.
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Chapter 2

Background

This chapter introduces language-based editing, with particular attention to the context in
which these systems are intended to be used. Evidence about that context, drawn from
software engineering practice and from the study of computer human interaction, confirms
empirical observations that usability problems abound. These problems are discussed here in
general terms, and requirements are articulated for a system that corrects the shortcomings
mentioned in the introduction.

2.1 Context

This section describes the context for this research: the intended user population and the
class of tools being studied.

2.1.1 The User Audience

Software professionals manage large collections of interrelated documents. Many traditional
assumptions about traditional language-based editors do not hold in this domain, for ex-
ample that the main advantage of such systems is to help beginners avoid syntax errors
and that restricting users is a reasonable cost to pay for that advantage.

In terms of Neal’s model of expertise among users of program editors [90], these profes-
sionals have high levels of expertise with computers, and usually have high levels of expertise
with both programming and with languages. There are situations in which these users share
some characteristics with beginners, for example when learning a new language, but it is
important that design compromises not be made to accommodate low levels of general and
programming expertise.

The working context is further enriched by familiarity with many existing tools, their
functionality and their interface characteristics. New tools will be rejected if they merely
duplicate existing functionality, if they operate needlessly unlike others, or if they cannot
share data with other tools.

9

2.1.2 Language-Based Editing Systems

The term language-based indicates that one or more system facilities exploit language-
specific information derived from documents. In the context of this research, the term
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system (or editing/browsing system) encompasses all services used to browse, manip-
ulate, and modify one or more documents interactively.

In the broad view there are many such systems, beginning with text editors that support
word- and paragraph-based operations, including spelling checkers, and continuing through
document preparation systems and outline processors. The success of spelling checkers
(measured by their widespread use) offers a suggestive analogy for the design of language-
based tools: they usually operate only when asked, and they carefully defer to the judgment
of the user. The implicit assumptions are that a spelling checker is clerical but fast, must
be given a dictionary, and cannot be assumed to understand anything about the intent of
the author.

For software documents, linguistic knowledge available to the system can be shallow (for
example language-modes in EMACS exploit shallow lexical structure) or deep (for example
cliché-based editing in KBEmacs, which exploits deep plan-based structure [106]). At the
limit of currently feasible technology are systems that have knowledge of the syntactic and
static-semantic structure of software, and perform some browsing and manipulation using
that information.

Proponents of language-based editing appeal to the compelling intuition that a system
knowledgeable about underlying languages could help users with many of the demanding
aspects of programming. Bernard Lang, coauthor of the influential Mentor system bases
his testimonial on considerable experience with Mentor: “For advanced users, a syntax
directed environment is irreplaceable for program maintenance, especially when used to the
full capacity of this technology, with the ability to use all tools and program new ones
in terms of the syntax directed paradigm, i.e. on the basis of the abstract syntax of the
manipulated languages” [71].

At the time this research began, a number of language-based editing systems had already
been implemented or designed. Following Ballance’s taxonomy [9], those can can be roughly
classified into three categories based on underlying models of editing: display-oriented text
editors such as EMACS [122], syntax-directed structure editors such as Mentor [29], and
syntax-recognizing editors such as Babel [57]. The rest of this section describes the three
categories in more detail, pointing out the design tradeoffs they represent. Each category in
the list reflects progressively more ambition with respect to services delivered, along with
correspondingly greater design challenges.

How a system captures and maintains structural information involves an important dis-
tinction. It can be done explicitly, by interpreting user actions during document construc-
tion, as in an outline processor where the user creates new sections explicitly. Alternately
it can be derived by examination of the document after construction by the user.! The
choice affects both underlying implementation and the design of the user interface. For
example, syntax-directed editors rely on the user to construct structures explicitly. Syntax-
recognizing editors attempt to derive a structural representation for the document. A purely
text-oriented editor makes no real use of linguistic structures at all; its “language-based”
operations examine only the surface representation of a document, perhaps inferring a very
simple syntactic decomposition.

1The two approaches can coexist; for example Mentor can derive structure initially from a textually
represented document, but subsequent editing can only be structure-based [29].
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Text-Based Editors

A text-oriented editor operates on a document modeled both as a stream of characters
and as a two-dimensional plane of characters. (The coordinates in this plane are commonly
called “lines” and “characters within a line”.) Users are free to operate on any character
at any time.

While groups of characters, for example words and lines, might be accorded special
status and operations, no special structural constraints are imposed on the document and
few well-formedness constraints are enforced. Bravo [70], EMACS [122], MacWrite [2], and
Z [140], are examples of text-oriented editors. Both EMACS and Z provide some language-
specific editing operations.

The technology for text-oriented editors is relatively mature. Language-based editing

operations in these systems present no great technical obstacles, but the level of service is
quite limited.

Structure and Syntax-Directed Editors

Structure editors present a document as having a definite internal structure, with editing
operations modeled as operations upon that structure. Most often, the document is tree-
structured, with operations defined on subtrees. Qutline processors are structure editors for
tree structures; spreadsheet editors are structure editors for tables. Structure editors may
or may not interpret the structures that they edit. When they do attribute language-specific
meanings to the structures, they are often called syntax-directed editors.

A syntax-directed editor? is a structure editor that requires that the document be
syntactically correct at all times: editing operations must “follow” the syntax of the lan-
guage. As in a pure structure editor, the user can add new material to a document only
at those points where it can be successfully grafted onto the existing structure. ALOE [84]
and the Gandalf editors [94], Centaur [17], the Cornell Program Synthesizer [125] and the
Synthesizer Generator [104], Emily [52], Mentor [29], PSG (7], and the SbyS editor of the
Mjglner project [87] are all syntax-directed editors.

Structure and syntax-directed editors are considerably more complex to build than text-
oriented systems: language-based machinery must be added, and a complex relationship
must be maintained between text-based visual presentations and internal representations
more amenable to language-based analysis. On the other hand, design of these editors is
simplified by insisting that users express changes in terms of internal representations rather
than in terms of the textual presentations.3

Syntax-Recognizing Editors

A syntax-recognizing editor [21] derives structural information from text, in order to
check for correctness without necessarily demanding the consistency constraints of a syntax-
directed editor. Syntax-recognizing editors can provide structural operations as well as
text-oriented editing. Babel [57], the Saga editor [67], SRE [21], Syned [40], and the UQ
editors [138] are all syntax-recognizing editors, as is Pan, the platform for this research.

*The term “structure-oriented” [93] is sometimes used in place of “syntax-directed.”
3Some hybrid syntax-directed editors, including the Gandalf editors, the Cornell Program Synthesizer,
and PSG, permit text-editing in limited contexts.



10 CHAPTER 2. BACKGROUND

Editing System

Editing Interface System Services

A

Users

Retrieve

Figure 2.1: Editing interface and system services in relation to the environment

The syntax-recognizing approach? permits text-oriented editing by users at any time in
any context, but at the cost of considerable complication in document representation, incre-
mental analysis algorithms, and user-interface design. Common problems in early syntax-
recognizing editors were a failure to hide this complexity from the user and limitations on
language-based services when compared with syntax-directed editors.

2.1.3 The Role of The System

Early language-based editing systems were characteristically designed as standalone tools,
although a few were integrated with a debugger and run-time system. In practical software
engineering contexts a shift of perspective is necessary. The true utility of such tools is as the
primary interface between people and integrated environments containing the documents
they manage. Positioned this way, between user and documents, the system is uniquely
situated to share information about documents that may be provided by both user and
tools, as shown in Figure 2.1.

In this model, users interact with documents through the editing interface; tools interact
with documents through the system services; they communicate with one another via an
active data repository. Useful tools in this model are characterized by information, possi-
bly rapidly changing, about the code. Examples include debuggers, slicers, profilers, text
coverage analyzers, and higher-level assistants like the cliché-based reasoning supported by
KBEmacs [106).

*The syntax-recognizing approach does not preclude a user-interface that simulates syntax-directed edit-
ing. In fact, syntax-directed editing can be provided easily in a syntax-recognizing editor.
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Complex, expensive analyses to support an editing interface make sense only in an
environment in which many tools share the information maintained by the system. The
same type checking that is used to tell the user that a document is type-correct can provide
type information to a compiler, an interface consistency service, or an auditing tool. In
some cases information produced by other tools should be made available to the editing
interface. For example, the results of performance analysis or information derived from
version control can be used to produce helpful views of programs or prototypes.

2.2 Usability Problems

This section returns to the list of shortcomings identified in the introduction, explaining the
origin of each and associated difficulties for users. From the discussion emerge the design
requirements pursued during this research.

2.2.1 Text-Oriented Interaction

Usability Problem 1 Annoying restrictions on text-based editing, the style of interaction
most people prefer.

The history of language-based editors is marked by disagreement over text-oriented
editing and the role it should play in language-based editing systems. Text remains the
display medium of choice for documents in most languages, since most languages are by
definition textual. Graphical presentations of such documents have some potential value
for overviews and summaries, but it is very unusual for a graphical display to carry all the
information present in a textual rendering, and it is seldom a natural visual field in which
users can specify editing operations.®

The most fundamental requirement for language-based editing systems, discussed in this
section, is thus the most controversial:

Design Requirement 1 Familiar, unrestricted text editing.

The Structural Hypothesis

Following the lead of the purely structural Emily system [52], one of the seminal language-
based systems was designed around what will be called here “the structural hypothesis:”

Programs are not text; they are hierarchical compositions of computational
structures and should be edited, executed, and debugged in an environment
that consistently acknowledges and reinforces this viewpoint. The Cornell Pro-
gram Synthesizer demands a structural perspective at all states of program
development [125]. '

Despite a few early arguments to the contrary [134,140] designers of language-based editors
accepted the hypothesis and continued to impose varying degrees of restrictions on text-
based interaction. Most designers argued that prohibiting “incorrect” operations would help
users write programs faster or that it would enable the system to provide better services.

*This remark does not apply, of course, to those languages which are by definition graphical. For those
languages, graphical display is the medium of choice.
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One problem with the structural hypothesis is that language-based structure is not
uniquely defined for a given language, but reflects instead a set of implementation choices
based loosely on a formal language definition. For example, many early editors that provided
unrestricted text editing maintained a complete parse tree [57,67], and there are many
degrees of freedom available for the design of parsing grammars. Syntax-directed editors,
on the other hand, usually maintain a reduced or abstract syntax tree (an example of
each appears in Figure 2.2 on page 15). Arguments for the latter representation include
the observation that it is a more “natural” model for user interaction, since the extra
information in the parse tree is only an artifact of parsing technology. In practice, however,
abstract tree representations are designed to meet the needs of tool implementation, not
people.

A second problem with the structural hypothesis is that every operation burdens the
user with the cognitive overhead of a complex relationship between the tree and its two-
dimensional textual presentation. Lang mentioned evidence of this problem with Mentor:

We must however note that, even with a good user interface, the syntax directed
paradigm is too complex and bothersome for inputting programs or for perform-
ing simple editing tasks. As might be expected, it is particularly inconvenient
for editing text/program fragments that are non-structured (strings, comments)
or poorly structured (expressions) [71].

This kind of experience with fine-grained structural interaction led to the adoption of the
hybrid approach by a number of systems, including the Cornell Program Synthesizer, in
which small structural fragments may be edited textually.

Behind this second problem is serious clash between the editing model (what the user
can do) and the presentation model (what the user sees). One can imagine a similar clash
arising from a text editor that required sentences to be constructed only in terms of an
underlying natural language grammar. Mindr’s attempt to correct this problem without
abandoning the structural hypothesis led away from a text-oriented interface entirely for
the SbyS program editor [87,88].

A third weakness is the implicit assumption that the only interesting structural cate-
gories are those corresponding to nonterminals in an underlying abstract grammar. But
programmers’ tasks involve many kinds of information beyond the purely syntactic, as will
be discussed in more detail below.

Experience with Structural Editing

Experience confirms these arguments against the structural hypothesis. For example imple-
mentors of Rita, an editor for structured documents, were forced to augment their purely
structure-oriented user interface with text-oriented operations because:

Many editing operations which appeared simple and straightforward from the
user’s perspective, could involve fairly complex keystroke sequences because of
the nature of tree-processing operations. Although most users understand that
there are rules governing the structure of a tagged document, they tend to view a
document as a linear progression of text rather than as a hierarchy of document
elements [27].
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Authors of two important language-based system for programs, PSG and Gandalf, have
likewise concluded that text-oriented editing should not be limited [8,24].

Lisa Neal examined how people react to this kind of system, concluding that “very
experienced users will reject any tool that does too much for them. For instance, they will
only use a tool which allows free text input but provides error checking capabilities” [90].

What Users Want

In practice, people will not sacfifice text-oriented interaction. It fits naturally with the
visible nature of the notation, and people are accustomed to it. Furthermore, most kinds of
documents contain textual chunks that have no structural properties beyond the textual:
examples include sentences or paragraphs in most natural language documents, labels in
spreadsheets, and comments in programs. Finally, in a world of multiple languages text
remains the least common denominator, a fallback position for users that is necessary when
language-based systems produce different modes of interactions for each different language.

2.2.2 The Comprehension Bottleneck

Usability Problem 2 Failure to address the real productivity bottleneck, the difficulty
people have understanding programs.

Early arguments for language-based editing systems focused on the need to expedite
entry of syntactically correct programs. For example, one advantage cited for grammar-
based template expansion is that it saves keystrokes. The COPE system uses predictive
data entry during textual entry; it performs very elaborate error repair that allows the user
to enter somewhat abbreviated code [4]. Unfortunately systems tuned for expeditious entry
fail to address real obstacles to productivity.

Mary Shaw, reflecting on software engineering, observed that “Each order of magnitude
increase in the scale of the problems being solved leads to a new set of critical problems that
require essentially new solutions” [114]. An important example is that software systems
have become so large and complex that developers spend far more time trying to read,
understand, modify, and adapt documents than they do creating them in the first place [45,
139]. This observation leads to the next requirement for language-based editing systems:

Design Requirement 2 Rich information display.

Visual Presentation

One approach to enhancing comprehension draws on established traditions of graphical
design in order to exploit the full power of the textual medium. The value of high-quality
typography for natural language documents is well established, and recent studies suggest
the same potential benefits for programs [6,95].

These studies, however, involved printed versions of programs typeset onto paper from
source code using language-specific formatters, a context that differs in two ways from that
of language-based editing systems. First, color produced by CRT displays evokes different
perceptual effects than it does on paper [33], and other characteristics of the CRT medium
have observably detrimental effects on reading speed [47].
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A second difference between paper and a language-based system is the dynamic nature of the
context: additional kinds of information (cursor location and the like) must be displayed,
and users can potentially control what information gets displayed. The user’s needs for
dynamic display can be seen by considering in more detail what it means to read software.

Programmers read because they spend most of their time engaged in software main-
tenance, where the essential task is understanding existing software; this is called “design
recovery” when some of that understanding is to be recorded [15].

Evidence suggests that reading software is a cognitively active process and has a fine-
grained task structure [68]. The reader repeatedly forms hypotheses, which are then con-
firmed or denied by further reading. This happens opportunistically, using a variety of
information when it is available. Reasoning tends to alternate between forward-chaining
and backward-chaining, depending on the information available [74]. This suggests that a
language-based editing system’s display be visually rich and dynamic at the same time.

Even when writing new documents, however, programmers spend most of their time
reading what they’ve just written. This is an essential characteristic of the notation and
the process of writing in it. Writing software is a creative design process, and like many
kinds of design it is done iteratively, with cycles of explicit interaction and feedback from
what has been committed to notation so far. One finds similar recursive interaction between
author and expressive medium in many creative endeavors [60], as well as in the work of
Schoén’s “reflective” practitioners [110]. So one aspect of the author’s conversation with the
notation is a stream of questions like “Where am I now?” “What are the implications of
what I've done so far?” and “What’s left to do?” This argues all the more strongly for a
rich, flexible information display (more about this below).

2.2.3 Technology Exposure

Usability Problem 3 Exposure of underlying language-based technology to people, lead-
ing to inappropriate user models of system state and document structure.

Some of the difficulty users encounter with language-based editing systems can be traced
to inattention to principles of user-centered system design [92]. In particular such systems
often fail to present a coherent conceptual model of system-behavior that helps users apply
the system to their tasks.

Given the role proposed earlier for language-based editing systems, as interface between
user and software documents, it is equally valid and ultimately more important to apply
the same principles in a second way. Coherent interaction between users and documents
can be achieved by presenting conceptual models of document structure that help users
understand them. This section looks at both kinds of interaction, with document structure
and with system state, and sets forth the next requirement for an effective language-based
editing system.

Design Requirement 3 Coherent user interaction with system and programs.
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Figure 2.2: Parse versus Abstract Tree Representations

The Structure of Software Documents

Making language-based structure intelligible requires that the system present document
structure in terms of coherent conceptual models. Most language-based editors present a
document model based implicitly on the way they represent documents internally, typically
as a tree. For example, many early editors that provided unrestricted text editing main-
tained a complete parse tree [57,67], whereas syntax-directed editors usually maintain a
reduced or abstract syntax tree (an example of each appears in Figure 2.2). Arguments
for the latter representation include the observation that it is a more “natural” model for
user interaction, since the extra information in the parse tree is only an artifact of parsing
technology.® Some of the problems with this approach were mentioned earlier in the cri-
tique of the structural hypothesis, namely that typical internal tree representations are not
well-defined by languages, that they can cause confusion when used as the primary editing
model, and that they don’t correspond to the user’s ideas of relevant structure. Consider for
example the parent node (ezpr) of the parse tree in Figure 2.2 and its child (term). Both
correspond to the expression that the user sees as “id; * id,”, the distinction is only an
artifact of parser and perhaps analyzer technology, and simple structural navigation from
one to the other would produce no apparent change in location.

From a user’s perspective software documents are richly connected, overlapping webs
of information having many structural aspects. Each aspect is more relevant for some
kinds of users than for others and for some tasks more than for others. A system that
supported such a multiplicity of structural aspects could confuse users, but it need not if
the system supports those structures already understood by users. People routinely think
about complex objects from different perspectives and are remarkably adept at shifting
perspective. An effective editing interface need only support these shifts without imposing
any extra overhead on the user.

The formally defined syntax of a language, and closely related internal tree representa-
tions, represents a good starting point for exploring aspects of software structure. It provides
a “backbone” decomposition of documents into structural components that help the system
associate useful properties with regions of text on the screen. Even here, however, many
aspects of an internal representation (many kinds of tree nodes) may not correspond to any
useful conceptual structure.

€An abstract tree also requires much less storage than an equivalent parse tree, a difference that can
translate into improved system performance.
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More interesting structures tend to involve non-local and non-hierarchical relationships
among document components. For example, consider the relationships in a natural language
document defined by the connection between a figure and references to it, the relationships
between declarations (definitions) and uses of variables in a computer program, the struc-
tures represented by a call graph in a program, or all uses of a particular code library. These
are examples of relationships that can be derived by language-based analysis, and which
can then be used for browsing, for querying, and by treating them as links for the purpose
of non-local navigation in the style of hypertext.

Other decompositions can arise from non-derivable design information that the user
adds. For instance, editors like ED3 [123] and the Cedar editor Tioga [127] allow users
to specify explicitly a hierarchical decomposition for each document, where the structure
may or may not be correlated with structures in the underlying formal language. Outline
processors are editors for precisely this kind of structure where the underlying language is
simple text.

Some kinds of decomposition fall into the area between linguistic and non-linguistic.
Such structure typically concerns how a language is used, and derives from the design of
particular systems and from coding conventions they use. These carry a great deal of
the information that a programmer needs, and may be partially derivable, for example,
using analyzers that can identify uses of locally proscribed language features, and can
reason about stylized patterns of use. These kinds of analysis move far beyond simple error
checking supported by earlier language-based systems: they involve knowledge of particular
organizations, techniques, and systems.

User Models of System State

Just as coupling the user’s model of document structure too closely to underlying imple-
mentations can make documents hard to understand, confusing behavior can result from
excessive coupling between important aspects of a system’s interactive state and its inter-
nal representations. Here user-centered design of a more conventional sort can help. For
example, it is important to make visible those aspects of the system’s state that have direct
consequences for user interaction. An example from the Synthesizer Generator Reference
Manual [102, page 91] shows what can happen otherwise:

1. The user sees “((2 + 3) * 4)” and highlights (places the structure cursor at) the
inner expression “(2 + 3)7;

2. Editing textually within the focus (structure cursor), the user deletes the parentheses,
leaving “2 + 3” in the focus.

3. The user invokes the command forward-with-optionals to move the structure cur-
sor away from the change site; and

4. The system re-inserts the parentheses before moving the cursor.

This behavior is confusing and probably not what the user intended, hence a warning and
this example in the manual. Just before the user invoked the navigation command in step
3, only a subtle line of reasoning (which involves taking careful note of the structure cursor
placement) would help the user predict from the display “(2 + 3 * 4)” what would happen
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next. Had the structure cursor instead been placed during step 1 over the outer expression
“((2 + 3) * 4)”, the system would have done what the user probably intended; even then,
however, new parentheses would mysteriously appear around “3 * 4”. The problem in this
case is that fine-grained details of the (invisible) internal representation have been allowed
to exert influence over the system’s behavior.

A related problem arises in systems that support structural cut and paste operations.
For example it might seem reasonable to copy the list of identifiers appearing in the formal
parameter list of a procedure definition and then to paste it into a call to that procedure.
Although the two lists of identifiers might be textually identical and closely related concep-
tually, there may be sound implementation reasons for different internal representations.
Many language-based editors would cause the paste operation to fail, and a usability chal-
lenge for those systems is how to either (a) explain the failure to the user, or (b) perform
grammatical transformations based on what the user probably meant to do so that the paste
operation can succeed [46,73]. Here again, some of the problems can be patched, but the
fundamental weakness remains: exposing in the user interface too much of the irrelevant
(to users) underlying technology.

2.2.4 Views

Usability Problem 4 Monolithic document presentations that fail to exploit all the in-
formation available in the programming environment.

As argued above, the true structure of software from the perspective of experienced
professionals is complex and multifaceted. Different users and tasks require different uses
of structure and different forms of access to the information within documents. Although
the information must be broad in subject domain, it need not be deep (in the sense that
program plans {75,120] and clichés [106] are deep) to be useful.

In some cases, many kinds of meta-information can be superimposed on the rich text
display of the document, for example by choice of font, coloration, and background shading.
In other cases, reorganization and filtering of the information is more appropriate. The table
of contents and index are examples of this approach for natural language documents; they
assist document comprehension without adding new information. Given the multiplicity
of structural aspects present in software systems, and the variety of meta-information that
can be produced, for example by data-flow analyzers and performance profilers, the range
of potentially helpful views is large. This leads to the next requirement for language-based
editing systems, one that helps assure that users will derive maximal benefit from the rich
sources of information present in the environment.

Design Requirement 4 Multiple, alternate views.

2.2.5 Service Degradation

Usability Problem 5 Brittle system behavior in the presence of ill-formed programs or
inconsistent system information.

A persistent and general problem with language-based tools is that they fail to degrade
gracefully in the presence of malformed, incomplete, or inconsistent information. To a user,
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however, these are the natural states for documents being managed—designers of tools
should make every effort to continue supporting the user when documents are in these
states. This observation leads to one of the most technically challenging requirements for a
language-based editing system.

Design Requirement 5 Uninterrupted service.

Ill-Formedness

Inherent in the syntax-recognizing approach is acknowledgement that documents being
modified are more often than not ill-formed: at variance with an underlying language def-
inition. Ill-formed documents are often said to contain “errors,” a pejorative term reflecting
the limitations of many analysis methods. Many language-based editors that permit text-
oriented editing inherit this bias. Unable to analyze ill-formed documents, these systems
insist that the user correct any newly introduced “errors” before proceeding. Often justi-
fied as a service, because it limits the extent and duration of “errors,” this treatment has
unpleasant side effects.

e It narrows options available to the user, who may prefer to delay trivial repairs while
dealing with more important issues. An “error” may often be part of an elaborate
textual transformation.

o It implies that derived information is only available and accurate when documents are
well-formed, again constraining the user.

e It implies that the user has done something wrong, when in fact the system is simply
unable to undérstand what the user is doing [76].

Incompleteness

Incomplete documents represent a special case of ill-formed ones, but they correspond to
natural intermediate states for documents being constructed by users and can potentially
be treated more appropriately by language-based editing systems.

This challenge has been well addressed by technology developed early in the history of
language-based editing systems. The first systems were so restrictive that users could only
construct documents by invoking grammar rules starting from the goal nonterminal in the
language, implicitly building a derivation of the desired program. The standard technique
became known as the “placeholder,” a visible glyph that appeared in a place corresponding
to an unexpanded nonterminal in the derivation tree, usually the name of the nontermma.l
displayed in some way to distinguish it from terminal symbols.

The standard use of placeholders in syntax-directed editing is a very restrictive paradigm.
Even in hybrid systems, placeholders are not editable by the same rules as the text.

Inconsistency

Any situation where one kind of information is derived from another invites inconsistency
between the two. The syntax-recognizing approach, where language-based information may
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be derived from text, is no exception. This results from design decisions to allow full text
editing and not to perform analysis with every keystroke.

Inconsistency between text and derived information should not be confused with the
related but separate issue of ill-formedness. Many language-based editors that permit text-
oriented editing are able to resolve inconsistency only for well-formed documents. A user of
such a system who has edited a document textually is not permitted to edit elsewhere in the
document until those changes meet the system’s requirements for syntactic well-formedness.

Inconsistency confronts the designer of language-based editing systems with a dilemma.
Until the next analysis nearly all of the derived information (including diagnostics concern-
ing ill-formedness) produced by analyzing the text is untrustworthy. On the other hand,
not to support any language-based services in this state is a needless interruption of service,
since a great deal of that information will continue to be correct most of the time.

2.2.6 Multi-language Support

Usability Problem 6 Awkward (or missing) mechanisms for incorporating new languages.

Software developers typically use several formal languages daily: design languages, speci-
fication languages, structured-documentation languages, programming languages, and small
languages for scripts, schemas, mail messages, and the like. The construction of “little lan-
guages” is a respected programming technique [14], and these sometimes appear embedded
in other languages. For example, many subroutine packages such as libraries for developing
window-based applications effectively define mini-languages that determine how subroutine
calls, and in particular long sequences of arguments, must be used.

Many language-based systems are built for a single language and cannot be easily
adapted. Many that can be adapted still produce systems that can only handle one lan-
guage at a time. Users cannot afford the time it takes to switch tools and change interfaces
along with every shift in language: a language-based system must support all these different
languages as smoothly and uniformly as possible. This accounts in part for the success of
GNU EMACS, which has only the shallowest of language-based information available, but
which can be extended and adapted easily for new languages.

Bernard Lang commented that:

Language independence is essential for the adaptability of the environment to
different dialects or to the evolution of a language. It is also a factor of uniformity
between environments for different languages. ... However, even with a good
language specification language, we believe that the definition of abstract syn-
taxes and finely tuned pretty-printers are non-trivial tasks that require much
care and experience, especially if the language has been originally defined in
terms of a concrete syntax [71].

It must be as convenient as possible to add support for new languages using natural, declar-

ative, language-description mechanisms, which allow a description writer to focus on what
is being described rather than on how document analyzers operate.

Design Requirement 6 Description-driven support for multiple languages.
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Since the services that the system can provide are based on the data it derives from
a document, a language description may include elements beyond the scope of the basic
definition of a language. Thus, someone adding a new service to the system may need to
extend some existing language descriptions to derive new data or maintain new annotations.

Finally, this issue presents a challenging design tradeoff between customization and
adaptation for specific languages on one hand, and on uniformity of user interaction across
languages on the other.

2.2.7 Inflexibility

Usability Problem 7 Inflexibility because of closed data models and weak extension fa-
cilities.

A usable language-based editing system must be flexible in many ways. As with most
interactive tools, it must be customizable and extensible to accommodate the enormous
variations among individual users, among projects (group behavior), and among sites. [71,
122].

An effective system must also be built on a flexible framework designed to accommodate
many kinds of variation and evolution [51,71]. Programmability and an open architecture
are essential here, permitting extension beyond that permitted by simple parameterization
of existing services. The final, requirement for language-based editing systems suggests that
as many degrees of freedom as possible be supported.

Design Requirement 7 Extensibility and customizability.

As an interface to tools in the environment, a language-based editing system must be
capable of using a variety of information, derived by many different tools. Users opportunis-
tically exploit many forms of information to help them understand and modify complex
documents [74]. “Information gathering” is the primary task associated with important
activities like program maintenance [56).

For example, many language-based systems check that a document is well-formed. The
same analysis can enable a user both to edit the document in terms of its underlying lan-
guage and to locate document components that violate restrictions in the formal language
definition. Other kinds of interaction may require more elaborate analysis. For example,
language-based formatting (sometimes called prettyprinting), traditionally based only on
surface syntax, should exploit information about scopes, types, local usage, or even distinc-
tions such as “main-line” versus “error-handling” code. Some kinds of interaction should
be driven by profile information, by information from test generators, and any other tools
in the environment that can produce potentially useful metainformation.



Chapter 3

The Pan System

The requirements derived in Chapter 2 are addressed by the design of Pan, a multi-window,
mouse-based editing and browsing system that was developed to support ongoing research
into integrated document development environments [12,132]. Pan I Version 4.0! [31],
the currently implemented version of Pan, runs on SPARCstations? under SUNOS and
on DECstations® under ULTRIX, using the X window system [109]. Throughout this
dissertation the term “Pan” refers to Pan I.

Pan I is the product of collaborative research. Two analyzers, Ladle [22] and Colander
[9], provide the language-based information that drives Pan’s user-oriented services. Sec-
tion 4.1 describes these analyzers briefly and discusses how they are integrated with the
rest of Pan. A number of projects, some ongoing, have successfully used Pan as a devel-
opment platform for research topics such as advanced textual presentations of programs
[16], graphical presentation of data structures [98], and dynamic compilation by attributed
transformational code generation [18].

This chapter introduces the Pan system, beginning with design requirements described
in Chapter 2. A preliminary glimpse of the system itself follows, showing how Pan appears
to its users when in operation. The remainder of the chapter discusses the approaches
developed to guide its design and implementation.

3.1 System Requirements

Pan’s design was motivated by observations about the nature of programming and the
people who do it, and by drawing on the experience of previous generations of experimental
systems with related goals. The design requirements listed in Figure 3.1 summarize the
issues discussed in Chapter 2.

These requirements affect Pan’s implementation at every level, including the language-
based analyzers that are otherwise hidden from view. One result of this research consists
of insight into problems associated with the transfer of language-based technology from its
batch-oriented and compiler-inspired origins into interactive editing and browsing systems.
User-centered requirements such as these impose demands on the technology that diverge

' The version 4.0 architecture described here differs substantially from earlier Pan versions [9,13].
2SPARCstation and SUNOS are registered trademarks of Sun Microsystems, Inc.
*DECstation and ULTRIX are registered trademarks of Digital Equipment Corp.
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1. Familiar, unrestricted text editing.
Rich information display.

Coherent user interaction with system and programs.

Uninterrupted service.

2.

3.

4. Multiple, alternate views.

5.

6. Description-driven support for multiple languages.
7.

Extensibility and customizability.

Figure 3.1: Summary of Design Requirements for Pan

markedly from those imposed by traditional compilers. Section 6.1 returns to these issues.

3.2 Using Pan

Figure 3.2 shows a sample text editing session. On the surface Pan appears to users as
a convenient bit-mapped, mouse-based, multiple window text editor. In the figure, two
windows are open onto a text document being viewed, and a help window displays the
keybinding configuration in that view.

Text editing services based on familiar models encourage smooth integration into existing
working environments. Users familiar with EMACS [122] find the transition between the two
editors smoothed by comparable text services and compatible keybindings [31]. Generalized
unlimited undo, kill-rings, text filling, character classes, customization, extension, and self-
documentation are among Pan’s many standard services. The same text-oriented services
are provided for every document, whether or not its view style includes language-based
configuration. In contrast to many syntax-directed editors, one might use Pan for editing
text without ever giving a thought to its other capabilities.

But at any time one may choose to broaden the dialogue with Pan and to exploit
information (maintained by Pan) about the document.? Pan can be directed to use this in-
formation to guide editing actions, to configure and selectively highlight the textual display,
to present answers to queries, and more. ]

Textual and language-based operations may be mixed freely, as shown in Figures 3.3
and 3.4. In Figure 3.3 the user has just typed in a line of new text (beginning with
“Fact :=") by setting the text cursor with the mouse and typing. Note that the new line
of text looks a bit different from the rest of the program, revealing that this text has not
been analyzed and that Pan therefore does not yet have any language-based information
about it. The user then invokes a series of language-based navigation commands that move
the cursor forward a statement at a time® until the desired one is reached. As Figure 3.4

“In terms of Ballance’s taxonomy (9] discussed in Section 2.1.2, Pan is a syntax-recognizing editing
system.

5The command to move forward structurally is generic. The specific kind of structure for the command
is selected from a menu, or by keystroke sequence, and appears in the panel as the “Level”. The level
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: INTEGER;

iBEGBﬂ (* factorial *)

ReadCard(X); (*readX ™)

Fact := 1; (* initialize Fact*)]

N:=N+1
Fact = Fact + N;
END;

Figure 3.3: Using Pan: Entering Text
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IMODULE Factorial;
ROM 10 IMPORT ReadCard, WriteCard;

(* factorial *)
(*readX %)
(* initialize Fact®)

Figure 3.4: Using Pan: Structural Navigation
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shows, all recently entered text has been analyzed as a side-effect of the language-based
commands (analysis can never cause a command to fail, nor can it place the user in any
special modes), and the cursor now rests at a statement — both structurally, revealed by
shading the entire statement with a pale blue background, and textually, as shown by the
usual inverted box. The user may now (as always) move forward either structurally or
textually (probably easiest) to the erroneous operator “+”, delete the character textually,
type in the correct operator “*”, and proceed with other tasks.

Pan can be configured to make available many kinds of information about documents,
depending on the task at hand, using a variety of techniques. For example, Figures 3.5
and 3.6 show some of these techniques applied to language diagnostics. In Figure 3.5 a
panel flag in the form of a red exclamation point appears near the upper right corner of the
window. This particular flag reveals that some number of language errors are known to the
analyzer; in some Pan configurations this will be the only clue available that the program
is not well-formed. In this configuration, however, a highlighter for language errors is
also available and has been toggled on by the user. This highlighter has been configured to
render malformed code with red ink, and three such lines appear in Figure 3.5 (including one
under the structural cursor). Highlighting draws attention to error sites, and is often all the
notification that an expert programmer needs. Furthermore, the user may navigate to error
sites by setting the level appropriately (“Language Error” is configured to be a component
of the level menu) and invoking structural navigation commands (forward, backward, mouse
click, and the like). Figure 3.5 show the result of such a navigation command, with the
cursor landing on the “IMPORT” statement. Navigation helps locate error sites that may be
scrolled off screen, and as a useful side effect it announces in the panel the diagnostic at
each site reached. The announcement is context sensitive, however, and navigation to the
same site at the “Statement” level would produce no such message. Finally, an alternate
view may be requested that summarizes a particular kind of information, language errors in
this case, as shown in Figure 3.6. Structural navigation is shared among all views, so setting
the structure cursor on the line “malformed expression” in the language error view also
causes the cursor in the primary view to be set and the window scrolled appropriately.

Chapter 4 describes in considerably more detail how Pan’s language-based mechanisms
are constructed, and Chapter 5 discusses how they can be applied to a wide variety of useful
tasks for users.

3.3 Design Principles

This section introduces the general design principles that guided work on Pan. All are
rooted in the observation that a successful system addressing Pan’s goals must reflect good
user interface design on two fronts.

1. The system itself must strike users as familiar, simple, and easily learned in productive
increments.

2. The entire system must be considered an interface between users and documents,
helping to make those documents comprehensible.

is a weak input mode that controls generic language-based commands, but does not interfere with textual
commands.
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! REGIN (" factorial ™)
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Fact = 1;
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F(X< 0)
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WHILE (N < X) DO
N=N
Fact :=

3

Figure 3.5: Using Pan: Highlighting and Finding Errors
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M'2 Pan Language: nodula?

f‘act,
N
: INTEGER;

§ BEGIN (* facterial ™)
KeadCard(X), ("readX ")
Fact = 1;
N 1;

F(X<0)
THEN

Language: Text Level: Language Error

iIdentifier ‘ReadCard’ is unbound

Figure 3.6: Using Pan: an Auxiliary View
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Design of the first sort is increasingly acknowledged as simply good practice, although very
difficult for non-trivial systems. Design of the second sort has been largely ignored by
previous work on language-based editing systems. The approach adopted for Pan is best
captured by the maxim “simple system, complex documents.” Stated differently, complexity
of user interaction should appear to arise only from the complexity of the documents or
from tasks being performed, not from the system itself.

One approach to the need for an apparently simple system is to hide any complexity
associated with language-based analyzers that does not correspond to relevant complexity in
programs. This is an argument for “decoupling” user interaction in language-based editing
systems from the linguistic and implementation details of their enabling technologies.

Another approach is to keep system features for language-based interaction (these are
called basic services in Pan’s design model) as few in number and as widely applicable as
possible. The complexity behind these services, as perceived from users, should derive from
the information that drives them (complexity inherent in the nature of software), not from
their basic function.

The inherently complex nature of software, on the other hand, resists general approaches
to simplification. Comprehension by programmers is extremely dependent on context: lan-
guage, individual skills, particular software systems, and the task of the moment. Design
for interaction between people and programs must include a configuration component that
can only be realized in context and can therefore only be carried out by users or their close
associates.

3.4 Design Layers

One realization of these general principles is an architectural framework, shown in Fig-
ure 3.7, that articulates four separate kinds of design that play a role in meeting Pan’s
goals. Core language-based technology is at the lowest level, completely hidden from users,
and the design of view styles (the Pan term for specialized editing contexts) is at the highest
and most visible level.

This model ignores other useful decompositions of the Pan system in order to address
the fundamental question being explored by this research: how can the power of language-
based technology be exploited effectively in the context of a system built around the design
requirements summarized in Figure 3.17 Weakening any of Pan’s design requirements would
permit a simpler, less general architecture, as exemplified by systems reviewed in Chapter 2.
This section discusses the motivation for each layer in the model, and describes in general
terms how they interact.

Infrastructure

Many earlier language-based systems coupled their visible functionality too closely to un-
derlying language-based representations and analysis mechanisms. Pan’s layered model
addresses this problem by placing language-based technology in the implementation layer
farthest removed from user visibility. This decomposition permits support for user models
(of both the system and programs) that are largely independent of the technological par-
ticulars. For example, Pan view styles can be configured so that the distinction between
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View Styles .
Language descriptions | User Interaction
interaction model Design
Visual configuration
Additional :

Basic Services El of
Highlighters User Interaction
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Alternate views
Kernel .
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Description processors | Enabling
Incremental analyzers | Technology
Database

| Visual presentation |

Figure 3.7: Design Layers

syntactic errors and contextual constraints (type violations, for example) is largely hid-
den, even though the two kinds of errors arise from separate incremental analyzers, which
maintain separate data structures and use separate parts of the language description.

The assigned role of the language-based technology in this model is to gather and main-
tain information about programs, either by deriving it from the program text, by importing
it, or as a side-effect of the user’s interaction with higher level mechanisms. Although the
technical challenges to design in this layer are great, the particular needs or shortcomings
of this technology should never be permitted to place demands on users or restrictions upon
their use of the system. Section 4.1 describes the language-based machinery at this level in
the Pan system.

Pan’s facilities for text-based viewing and editing are also properly part of the infras-
tructure (and all other layers), but otherwise receive little mention. Likewise neglected
in this discussion will be the machinery associated with window-system interaction, event
capture and dispatch, use of widgets, and a host of other details.

Kernel

The kernel layer, described in more detail by Section 4.2, addresses three needs. The first
is to decouple the rest of the system from the representations and analysis mechanisms of
the language-based infrastructure. This layer provides low-level mechanisms that embody
a more abstract and general view of language-based data than is provided by the analyzers
themselves. This view is provided for the implementation of generic language-based mech-
anisms and is not exposed directly to users. The presence of this layer makes it possible
to replace Pan’s analyzers and data representations without affecting the system above the
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kernel layer; this has already been done successfully in one Pan-supported research project
[18] and another is in progress.

The second need is for uniform user interaction across multiple languages. All the
mechanisms in this layer (and by extension all the services built upon them) are language-
independent, relying on minimal language-specific glue as part of each view style configu-
ration.

The third need is for extensible user services. The low-level mechanisms are simple
and general enough that additional services can often be prototyped and migrated into the
system with no additional requirements at this level.

Basic Services

The third layer in Pan’s model implements mechanisms that the user sees and possibly
invokes directly. These contribute basic functionality from the user’s perspective, and thus
implicitly constitute a conceptual model of the system. Section 4.3 describes the elements
of this model.

It is crucial that this conceptual model be as simple and unobtrusive as possible, that
it be modeled on familiar concepts, and that it be uniform across languages. A successful
conceptual model would blend imperceptibly into the framework of text editing, and would
thus disappear entirely from the user’s explicit awareness.

Unfortunately no intrinsic property of the system can satisfy a criterion so intimately
bound to human endeavor. It is instead the relationships that matter: among the system,
users, their tasks, and their languages. Thus, Pan’s basic functionality must be comple-
mented by user interface design in the form of careful configuration, the subject of the next
layer.

View Styles

All user interaction in Pan takes place in the context of a view, and every view is an
instance of some view style. A user might appropriately think of the entire system as a
extensible collection of closely related view styles. A view style is similar to a separate editor
in the sense of editor-generating systems [50,65,105). Unlike separately generated editors,
Pan view styles share dynamic configuration data from which each view style inherits much
of its behavior, they exhibit highly uniform behavior ever when different languages are
involved, and they share other run-time data. A view style is also somewhat analogous
to a GNU EMACS mode [121], but with much richer structure and an explicit shared
representation independent of its instances. For example, a simple familiy of view styles
might contain one per language, presenting similar interfaces and analogous services in each.

From the implementor’s perspective, view styles are the locus of configuration. No ser-
vice is delivered to the user without the bindings (for example, between keystroke/mouse-
button events and system actions) defined by a view style. The default behavior of the
system, independent of any language-based view styles, is configured completely by speci-
fications for default view styles. A language-based view style contains directives to Pan’s
analyzers (Section 4.1) appropriate to a particular underlying language, but view styles and
languages are not the same thing; in particular, many view styles might be based usefully
on a single language.
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To the view style designer, who plays an essential role in meeting Pan’s user-centered
goals, each view style is the specification for a particular user interface. A view style is
a piece of user interface design that takes into account not only an underlying language,
with its unique aspects, but also the intended users and the tasks at hand. For example a
family of view styles might be use a single underlying language but each might be adapted
for a particular task: language learning, small program construction, program construction
as part of a large system, code reengineering. Likewise, a family of view styles might be
designed for all the languages used by a particular group carrying out a particular task. In
both cases, the view styles must promote uniform, predictable modes of interactions, with
specialization only as needed. Section 4.4 discusses view styles and the role of the designer
in more detail.

3.5 Design Metaphors

A system model must, in addition to meeting functional requirements, present users with a
coherent whole. One approach to ensuring this coherence is the application of a few simply
stated design metaphors to all elements of the model. Design metaphors are seldom
explicit in user interaction with the system, but successful ones are self-evident. They
correspond to the kind of explanation an experienced user might offer to a less experienced
one, when giving an informal overview of the system. The following metaphors have guided
the design of Pan’s basic services.

Design Metaphor 1 Augmented Text Editor

Pan is a text editor whose text-based services are always available in every context.
All other services are additions to the text editor; some may be used to guide text editing
but they never interfere. A useful analogy for these other services would be with spelling
checkers in text editing systems.

Design Metaphor 2 Heads-Up Display

Many of Pan’s services present information about a document as enhancements to the
text display. Designed to exploit the enormous potential bandwidth of human vision, these
enhancements never interfere with standard text-based services. This approach is analogous
to “heads-up” displays in which data are displayed by superposition onto the users primary
visual field. These are considered especially effective aircraft pilots, for example, allowing
pilots to attend continuously to the most important part of their job: looking and flying.
Here the primary visual field is considered to be a display of program source, from which
the user should be distracted as little as possible.

Design Metaphor 3 Imperfect World
Although Pan exploits knowledge of underlying languages, it operates no more differ-

ently in the presence of “language errors”® than does a text editor in the presence of spelling
errors.

SEven the term “error” is inappropriate, as argued in Section 5.4, but the usage is well established.
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Design Metaphor 4 Smart versus Dumb Services

Some of Pan’s language-based services appear not as distinct mechanisms, but as gener-
alization of familiar, text-based services. A generalized service typically changes character
dynamically: dumb when only operating textually, smart when operating with the addi-
tional advantage of language-based information. Unobtrusive visual cues reveal whether a
particular service is smart or dumb at any moment.

Design Metaphor 5 Strict versus Gracious Services

Many of Pan’s language-based services can operate during periods of inconsistency,
when language-based information derived from text is out of date and therefore unreliable.
These gracious services are characterized by shifts between exact and approximate
modes of operation, with little apparent change in behavior, but with unobtrusive visual
cues that reveal their current mode. Strict services, on the other hand, operate not at all
during periods of inconsistency: a strict service may simply become dumb when a document
becomes inconsistent, or it may trigger analysis in order to proceed.
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Chapter 4

Layers of Design in Pan

This chapter describes architectural features of Pan developed to address the goals of this
research. This description presents a structural view of the system, with emphasis on how
the system is constructed and how it works. Chapter 5 presents a complementary task-
oriented view that emphasizes what the system does and how it can help its intended users.

The presentation in this chapter follows the layered model of design developed for Pan,
introduced in Section 3.4 and depicted in Figure 3.7 on page 30. One useful characterization
of those layers involves visibility:

o The lowest layer consists of enabling technologies in the form of language-based ana-
lyzers and support for window-oriented interaction. Although languages and windows
are of direct concern to users, the implementation details at this level are largely
hidden from users and from the rest of the system

e Mechanisms implemented by the kernel (Section 4.2), the second layer from the
bottom, support user interaction but are not directly visible to users.

¢ Basic mechanisms (Section 4.3) on the other hand, correspond to system features
that the user does see. These contribute, along with conventional text editing, to the
user’s model of the system.

¢ From basic mechanisms, combined with Ladle and Colander descriptions of underlying
languages, are constructed view styles (Section 4.4), the uppermost layer in the
model. Each view style constitutes a complete editing context and is designed to
support a particular class of users performing a particular task using a particular
underlying language. Implicit in this design is a user model of document structure
appropriate to the context.

Chapter 5 revisits many of the same topics, but from the point of view of users and
organized by ways in which mechanisms are used.

35
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Pan
Editor

Figure 4.1: Preprocessing Language-Based View Style Specifications

4.1 Language-Based Infrastructure

Program analysis in Pan relies on two parts of the infrastructure developed in the course
of closely related research: Ladle! [22], and Colander? [9]. This section describes each in
more detail and discusses how the two cooperate and make information available to the rest
of Pan.

4.1.1 Language Description Processing

A language-based view style contains information for use by Pan’s two analyzers,® written
in a declarative language suitable for each. Ladle manages incremental lexical and syntactic
analysis; it includes both an offline preprocessor that generates language-specific tables and
a run-time analyzer that revises Pan’s internal tree-structured representation to reflect
textual changes.

Colander manages the specification and incremental checking of context-sensitive con-
straints, including, but not limited to, the static semantics of the language. A Colander
specification may also direct that certain data derived during checking be stored and made
available for general use. Like Ladle, Colander includes both an offline preprocessor and a
run-time analyzer. Figure 4.1 illustrates the flow of information from language description
to the run-time Pan system, where the preprocessed data may be either preloaded or loaded
on demand at run time.

4.1.2 Ladle

An abstract syntax is described to Ladle using an augmented context-free grammar, which
also specifies the tree-structured internal representation. The internal representation im-

!Language Description Language

2Constraint Language and Interpreter

®In the current implementation, each document must be composed using a single language. Pan’s architec-
ture and algorithms support documents composed from multiple languages, but the current implementation
does not.



4.1. LANGUAGE-BASED INFRASTRUCTURE 37

plicitly defines the universe of structural program components accessible to Pan’s language-
based services.

Additional information enables Ladle to convert textual representations to tree-structured
representations and vice versa:

e The lexical description may include both regular expressions and bracketed regular ex-
pressions, that is, expressions with paired delimiters such as quote marks. Bracketing
can be either nested or simple. N

o The grammar for the abstract syntax is augmented by specifying those productions
necessary to disambiguate the original (abstract) grammar or to incorporate addi-
tional keywords and punctuation. Ladle constructs a full parsing grammar from the
additional productions and the grammar for the abstract syntax.

¢ Optional directives tune Ladle’s syntactic error recovery mechanisms (invoked dur-
ing parsing). These directives also have important effects on the editing interface
(Sections 5.2 and 5.4).

Internally, Ladle manipulates two context-free grammars: one describing the abstract
syntax and the other used to construct parse tables. The two must be related by gram-
matical abstraction? {10}, a relation ensuring that:

1. The abstract syntax represents a less complex version of the concrete syntax, but
structures of the abstract syntax correspond to structures of the concrete syntax in
a well-defined way. Both grammars describe “almost” the same formal language.
subject to the renaming or erasing of symbols. '

2. Efficient incremental transformations from concrete to abstract and from abstract to
concrete can be be generated automatically—no action routines or special procedures
are necessary. The transformation from concrete to abstract is triggered directly by
actions of the parser.

3. The transformation from concrete to abstract is reversible, so that relevant informa-
tion about a concrete derivation can be recovered from its abstract representation.
This property allows the system to parse modifications incrementally without having
to maintain the entire parse tree.

4. The relationship between the two descriptions is declarative and statically verifiable
so that developers can modify either syntax description independently. This approach
allows a high degree of control over both the structure of an internal representation
and the behavior of the system during parsing.

Grammatical abstraction is structural; it does not use semantic information to identify cor-
responding structures. Two examples of grammatical abstraction appear in Figure 4.2. The
concrete grammar G describes the syntax of conditional statements. The fragments G
and G'; are both allowable (but different) grammatical abstractions from the fragment Gi.
assuming that the symbols (stmis) and (ezpr) are interesting to the grammar writer.

*Butcher later recast this work in terms of grammatical expansion [22].
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Figure 4.2: Grammatical Abstraction

The Ladle preprocessor generates the tables needed to describe the internal tree repre-
sentation as well as auxiliary tables needed during incremental parsing and error recovery.
Standard lexical analyzer generators and LALR(1) parser generators are also invoked, as
shown in Figure 4.1.

Ladle descriptions have been written for Ada, Modula-2, Pascal, FIDIL [54], Colander,
and for Ladle’s own language description language. Descriptions are being developed for a
variety of other languages, including C and C++.

4.1.3 Colander

Colander supports the description and incremental checking of contextual constraints [9].
Constraints include non-local aspects of a language definition, for example name binding
rules and type consistency rules, as well as extralingual structure. Examples of the latter
include site or project-specific naming conventions, design constraints, and complex non-
local relationships. ,

Colander’s approach is based on the notion of logical constraint grammars. In a logical
constraint grammar a context-free grammar is used as a base. Contextual constraints
are expressed by annotating productions in the base grammar with goals written in a
logic programming language,® thereby associating a set of goals with each node of the tree
representation maintained by Ladle. Program analysis is modeled as simultaneous goal
satisfaction for all goals at all nodes in the tree.

Colander itself has four subcomponents: a compiler, a consistency manager, an evalua-
tor, and a database. The Colander compiler generates the code used by the evaluator® as

®Logical constraint grammars should not be confused with constraint logic programming [25] a general-
ization of logic programming.
$The compiler actually uses Pan to parse language descriptions. This involution is one example of how
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well as the run-time tables required for consistency maintenance. The consistency manager,
a simple reason maintenance system [32,118], invokes the evaluator to (re)attempt a goal
when it is either unsatisfied or some fact upon which it depends has changed. The incre-
mental evaluator, in turn, collects the information maintained by the consistency manager,
and stores it in the database for shared access by other services [11].

Colander’s database is logic-oriented, but structured in useful ways. For example, all
tuples reside in one of three kinds of collections:

Datapool: An arbiti'ary collection of facts that can be named and treated as a single
unit. A typical application is to model a program scope; typical facts include local
declarations and relationships to other scopes.

Entity: A collection of properties that, unlike facts, are single-valued. A typical applica-
tion is to model particular objects such as a variables and procedures.

Subtree: A collection of properties, instantiated automatically to mirror the abstract tree
representation maintained by Ladle. Tree properties include, but are not limited to
structural relationships like “parent”.

As an important special case, maintained subtree properties may be declared for au-
tomatic maintenance by the consistency manager (via lazy evaluation), using node-specific
procedures that can mimic attribute grammar evaluation. These properties are especially
useful for computing properties such as expression types. Client properties are also sub-
tree properties, but may be set by outside clients of Colander. Consistency maintenance
is available for these too, making more general kinds of computation available to clients of
Colander. Other features include database triggers (actions invoked by pattern matching
on database transactions) and diagnostic messages attached to goal failure points, and used
as described in Section 5.4.

To date, logical constraint grammars have been used to define the static semantics of
programming languages, including Modula-2 and Ada, to express some aspects of design
semantics, and to describe and maintain prettyprinting information. Other problems that
can be expressed using logical constraint grammars include the kinds of analysis performed
by tools like Masterscope [82] and Microscope [1].

4.1.4 Language-Based Analysis

Program analysis in Pan involves sequential invocation of incremental Ladle and Colander
analyzers. Under what circumstances this happens is a policy question to be discussed in
Section 5.6 and again in Section 6.1 . This section describes analysis in the context of the
infrastructure.

Pan’s text representation includes change markers on a per node basis, where a text
node corresponds initially to a line of text but may subsequently fragment during editing.
Text editing primitives cooperate with the lexer by marking newly inserted text and the
locations of deleted text.

Ladle processes textual changes in two phases: lexical and parsing. An incremental
lexical analyzer synchronizes a stream of lexemes with an underlying text stream, updating

Pan is used to support itself.



40 CHAPTER 4. LAYERS OF DESIGN IN PAN

only the changed portions of the lexical stream and resetting the change markers in the text
stream. The lexical analyzer maintains a summary of changes for use by the incremental
parser.

Ladle’s incremental LALR(1) parser revises the tree-structured representation in re-
sponse to lexical changes. This parser can create a tree from scratch, but in response to
lexical changes it need only modify affected areas of the tree. It uses a variant of an algo-
rithm by Jalili and Gallier [59]. During incremental parsing, the algorithm first “unzips”
the internal tree along a path between the root and the leftmost changed area. The algo-
rithm concludes by incorporating changes and “zipping up” the unzipped portion. When
unzipping and zipping up, tree nodes representing subtrees are broken apart and then re-
constituted. For the benefit of Colander and other clients, Ladle classifies tree nodes after
each parse: newly created, deleted from tree, reconstituted, and unchanged.

Colander’s incremental analyzer proceeds in three phases, the first of which records
structural changes reported by Ladle. In this phase the analyzer removes from the database
all nodes reported deleted and, using consistency maintenance, adds to the evaluator’s
worklist any remaining goals whose satisfaction depended on those nodes. Similarly, newly
created nodes are entered into the database and all associated goals are added to the work-
list. Information associated with reconstituted nodes is retained but marked for possible
updating.

Colander’s next two phases are based on a partitioning of the goals associated with
each node: those whose primary use is to establish the context used by that structure or by
its substructures, and those goals whose primary use is to express a contextual constraint.
Goals in the first class are called first-pass goals, and are evaluated during a top-down
preorder walk of the internal tree. Goals in the second class are called second-pass goals,
and are evaluated after the first-pass goals.”

4.2 Kernel Mechanisms

The kernel layer in Pan’s framework (Figure 3.7) addresses the earlier observation that the
functional behavior of language-based editing systems should not be coupled too tightly to
the details of the enabling language-based technology. This layer:

e provides a powerful substrate upon which user-oriented services and extensions can
be built without being excessively coupled to the functionality of language-based an-
alyzers in the infrastructure;

e isolates the implementation of higher-level mechanisms from the implementation de-
tails of the infrastructure, for example to permit major changes to the tree represen-
tation without affecting the implementation of higher layers.

¢ provides mechanisms that are language-independent (or, more accurately, language
configurable) so that similar functionality and a uniform style of user interaction may
be provided with as little language-specific configuration “glue” as possible.

"In the current implementation, second-pass goals are evaluated after the first-pass goals of the subtree’s
children have been evaluated.
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This review of the kernel layer begins with a brief mention of conventional text editing
services. It then describes kernel mechanisms developed specifically for Pan and concludes
with an overview of Pan’s extension language, the medium through which many of these
mechanisms are made available.®

The low level design and implementation details presented in this section are deliberately
kept from the user’s view for the same reason that details the language-based technology of
the infrastructure layer are: to keep implementation choices from dictating design for user
interaction. Section 4.3 following describes how these kernel mechanisms actually appear
to the user, and Section 4.4 shows how a designer configures these mechanisms to create
view styles for interaction.

4.2.1 Text Representation and Rendering

Pan is implemented at every level as a text editor. Text-related mechanisms in the kernel
are exploited both by text editing services visible to the user and by the implementations
of many other language-based services.

Text Stream Representation

Pan’s internal text stream representation [131] supports conventional text-oriented services.
Cursor movement primitives include both stream-oriented (1-D) and grid-oriented (2-D)
motion, as well as movement to marked locations. Stream oriented motion may be pattern-
based (regular expression search) or character-class based (skipping to/over characters in
designated categories, for example “whitespace”). Primitive editing operations operate ei-
ther at the cursor or at an explicit text selection, and are completely reversible to support
Pan’s unrestricted undo. These primitives support more complex text operations, for ex-
ample search-replace, paragraph filling, and kill-rings (clipboards).

Less conventional are text sticky pointers; these refer persistently to individual char-
acters, but incur little overhead during text stream modification [34]. Nearly all low-level
text services use sticky pointers; more significantly, they help support complex mappings
between text and lexical stream representations.

Text Rendering Effects

Transparent to Pan’s conventional text editing functions are eight bits of display data
associated with each character. Higher-level services use the primitives listed in Table 4.1
to modify display data in regions of text. Font selection (up to 8 possibilities per view) is
independent of ink color (4 possibilities per view). Two kinds of background shading are
independent of both font and ink selection, and independent of each other. Text underlining
is also independent and similarly implemented, but it is reserved by the text editor for
textual selection.

The text rendering engine interprets each character’s display data using context-sensitive
color maps and a font map, implemented as option variables (Section 4.2.9), which specify
particular colors and fonts. Fonts may be proportionally spaced and mixed in size. Color

®A few experimental services that are not yet language-based use many of these same mechanisms:
browsing interface to the file system; a hypertext-like browser for UNIX man pages; and an elaborate internal
help and documentation system that can be configured for each category of user.
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Form Parameter
Set-Font Font map index: 0-7
Set-Ink Foreground color map index: 0-3

Turn-Mode-0ff Background color map id :color-bgil or :color-bg2
Turn-Mode-On  Background color map id :color-bgl or :color-bg2

Table 4.1: Text Rendering Forms in the Extension Language

maps are defined in pairs, a primary and an alternate version of each, used during periods
of document consistency and inconsistency respectively.

4.2.2 Graphical Rendering

Although primarily a text editor, Pan’s kernel includes some support for rendering simple
graphical objects. Graphical presentation is limited at present to trees with textually la-
beled nodes, but the organization permits the addition of more general layout algorithms.
User manipulation of graphical displays is likewise not supported yet. As with Pan’s text
rendering effects, many configurable options control drawing parameters, for example fill
colors, line colors, and line thickness.

4.2.3 Analysis Control

Pan’s incremental language-based analyzers, described in Section 4.1, may be run at any
time. Under what circumstances this happens is a matter of policy and configuration.

Immediately after analysis the text of a document is consistent with the derived data
(internal tree representation and database). Any subsequent textual modification to a docu-
ment causes text and derived data to be inconsistent until another analysis has occurred. °
Pan’s language-based analyzers are unable to determine or even estimate the consequences
of unanalyzed textual changes, so no derived data can be guaranteed correct during periods
of inconsistency.

According to the “Strict versus Gracious Services” design metaphor, a service that
depends on language-based data may either be strict, in which case it may not be invoked
in the context of an inconsistent document, or it may be gracious, in which case it may
be invoked at any time. The implementation of a gracious service must be prepared to
function in two modes: an exact mode when derived data is reliable and an approximate
mode otherwise (when a document is inconsistent). A gracious service may be configured to
operate either strictly or graciously, but a service whose implementation does not support
approximate operation must always operate strictly. Services operating strictly are usually
configured to trigger analysis automatically when invoked, ensuring that they never operate
inappropriately.

®This will be shortened by saying that the document being viewed is either “consistent” or “inconsistent”.
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4.2.4 Database Access

An important aspect of Colander’s operation is the maintenance of a database, described
in Section 4.1.3. The organization of a document’s database is directed by the Colander
description being used, and much of the data recorded in the database is intended to
facilitate efficient incremental analysis.

Two kinds of client interface enable other services to exploit the database with mini-
mal interaction between service implementation and Colander description. Complete in-
dependence is possible only in limited cases, since the description configures the database.
Colander’s native database interface resembles Prolog; its paradigm for interaction and its
logic-based intermediate language differ sharply from CoMMON Lisp, its implementation
language. The following client interfaces hide the details.

Node Properties

The Colander database permits assignment and reading of arbitrarily named properties
on nodes of the internal tree representation. This provides a convenient mechanism for
externally managed tree attribution, accessible via the forms listed in Table 4.2. The
interactive forms may be accessed directly by users under some circumstances. When node

Get-Node-Property Interactive-Get-Node-Property
Remove-Node-Property Interactive-Remove-Node-Property
Set-Node-Property Interactive-Set-Node-Property

Table 4.2: Node Property Access Forms in the Extension Language

properties are declared in the underlying Colander description, clients may interact with the
analyzer by setting and reading node properties that may be involved in other computations.
When not declared in the underlying Colander representation, these extrinsic properties
are completely transparent to the analyzer, and no goals within the Colander description
may depend on such a property.

Generalized Queries

When more complex client access to the database is necessary, a certain amount of coordi-
nation with Colander descriptions is unavoidable. To make this as convenient as possible,
groups of generalized queries, such as those listed in Table 4.3, permit access following
simple models that are not language-specific; client services may use generalized queries
without any language dependence. Generalized queries only work when an underlying
Colander description defines query functions of the same name. Binding is dynamic, so
that any language-based view style loaded at any time may use generalized queries. Invoca-
tion of a generalized query for which the underlying Colander description has no counterpart
produces a run-time warning that the requested service is unsupported.
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query-node-entity Entity to which an identifier refers.
query-node-scope-name Scope name of entity to which identifier refers.
query-entity-declaration Declaration node of entity.
query-entity-type-string Textual description of entity’s type.
query-entity-value Value of entity if known.
query-entity-instances List of all uses of entity.

Table 4.3: Generalized Queries Concerning Named Entities

4.2.5 Internal Object/View Model

Conventional text editing in Pan is augmented by an object/view mechanism that provides
familiar behavior in the ordinary case (where a user simply visits and expects to see the
contents of a text file document) but which also permits the user to see simultaneous multiple
views on a document, each presenting different aspects of the document.

Pan’s object/view model is transitional, designed to permit experimentation with mul-
tiple views while the architecture of its successor is developed. For this reason, the model
permits but does not directly support any particular object/view relationships, for example
Garlan’s data-sharing views [43] or the Model-View-Controller paradigm [69] developed for
Smalltalk-80. Implementation restrictions (concerning the the interface between Ladle’s
lexer and the text representation) permit only one view per object that may be modified
by the user.

Pan’s object/view model rests on four internal concepts: edit object, buffer, view, and
window. Figure 4.3 depicts the relationship among these concepts for a file being edited
with two views active and three windows open.!?

Edit Objects

An edit object!! is anything Pan users may see and edit, typically software documents.
Edit objects may also be internal data structures; for example the list of views active
during a Pan session is represented as an edit object that can be viewed and manipulated.
Storable edit objects reside in the UNIX file system at present, although both design and
implementation anticipate more appropriate persistent storage. Figure 4.4 shows the current
implementation class hierarchy for edit objects. A typical language-based edit object has
the properties listed in Table 4.4, where the properties deriving from each of its relevant
parent classes (both class slots and instance slots) are indicated.

19The screen snapshot appearing in Figure 4.7 on page 61 shows this scenario as it appears to the user.

11This use of the term object should not be confused with the notion of object as understood in object-
oriented programming, although the two are loosely related. Scofield used “emendand” in roughly the same
sense as Pan’s “edit object” [112], but the term seems not to have caught on. Many of Pan’s internal
structures, on the other hand, including edit objects, are implemented as CLOS objects in the object-
oriented programming sense. Discussion of internal structures will favor the terms “instance” and “class”
for CLOS implementation constructs to avoid confusion.
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Figure 4.3: Example: Internal Object/View Model

Sedit-object$

Sview-list-edit-object$ textbuffer Sman-page-edit-object$
Sdired-edit-object$ Sman-apropos-edit-object$

S$lb-edit-object$

Sada-edit-object$ « o .

Sc-edit-object$ Spascal-edit-object$

Smodulaz-edit-object$

Figure 4.4: Edit Object Class Hierarchy
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From parent class $edit-object$:

presentation name
storable?

default view-style
protected?
modified?

undo history

(class) User name for class, e.g. “modula2 program”.
(class) Is persistent storage possible?

(class) Default view style for class.

User permitted to make changes?

Changes since most recent store?

List of modifications, reversible.

From parent class $1b-edit-object$:

language name
syntax data
semantics data

root tnode

parse current?
local semantic data
database updated?
structure cursor
current query

(class) Underlying language, eg. “modula2”.
(class) Ladle data for language.

(class) Colander data for language.

Root of Ladle tree representation.

Has Ladle run since most recent changes?
Colander database for program.

Has Colander run since most recent changes?

A distinguished node in the tree.

A distinguished, named list of nodes in the tree.

Table 4.4: Properties of a Language-Based Edit Object

Buffers

A buffer is the container for an edit object, once created or retrieved from storage. Buffers
represent two important relationships: between edit objects and persistent storage (an
edit object may or may not have a storage location), and between edit objects and their
associated views (a buffer may have one or more views on its edit object). Buffers are only
marginally relevant to issues of visual presentation and editing, which are the business of
views and windows. There is only one type of buffer, and it has the properties listed in

Table 4.5.

edit object Object being edited.

store Persistent storage location for edit object.

backup Storage location for edit object’s backup copy.

checkpoint  Storage location for edit object’s most recent checkpoint copy.
view list Current views on edit object.

Views

Table 4.5: Properties of a Buffer

A view creates a presentation (a conceptual picture) of an edit object and may provide
editing services such as navigation, selection, and modification. It is the responsibility
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Sgraph-view$
Sview-list-view$
Sman-page-view$
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Sc-text-view$ Ssubtree-list-view$
$modula2-text-view$

Spascal-text-views$

Figure 4.5: View Class Hierarchy

of a view to translate client requests for alterations into primitive operations on the edit
object’s internal representation. Figure 4.5 shows a subset of the current implementation
class hierarchy for views. Not shown are so-called “mixin” classes that exploit multiple
inheritance to add implementation features. A typical language-based, editable view has
the properties listed in Table 4.6, where the properties deriving from each of its relevant
parent classes are indicated. Section 4.2.8 discusses the design of selected view classes in
more detail.

Windows

A window renders some part of a view’s presentation onto the user’s screen. The user
chooses that part by scrolling and zooming. A window is also the locus for user interaction,
from which editor context is determined, in which commands may be executed in response
to user actions, and where pointing (primitive selection and other techniques) is recognized.

4.2.6 Operand Classes

Any language-based editing system must support a vocabulary of categories that services
and users may use to communicate about document components. For example, a syntax-
directed editor for programs may use simple syntactic categories such as “statement” and
“procedure”. A Pan operand class (“opclass” in the implementation) addresses this
need in a configurable way. The operand class is a purely definitional entity for specifying
named subsets of document components; many of the user services described in Section 4.3,



48

CHAPTER 4. LAYERS OF DESIGN IN PAN

From parent class $views$:
presentation name (class) User name for class e.g. “modula2 text view”

view-style Associated view-style.
variable table Variables bindings for view scope.
window list Currently active windows on view.

From parent class $text-view$:
textbuffer Text stream view data.
text selection A distinguished region of text in stream.

From parent class $1b-text-view$:
highlighter 1ist  Enabled highlighters.

Table 4.6: Properties of a Language-Based Text View

for example navigation, highlighting, and projection, are parameterized by operand class
definitions. Membership is determined dynamically, based on specifications that can refer
to any information available in the infrastructure.

An operand class has the properties listed in Table 4.7. Operand class titles describe

name A symbol eg. modula2-int-expr-opclass.
title A string e.g. “Integer Expression”.
documentation A string.

apropos - A list of subject words.

predicate definition A complex predicate on tree nodes.

extensional definition A membership enumeration.

Table 4.7: Operand Class Properties

class contents in concrete, user-comprehensible terms. Operand classes may be generic
(for example “Placeholder™), language-specific (for example “Statement”), or even task-
specific (for example “Expensive Type Coercion” used while performance tuning); the
distinction is invisible to clients. Generic ones are typically predefined by the system, and
the rest are generated as a side effect of language-based view style specifications. Clients
of the mechanism use the access functions described abstractly in Table 4.8; only the first
function is strictly necessary, but the rest permit useful optimization.

The following characteristics of the operand class mechanism reflect general goals of the

kerne] layer and set it apart from other language-based systems that lack an equivalent

layer.

o It is much more flexible than simple grammatical partitioning, for example compared
to the “phyla” approach taken in Mentor [63] and in the Synthesizer Generator [103)].
Specifications can exploit any kind of information and classes can overlap. Tree nodes
not in any class are effectively invisible to user services. The Synthesizer Generator
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list members Enumerate all current class members.
count members Count all current class members.
any members? Are there currently any class members?

node is member? Is a particular node currently in class?

Table 4.8: Access to Operand Class Membership

achieves a similar effect with the “resting place” mechanism, but only one (anony-
mous) class of resting places is possible.

o It separates specification from details of syntax and implementation, unlike the Syn-
thesizer Generator’s “resting place” mechanism, for example, whose specification is
embedded in the unparsing scheme. Conversely, it frees the designer of the inter-
nal tree representation (expressed in the Ladle description) from the kind of user-
motivated guidelines for AST design suggested for Mentor [29,63]. Experience with
Colander descriptions suggests that tree representation choices are best made to fa-
cilitate analysis.

e It permits and encourages uniform behavior across languages. For example users rea-
sonably expect to refer to “Statements” in every language that has them. A separately
defined operand class per language, each titled “Statement”, permits uniform behav-
ior without constraining representational decisions made as part of each language’s
Ladle specification. In other cases, a single predefined operand class, for example
“Language Error”, can be used directly for many languages.

o It permits dynamic creation of new categories.

Operand Class Implementation

Access to operand class membership data would most reasonably be supported in the
language-based infrastructure, using a general-purpose analyzer and database. The need
for this kind of computation, however, was not anticipated in the design of Colander (Sec-
tion 6.1.6), so the description language lacks the necessary expressive power. A prototype
implementation for operand classes is at present external to the analyzer and suffers from
that lack of integration.

In the general case, operand class membership is defined by a predicate on tree nodes.
For example the specification in Figure 4.6 defines an operand class that contains all expres-
sions of type integer for the demonstration language “simple.” In particular, the predicate
specifies nodes whose syntactic operator is “expression,” an abstract nonterminal, and
whose property “expr-type,” produced by a database query, is the string “integer.” Pred-
icates are written using a simplified declarative syntax that includes the operators listed in
Table 4.9, where: <operator-name> is the string name of an abstract non-terminal, rule, or
lexeme from the underlying Ladle description; <predicate> is a CoMMON Lisp function of
one argument, a tree node; <variable> is the symbol name of a scoped Pan variable; and
<test-spec> is a recursively defined specification. Appendix C includes full documentation
on the predicate specification language for operand classes.
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(simple-int-expr-opclass

ttitle "Integer Expression"
:documentation "Simple integer expressions."
:definition (:and (:operators "expression')

(:predicate
#’ (lambda (tnode)
(string= (sem:Get-Node-Property
tnode
’expr-type)
"integer")))))

Figure 4.6: Example Operand Class Specification: “Integer Expression”

(:operators <operator-name>#*)
(:has-property <property-name>)
(:predicate <predicate>)
(:member-variable <variable-name>)
(:or <test-spec>* )

(:and <test-spec>* )

(:not <test-spec>)

Table 4.9: Operators for Operand Class Predicate Definition
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Pan’s analyzers and other infrastructure mechanisms incrementally maintain lists of
nodes in several important categories. When an operand class can be specified completely
in terms of the union of one or more such lists, this information may be supplied as an
optional “extensional definition.” Sometimes both a predicate and extensional definition
are possible. This is especially helpful when the predicate may be evaluated at a single tree
node more efficiently than checking for the node’s membership in the membership lists.

Two implementation techniques address efficient enumeration of operand class mem-
bers. First, the membership count and list of members are cached to eliminate redundant
computation. This is especially helpful when only a predicate has been specified and mem-
bers may be enumerated only by a complete tree walk. The second is to exploit a class’s
extensional specification directly when available.’

4.2.7 Structural Navigation

The kernel supports two kinds of location: textual location, a single character in the text
stream, and structural location, a node of the internal tree representation. The structure
cursor, like its textual counterpart, moves via navigation primitives that take it forward
or backward. Unlike text cursors (one of which is owned by every text-based window),
all views on an edit object share a single structural cursor. A simple notification protocol
permits any view to set the cursor and ensures that all views are notified when it changes.

Tree Traversal

Structural navigation is implemented as preorder traversal, both forward and backward,
parameterized by an operand class (and in particular, by the predicate definition for the
class). Thus, the primitive structural move is of the form “move to the next (previous) node
for which a predicate is true.” Other simple movements, for example “first,” “last,” “nth
next,” “nth previous” and “search,” use the same underlying mechanism.

Many language-based editing systems use preorder traversal in some form, but often
in combination with other traversals. For example, the Synthesizer Generator supports
four separate commands for moving forward by one, with overlapping but subtly different
behaviors. Because navigation in Pan is parameterized in concrete user terms (e.g. “State-
ment”) and not by grammatical peculiarities (e.g. “Optional Placeholder”), a single method
has sufficed so far. Preorder traversal has the additional advantage of reversibility, unlike
ALOE’s traversal, for example, whose asymmetry Medina-Mora mentions as a problem (83].

Location Mapping

A small set of conventions guide conversion between textual and structural locations. A
structural location maps to the first character of the node’s textual yield. The reverse
mapping from text to structure is more complex, in part because, like primitive structure
motion, it is parameterized by an operand class, and in part because it is parameterized
by a directional bias (either “forward” or “backward”). Text to structure mapping takes
places in stages:

1. Map from a character to an enclosing lexeme, if any, otherwise to the next (previous)
lexeme (depending on bias), if any, otherwise to the previous (next) lexeme, otherwise
signal an error (empty lexical stream).
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2. If the lexeme is not a leaf node (a comment, for example) move forward (backward)
in the lexical stream to a leaf node, if any, otherwise move backward (forward) to a
leaf node, if any, otherwise signal an error (null tree).

3. If the leaf node is not a member, move to the nearest enclosing node that is a member,
if any, otherwise traverse the tree forward (backward) to a member node, if any,
otherwise traverse the tree backward (forward) to a member node, otherwise signal
an error (empty class). '

A similar but simpler set of conventions guide conversions between arbitrary structural
locations and a desired location parameterized by some operand class (for example, to
support a move to the “next statement” when the structure cursor is on a declaration).

4.2.8 View Frameworks

The low-level implementation of every Pan view is provided by a CLOS view class and
associated methods. Figure 4.5 on page 47 depicts the current inheritance hierarchy for
view classes.!? This section describes selected elements of that hierarchy in more detail.

Standard View Classes

The class $primary-text-view$ supports conventional text editing. Its language-specific
descendents (offspring of class $1b-text-view$) implement the kind of language-based
editing that is the primary focus of this research. Most of this dissertation describes primary
text views.

In contrast, view classes $dired-view$, $view-list-view$, $man-page-view$, and
$man-apropos-view$ implement useful special-purpose views: a directory editor, the list
of views active during a session, and a UNIX “man” page browser. These prototype
implementations exploit none of Pan’s language-based machinery, but they emulate some
of it and are designed to suggest the kinds of broad applications of the editing metaphor
suggested by Fraser [36,37,38] and explored by general frameworks such as Notkin’s Agave
 [93] and Scofield’s Voodoo [112]. Pan’s successor, the Ensemble project [48], is exploring
general applications of Pan’s language-based technology.

The remainder of this section describes view classes that act as implementation frame-
works for the construction of useful alternate views (as opposed to the primary, editable
view) onto language-based edit objects in Pan.

Batch Text Views

The simplest alternate view framework is implemented by class $batch-text-view$; it
supports the non-editable display of a single text segment, generated anew after each incre-
mental analysis. Any subclass that implements CLOS methods view-compute-name and
batch-text-view-fill (generate the textual contents of the view) is a fully functional Pan
view implementation. Shared behavior supported by this view class includes initialization,

12This hierarchy is for implementation only; to users every view is an instance of a view style; see Sec-
tion 4.3.3
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marking the view “dirty” when the edit object is inconsistent with its text stream,!® and
invoking method batch-text-view-fill when needed.

Like all other text-based views in Pan, both primary and alternate, standard text editing
services are always available. Batch text views differ from primary views in this regard only
by the fact that the textual contents are permanently protected against user modification.

Simple batch text views have been most useful for the continuous presentation of
debugging information, for example the textual portrayal of Colander’s local database
($database-view$) and of the text stream’s internal data structures. Data more closely
related to the internal tree representation is better presented as a tree projection.

Tree Projections

View class $tree-list-view$ supports the non-editable display of a sequence of text ele-
ments, each generated from a tree node member of some operand class. This amounts to
a projection of some operand class onto a sequential list, modulated by a node printing
method and possibly by a sort order. Class instances are fully functional view implemen-
tations, with their behavior determined by assignment to the slots listed in Table 4.10.

operand class Specifies which tree nodes to project.
print function Generates text entry from each tree node.
node sort function Optional sorting function on member tree nodes.

string sort function Optional sorting function on generated text.

Table 4.10: Parameters for Tree Projection Views

View behavior differs from batch text views by the addition of structural navigation, us-
ing the structure cursor shared with all other views on the edit object. Structural navigation
proceeds forward and backward over a list, where each member is the text corresponding
to a single node in the internal tree representation. When the structure cursor lands on a
node, perhaps by navigation in some other view, not present in the list, then no structure
cursor is visible in a projection view.

This view class framework supports a number of views useful to users as well as some
useful for debugging (for example, one debugging view class projects the entire tree, using
an operand class defined by the predicate t).

Graphical Trees

A rather different framework for alternative viewing is implemented by the class named
$program-graph-view$, which uses the graphical rendering mechanisms mentioned in Sec-
tion 4.2.2. Standard behavior for this class is to depict graphically Pan’s internal tree rep-
resentation, labeling each node with text generated by a print function that parameterizes
the view. These views are useful primarily for debugging Ladle and Colander descriptions,

13As with primary views, batch text views are shown to be dirty by a shift to alternate color maps for
text rendering, see Section 4.3.9.
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using print functions that reveal various aspects of the representation’s internal state (parse
changes, for example, and database links).

Prototype Program Presenter

An experimental text-based view framework provided powerful presentation options in a
configurable way [16]. Exploiting Colander for access to information enabling context-
sensitive formatting as well as for general purpose node attribution and propagation, this
framework anticipated development now taking place within Pan’s successor, the Ensemble
project.14

4.2.9 Configuration and Extension

Central to the kernel is a rich set of facilities for configuration, customization, prototyping,
and extension. These facilities, summarized here, directly address Pan’s requirement for
“extensibility and customizability” and indirectly address most other requirements. More
details appear in the Version 4.0 user manual [31] and in Pan itself via its extensive self-
documentation system.

Extension Language

Pan’s extension language is embedded in COMMON Lisp, deliberately blurring boundaries
among system configuration, declarative customization, extension by programming, and the
standard implementation of many high-level services: all these are accomplished with CoM-
MON LisP code distinguished by heavy use of extension-level primitive functions. This open
approach has proven effective for a research-oriented implementation cycle in which new ser-
vices are prototyped largely at the extension level and subsequently migrate downward for
improved efficiency and integration.

For example, the definitional forms (implemented as COMMON LisP macros) listed in
Table 4.11 create system entities, both user-visible and internal, and register these entities
with Pan’s internal documentation and help system. Some of these entities are described
in more detail below.

All definitional forms, as well as the help system are dynamic; entities can be predefined,
or they can be added and redefined at any time. Table 4.12 lists the number of instances of
various entity types that exist during a session in which eleven language-based view styles
have been loaded.

Pan’s standard configuration is specified by a file of CoMMON LisP code that is distin-
guished only by relative heavy use of the binding forms listed in Table 4.13, the same forms
that a user might use for customization in a personal startup file.

Scoped Variables and Context

Much of Pan’s configurability depends on editor variables; these generalize CoMMoON
Lisp’s global variables (normally defined using defvar) with bindings that depend upon
editor context. All activity in Pan takes place in the context of a view (which owns a

1 This framework does not appear in the current implementation hierarchy because its implementation
was not integrated well enough to merit release with the Pan system.
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Define-Char-Set
Define-Command

Define-Command-Parameter-Initializer

Define-Constant
Define-Documentation-Type
Define-Function
Define-Highlighter
Define-Hook
Define-Hook-Function
Define-Language-View-Style

Define-Macro
Define-Operand-Class
Define-Operand-Command
Define-Option-Variable
Define-Variable ‘
Define-Variable-Cache
Define-View-Class
Define-View-Style
Defvariable

Table 4.11: Definitional Forms in the Extension Language

Character sets: 6
Commands: 4424
Command parameter initializers: 3
Constants: 1
Documentation types: 9
Flags: 101
Functions: 153
Highlighters: 10
Hooks: 10
Hook functions: 11
Macros: 53
Menus: 129
Operand classes: 72
Operand commands: 16
Options: 98
Variable notifiers: 90
Variables (other than options): 51
View classes: 24
View styles (language-based): 11
View styles (other): 25

Table 4.12: Typical Population of Defined Entities
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Add-Hook-Function
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File-Type-Use-View-Style

Add-Language-Auto-Require Key-Binding
Auto-Require-Command Modify-Collection-Variable
Auto-Require-Edit-Object-Class Rebind-Menu

Autoload-File Remove-Hook-Function
Bind-Key Set-Char-Match

Bind-Menu Set-Char-Set
Bind-Oplevel-Command Unbind-Variable
Bind-Oplevel-Command-List Variable

Bind-Oplevel-Menu Window-Modify-Flag-Collection
Copy-Menu With-Variable-Binding

Create-Menu With-View-Scope
Def-File-Type-Edit-Object-Class With-View-Style-Scope
Define-Structural-Oplevel-Commands (setf (variable <var> <scope>) <value>)
Empty-Hook

Table 4.13: Binding Forms in the Extension Language

table of variable bindings), and every view has an associated view style (which also owns
a table of variable bindings). Thus, context (normally defined by the locus of the user
event being handled) always distinguishes three tables of bindings in the scoping hierarchy
listed in Table 4.14 (the global table is shared by all view styles). Variables may be bound,

Scope Characteristic bindings
global Ubiquitous system behavior and defaults.
view-style Preconfigured, specialized editing contexts.
view Instance-based overrides and prototypes.

Table 4.14: Context-sensitive Scope Hierarchy for Editor Variables

unbound, or explicitly shadowed at any or all scope levels; inner (lower) bindings implicitly
shadow outer bindings. .

Variables may be set-valued, in which case individual set members may be selectively
added, deleted, and shadowed in particular scopes. New variables may be defined at any
time. Variables may have restrictions, for example predicates for type checking prospective
values and binding restrictions to certain scopes. Editor variables may be made active by
dynamically adding one or more notifier functions; these are called any time a binding
occurs.

Any variable may have a variable cache, an automatically created “shadow” variable
whose bindings are guaranteed to parallel those of the primary variable, but with a value
computed by applying a specified translation function to the primary variable’s value. Vari-
able caches permit certain kinds of configuration data to be maintained in both external
(user-accessible) and internal (e.g. preprocessed or compiled) forms. Translation is lazy,
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making variable caches especially useful for configuration data (color names as strings, for
example) whose translation (to an integer color handle returned by registration with a
window server) cannot be performed until run time.

All editor bindings (Table 4.13) are implemented with editor variables and are similarly
scoped. Many fundamental mechanisms are parameterized dynamically by scoped option
variables, for example fonts, colors, and window configuration.

Pan’s editor variable mechanism is more general than its GNU EMACS counterpart
[121]. For example, EMACS variables have only two scope levels; any mode-specific con-
figuration must be performed by establishment of mode-specific buffer-local variables upon
creation of each buffer instance. Pan’s view-style scope captures and reifies the notion of
a mode, making it a shared, first-class entity. At the same time, the instance-specific view
scope permits local overrides when needed.

Function, Command, and Macro Definition

Primitive operations in Pan’s extension language are implemented as CoMMON LisP func-
tions and macros, but with additional properties that ensure robustness. First, these
primitives are automatically integrated with Pan’s undo system. Those functions (called
commands) that are bindable to keystroke sequences and menu entries are also automat-
ically integrated into the run-time command dispatch mechanism. Declaratively specified
parameter initializers define the arguments needed by commands. Initializers direct
the command dispatcher to collect values dynamically (by user selection, by configurable
prompters, or by default) with automatic type checking and error recovery. Initializer func-
tionality is integrated so that commands may also be called as extension-level functions by
client code using no special syntax. Commands may have restrictions, for example limiting
their invocation to the contexts of particular view classes or object classes.

Generic Exception Handling

A uniform framework for exception handling permits authors of simple extensions to ignore
the issue and still produce robust code. Extension-level primitives guard their own internal
state and signal exceptions (with an associated message) using one of the forms listed in Ta-
ble 4.15. Response to these forms is sensitive to Pan’s exception-handling context, another

Form Abstract functionality
Announce Supplies information.
Editor-Warn Draws attention, supplies information.
Editor-Error Interrupts operation, supplies information.

Table 4.15: Forms for Signaling Exceptions in the Extension Language

of Pan’s several, generally orthogonal notions of internal context. In particular, exception-
handling context is independent of the “editor context” used for variable scoping. For
example loading a faulty language-based view style might produce a call to Editor-Error,
but view style loading can take place in several exception-handling contexts:
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e View styles may be preloaded while a new Pan is being built; in this case the error
handler terminates the build and logs the message.

e View styles may be loaded automatically at run time; the run-time error handler dis-
plays the message, beeps, and resets the command dispatcher, effectively terminating
the command that triggered the load.

e View styles may be loaded directly from within a CoMMON LisP debugging loop;
here the error handler calls the debugger recursively, preserving the call stack for
inspection.

Exception-handling context is implemented by dynamically-bound exception handlers [130].

Integration with Help System

Implementation of every configuration mechanism in Pan has been accompanied by cor-
responding additions to the internal help and self-documentation system. These additions
typically come in pairs: one command to display the configuration relative to a particu-
lar view (reflecting inherited and shadowed bindings from parent scopes), and another to
list all entities of a particular kind together with internal documentation. All help system
commands produce multiple-font displays that are easy to read.

This concludes the description of Pan’s kernel layer. The services in this layer, invisible
to users, help construct the basic, user-visible services described in the following section.

4.3 The Elements of User Interaction

The basic services layer in Pan’s design framework (Figure 3.7 on page 30) implements
the functional behavior of the system as seen by users. Following Pan’s requirement for
“coherent user interaction with system and programs”, this layer is designed to present
users with a system mode] that is:

e simple, containing as few distinct new concepts!® as possible;
e natural, exploiting concepts with which users are already familiar;

o flexible, enabling each basic service to be applied to a variety of application areas;
and

e language-independent, providing equivalent behavior in the context of every language
used.

This section deseribes every basic service that contributes to the system model presented
to Pan’s users, with frequent reference to the design metaphors, presented in Section 3.5,
that guide their collective design. Each basic service is implemented upon one or more of
the kernel mechanisms described in Section 4.2, and in cases where a basic service is closely
related to an underlying kernel service, the discussion here points out crucial differences

15The notion of new concept is relative, of course. The intended sense here is “new relative to experienced
software practitioners” of the kind discussed in Chapter 2. Those practitioners are presumably familiar with
at least one powerful text editing system.
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between the two. Every basic service appears to the user only in the context of a particular
configuration; the discussion here mentions important degrees of freedom for configuration
in each case, and Section 4.4 discusses the general issue of configuration more thoroughly.
How basic services are used is of paramount importance, but the discussion here cen-
ters on their definition and behavior, mentioning only suggestive examples of their use.
Chapter 5 on the other hand is dedicated exclusively to the topic, showing how Pan’s basic
services can serve as building blocks for a wide variety of applications, and how they, when
appropriately configured, resolve a number of problems with user interaction.

4.3.1 Multi-Window Text Editing

Pan’s text editing interface is a bit-mapped, multiple-font, mouse-based system with mul-
tiple windows, in the spirit of Bravo [70] and its many successors. A Pan user may open
any number of windows onto each document’s virtual two-dimensional text display. All
windows on a document share a single, visible selection that appears as underscored text
in any window in which it happens to be visible. Each window has its own scroll posi-
tion and text cursor, both of which persist when the window is made invisible. Some
text-oriented commands operate on the selection, and others, including ordinary character
insertion, operate at the text cursor; all are undoable.

The editor is a hybrid based on two familiar models: the Macintosh {108] and EMACS
[122]. Like both of those and many other editors, Pan treats text as both a stream and a two-
dimensional page. Like Macintosh editors Pan has an insertion point that is distinct from
the selection,!® has a global clipboard, and supports the menu- and key-driven commands
Cut, Copy, and Paste. Like EMACS, Pan offers a rich set of text-oriented editing commands
and EMACS-compatible keybindings [31].

4.3.2 Simplified View Model

Although views are implemented by the internal object/view model, described in Sec-
tion 4.2.5, Pan presents the user with a much simpler model that is no more complex
than an ordinary editor much of the time.” In this simplified model there exists mainly
windows and files (along with other named things, for example, directories, and man pages)
that a user can “visit,” where “visit” means “open a window onto”. Of the four concepts in
the internal model (edit object, buffer, view, and window), the notions of edit object and
buffer are concealed entirely, and the notion of view is implicit much of the time.

Hiding Edit Objects in the Model

From the user’s perspective, “edit object” merely names the category of things that can
be visited in Pan, an unnecessary bit of implementation terminology. All communication
between Pan and user about edit objects is phrased in terms of specific instances, for
example “The File fact.mod” or “The Directory src/.”

6This conflicts with the EMACS model where the insertion point defines one boundary of the selection.

'"This approach derives not from any condescending estimate of a typical user’s ability to understand the
full model, but from the rather opposite point of view: the typical user has more important and complex
matters to think about than useless (to the user) implementation concepts that the designer was unable to
abstract away.



60 CHAPTER 4. LAYERS OF DESIGN IN PAN

Hiding Buffers in the Model

As depicted in Figure 4.3 on page 45, a Pan buffer embodies two relationships important to
users; both are revealed by naming conventions, with no mention of buffers. The relationship
between the internal edit object and (possibly) a persistent storage location, is captured
by the name of the buffer, which is also the name of the default primary view that the
user sees. That name follows familiar conventions. For example a buffer on the file stored
in /usr/local/src/manual.tex might be named “manual.tex” unless there is another
buffer of the same name, in which case “manual.tex<2>” is used. As with GNU EMACS
and many other editors, users are free, in fact encouraged, to think of the short name as a
convenient handle (or surrogate) for the file itself, with no consideration of the machinery
involved. The second relationship, between the internal edit object and one or more views,
is discussed next.

Downplaying Views in the Model

In the ordinary case a user invokes the Pan Visit command, supplies the name of a file,
and a window appears showing part of the file’s contents. The user may open more win-
dows as needed, for example as depicted in Figure 3.2 on page 23. Each window is la-
beled in terms of the specific thing being visited. For example in the window labeled
“Text Stream: manual.tex,” the string “manual.tex” is the view (and buffer) name and
“Text Stream” is the kind of view. The name “manual.tex” also appears in a special
window that lists the short names of what is currently being visited. That special window
is titled “View List” and is the only explicit mention of views. The user opens windows
on existing views by simply clicking on a name in the view list and invoking the command
Visit. In the simple case the user is encouraged to think of the short view name as a
surrogate for the file itself; in effect, the edit object, buffer, and primary view all have the
same name.

Potential for confusion arises when the user requests alternate views in addition to the
primary view, since the relationship between edit objects and views is now one-to-many
and this relationship must be clear to users. A new mechanism could be added, for example
windows subdivision or a more complex view list, but those carry both implementation costs
and cognitive overhead for users. A simple extension to Pan’s view naming convention, along
with careful choice of view names, suffices, as shown in Figure 4.7.2® Just as a numeric suffix
of the form “<2>” disambiguates edit object names when necessary, a suffix naming the kind
of view, “[Language Error]” in the figure, disambiguates view names when necessary, that
is, when a buffer has more than one view. The view suffix is null for primary views, ensuring
that the multiple view mechanism is invisible in simple cases.

Uniqueness of view names isn’t enough, however; users must be able to answer two
crucial questions at a glance. First, “what (edit object) is this window associated with?”
This is evident from the first part of the view name, which names the thing being visited
(buffer and edit object). Second, “what views do I have (associated with this edit object)?”
This is evident in the “View List” view; all view names are sorted alphabetically, effectively
clustering related views (with alternate views following the primary view).

18The diagram appearing in Figure 4.3 on page 45 shows this scenario as reflected in implementation
€ P
concepts.
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Figure 4.7: Using Pan: Multiple Views

4.3.3 View Styles

In contrast to Pan’s object/view model (Section 4.2.5) and implementation of view classes
(Section 4.2.8), the view style is a first-class, user-visible concept. A view style is a mode
in the general sense: it modulates how the system responds to user actions. A view style
in Pan is a context for user interaction that offers a particular configuration of services
designed to assist a particular class of users with a particular kind of task involving a
particular kind of document.

Modes are the subject of some controversy and confusion [62,128], but they are ubiqui-
tous in real life [61] and necessary for powerful systems such as Pan. As a practical matter,
modes invite a large class of user errors that Norman calls “mode errors”: user action ap-
propriate to a system state (mode) other than the one the system is in at the time [91]. The
best design strategy for ameliorating these problems, other than to avoid needless modes
and gratuitous variation, is to provide mode feedback so that relevant system states are
continually visible. )

Since Pan permits creation and loading of any number of different view styles, mode
feedback for view styles is configured by the view style specification. A specified view
style logo appears at the top left of each window’s panel; this is a visual announcement
and reminder of the view style in effect for the window. Pan’s standard configuration
assigns a default view style to each kind of edit object that the user might visit, so the
view style logo serves simultaneously to identify the view style and the kind of thing visible
in the window, for example plain text file, directory, or Modula-2 program. As a further
contextual clue, the language name, appearing in the panel, displays which underlying
language, if any, is being used by the view style. In cases where only one view style exists
per language, this is redundant (though useful), but in general there may be more than one
view style based on an underlying language.
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Figure 4.8: View Classes and View Styles

Pan view styles are implemented primarily by configuration, using the scoping mecha-
nisms described in Section 4.2.9 to create and configure instances of various basic services.
A user familiar with the notion of view style configuration can obtain detailed information
at any time about a particular view style in effect (taking into account local, view-specific
overrides) by invoking Pan’s help system (Section 4.3.12).

A view style may optionally specify an underlying language, whose Ladle and Colander
descriptions will be loaded and used automatically in the context of the view style. Sec-

tion 4.4 discusses techniques and guidelines for creating effective language-based view styles
in Pan.

An essential part of each view style’s configuration is selection of a view class to imple-
ment its general behavior. Figure 4.8 shows a subset of the current class implementation
hierarchy for views (as in Figure 4.5 on page 47) annotated to show how view classes imple-
ment view styles. Not shown are so-called “mixin” classes that exploit multiple inheritance
to add implementation features. View classes without annotation in the figure currently
implement exactly one view style, usually similarly named. For example, the view style
view-list-view-style is the only view style that uses class $view-list-view$. Some
classes on the other hand, for example view class $1b-text-view$, do not implement any
view styles directly, but support subclasses who share behavior; these classes are annotated
with an asterisk in Figure 4.8. Finally, some view classes are shared by several view styles,
since the difference in their behavior can be specified completely by configuration; these
classes are annotated with lists of client view styles in the figure.
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4.3.4 Panel Flags

Just as the view style logo at the top left of each panel provides important contextual
information, an array of flags, small glyphs at the top right of each panel, supply contextual
information of a more dynamic sort. Modeled loosely on indicator (or annunciator) lamps
on physical control panels, panel flags may appear and disappear, change shape, change
color, or all three in response to a change of state concerning the document. A flag has the
properties listed in Table 4.16.

variable name Name of scoped variable whose value determines state.
on bitmap Image when on.

on foreground color Image foreground color when on.

on background color Image background color when on.

off bitmap Image when off.

off foreground color Image foreground color when off.

off background color Image background color when off.

Table 4.16: Panel Flag Properties

In Figure 3.2 on page 23, for example, the flag whose image is “*” appears, indicat-
ing that the document has been changed since last saved; otherwise this flag is config-
ured to be invisible. The appearance of the flag follows the value of a variable named
Object-Modified?. The flag “9” also appears, indicating that automatic text-filling (line-
wrapping) is in effect. Other flags might reveal whether certain kinds of inconsistency have
been detected, or any other property that can be expressed in terms of an editor variable
(Section 4.2.9). A common flag configuration has an image appearing only when members
of a particular operand class are present (“Placeholder”, for example, as described in
Section 5.5, or “Language Error” as described in Section 5.4).

4.3.5 Highlighters

Just as a panel flag can be configured to reveal whether any members of an operand class
are present, a highlighter can be configured to make its members visible. A highlighter
embodies a binding between an operand class and a text effect applied to the textual display
of members; it has the properties listed in Table 4.17. The range of possible effects is limited
by the internal text representation and text rendering engines described in Section 4.2.1:
three (non-black) ink colors, and two independent background colors for shading.

Highlighters represent one of many basic services configured and implemented by the
kernel’s operand class mechanism. In most cases, however, the kernel concept of “operand
class” is downplayed. Instead, the user views and toggles specific highlighters, for example
a highlighter for “language errors” and perhaps another for “stylistic violations.”

A highlighter is an example of a gracious service, one that can (when requested) operate
in both exact and approximate modes. A strict highlighter only appears when a document
is consistent; a non-strict highlighter persists during periods of inconsistency, but its visual
effect is rendered using alternate color maps so that changes in state between exact and
approximate are visible.
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name A symbol e.g. pascal-int-expr-highlighter.

title A textual name for users, e.g. “Integer expressions”.
documentation A string.

apropos A list of subject words, e.g. “integer,” “expression.”
opclass A symbol opclass name e.g. pascal-int-expr-opclass.
effect One of :fg1 :fg2 :fg3 :bgl :bg2.

strict? Either t or nil.

toggle-command A symbol command name, e.g. Toggle-Int-Expr-Highlighter.
Table 4.17: Highlighter Properties

(:highlighters (lang:lang-err-highlighter :on "~C ~C !")
(expr-highlighter :off "°C °C e")
(lang:query-highlighter ton "°C “C q")
(lang:cursor-highlighter :on))

Figure 4.9: Example Highlighter Specification

Definition of a highlighter also results, by default, in the creation of a Pan editor com-
mand that toggles the state of the highlighter between active and inactive in the current
view. This command may be bound to menus and keystroke sequences. When one of these
commands is invoked, the display is updated immediately and an announcement appears
of the form “Highlighter <title> is now ON [or OFF].” Keybindings for these toggle-
commands are bundled together with the specification for the set of highlighters that are
available for the view style and the initial state of each. For example, in a sample view
style named “Simple,” the user may select from among four highlighters, three of which are
initially enabled in every new view, as configured by the specification fragment appearing in
Figure 4.9. Nothing prevents a view style designer from highlighting two classes the same
way. Nothing prevents a view style designer from highlighting one class in two different
ways simultaneously.

4.3.6 Operand Level

Fach Pan window displays a current operand level, which the user selects from a panel
menu of operand classes specified for the view style. The operand level is a very weak input
mode that effectively modulates the operation of a few generic commands; Table 4.18 lists
these level-sensitive commands. The operand level affects no other commands, and a user
may choose (via menu- and keybindings) not to use the level-sensitive versions at all. In
particular, the operand level neither inhibits nor modulates text-oriented editing. When the
current level is “Statement”, for example, the user may invoke Oplevel-Cursor-To-Mouse
(this is the “smart” version of the usual text cursor-setting command). This sets the
cursor to the “nearest” structural component that meets the definition of operand class
“Statement”, mapping locations by coercion, if necessary, as described in Section 4.2.7.
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Oplevel-Select Oplevel-Cursor-In
Oplevel-Cursor-To-Mouse Oplevel-Cursor-0Out
Oplevel-Mouse-Extend Oplevel-Cursor-Search-Forward
Oplevel-Query-All Oplevel-Cursor-Search-Backward

Oplevel-Cursor-Forward Oplevel-Delete
Oplevel-Cursor-Backward Oplevel-Replace-All
Oplevel-Cursor-To-First Oplevel-Query-Replace-All
Oplevel-Cursor-To-Last Oplevel-Menu

Table 4.18: Operand Commands

An operand level is implemented a binding that maps user actions into command in-
vocations deemed appropriate (by view style configuration) to a particular operand class.
An operand level has the properties listed in Table 4.19. Definition of a level also results,

opclass A symbol opclass name e.g. ada-stmt-opclass.
bindings A map: generic command -> class specific command.

A map: generic menu -> class specific menu.
before-daemon A function, run before each command dispatch.
after-daemon A function, run after each command dispatch.
set-command A symbol command name, e.g. Set-Oplevel-To-Ada-Stmt.

Table 4.19: Operand Level Properties

by default, in the creation of a Pan editor command that makes the level “current” in the
active window. This command may be bound to menus and keystroke sequences and is an
alternative to level selection with the window’s panel menu. When one of these commands is
invoked, the level showing on the panel changes, and an announcement is made of the {form
“Changing level to <level>.” For example, in view style “simple” the user may select
from a list defined by the fragment of its view style specification appearing in Figure 4.10
using either the specified keybindings or by selection from the panel menu.

b

Separate binding specifications establish the maps between keystroke sequences and
commands. For example the level-sensitive command Oplevel-Cursor-Forward typically
maps to command Next-Character at level “Character” but to Next-Oplevel-Node at
all language-based classes such as “Statement” and “Expression”. Next-Oplevel-Node
is the standard predicate-based tree navigation primitive described in Section 4.2.7; the
oplevel dispatcher parameterizes it with the predicate that defines the operand class of the
current level. The level-sensitive command Oplevel-Menu displays a menu of currently
available level-sensitive commands, and may in cases be used to produce menus even more
context-dependent, for example placeholder expansion menus used in syntax-directed edit-
ing (Section 5.5). User experience with the system is surprisingly colored by keybinding
patterns, as discussed in more detail in Section 5.3.
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(:operand-levels (text:character-level "“c c")

(text:word-level "“c w")
(text:line-level "¢ 1)
(lang:lexeme-opclass "“c x")
(simple-expr-opclass "=C e")
(simple-stmt-opclass "=C 8")
(simple-decl-opclass n=c 4a")
(lang:query-opclass "=C q")
(lang:lang-err-opclass "~C !" "~C #"))

Figure 4.10: Operand Level Specification for “Simple”

4.3.7 The Cursor

Pan’s edit cursor has two aspects: a textual location, displayed as an inverted box, and
an optional location at some structural component. When positioned structurally, the
textual extent (or yield) of the cursor’s structural component is highlighted (see the example
highlighter specifications in Figure 4.9 on page 64), and the inverted box is positioned at
the beginning of the extent. The user may mix text-based and language-based cursor
moves freely. Following the “Smart versus Dumb Services” design metaphor, when the
cursor has a structural location it is metaphorically “smart,” in the sense that language-
based information was used to position it, otherwise it is “dumb.” The appearance and
disappearance of highlighting to the right of the inverted box indicates the cursor’s current
state.

Editing operations that need a cursor location use the appropriate aspect. When a
structural location is needed from a text-only cursor, one is inferred using standard location
mapping, as described in Section 4.2.7; this is the same coercion mechanism invoked when
the user sets the cursor to a structural component by pointing with the mouse at a character.

The cursor is implemented upon two separate mechanisms from the kernel, the text
cursor (Section 4.2.1) and the structure cursor (Section 4.2.7), by maintaining invariant
relationships between the two. Combining the two mechanisms reduces the number of items
of editor state that the user must manage and track (a form of conceptual “chunking”) and
permits a fluid mix of text and language-based movements.

As a further convenience in the current implementation, the cursor’s structural extent
is always selected textually. Thus a language-based cursor move gives the user the option
to start typing at the text position or to delete textually the selected structural component
under the cursor before proceeding.

The implementation and invariants described here are a snapshot of Pan’s evolving
editing model. Experience and analysis suggest that it is still has confusing character-
istics and still lacks the full flexibility needed. Some of the problems are visual. For
example, the inverted box display for the text cursor is an anachronism dating from early
monochrome implementations, in what the convention was already an anachronism mod-
eled on character-based display terminals. A much better text cursor display, and one much
easier to understand in terms of textual insertion, would be positioned between characters,
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as is the vertical line used by Macintosh applications or a small carat positioned at the text
baseline. Those solutions would also avoid unpleasant interactions with the colormap that
the current inverted box evokes.

The rest of the problem concerns the basic model of navigation and selection, and in
particular the distinction between the two, supported by the system. Section 5.3 discusses
the current model, its problems, and a proposal for a more suitable version.

4.3.8 The Query

User and system can use the cursor to communicate about one structural document com-
ponent at a time. For example, the user can set the cursor at an identifier prior to invoking
Goto-Declaration, and the system replies by setting the cursor structurally to the appro-
priate declaration. In many cases, however, one component at a time is insufficient. Had
the user in the example instead invoked Query-Def-And-Uses, the system’s reply would be
a structural collection, implemented as a set of tree nodes in the internal representation.

Pan currently supports collection-based interaction with the “Query”, a distinguished
operand class whose membership can be set at any time by various applications, for example
by Query-Def-And-Uses.

The class “Query” is commonly configured with a highlighter (see the example high-
lighter specifications in Figure 4.9 on page 64), so the net effect of Query-Def-And-Uses
is to highlight the definition and all uses of a selected variable. “Query” is also commonly
configured as an operand level so that smart navigation can be used to move from member
to member. Each assignment of the query is accompanied by a name that identifies its
origin, for example “Uses of <name>,” and the level “Query” is typically configured with
an after daemon that announces the name of the query upon each successful navigation
at the level. Likewise, a panel flag could be configured that would reveal when a query is
present.

As with the cursor, the query mechanism is an interim service in Pan’s evolving editing
model. Experience and analysis suggest that it isn’t flexible enough; Section 5.3 discusses
the current model and explains how it can effectively be subsumed by an appropriately
generalized model of selection.

4.3.9 Analysis Invocation

Pan’s policy for incremental analysis is demand-driven: it takes place only when the user
requests it, either implicitly by invoking a strict service configured to trigger analysis before
proceeding, or explicitly by invoking Analyze-Changes. Nothing prevents a user from
typing an entire document without once invoking analysis.

Structural navigation, for example, must be strict at present due to implementation
restrictions. All smart navigation commands, for example Oplevel-Cursor-Forward, run
the analyzers, if the document is inconsistent, before attempting language-based movement.

The distinction between the consistent and inconsistent states is explicit in Pan’s model,
and users can know at a glance which state a particular document is in. At the same time,
it is important to soften the thresholds as the state changes between the two, so the cues
are non-intrusive: font shifts for new text, panel flag changes, and coloration changes for
highlighters. These cues are further designed to support the “Smart versus Dumb Services”
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design metaphor, with the implication that the whole system is smarter when consistent,
and the “Strict versus Gracious Services” design metaphor, with the implication that many
basic services (the gracious ones) work almost the same in both states. These issues are
discussed in more detail in Section 5.6.

4.3.10 Annotation

Pan’s prototype annotation service permits the addition of textual notes that reside in
the database, and which do not appear directly in a primary view. These annotations are
independent of traditional language-based comments, although bridges between the two
could be established.

Any structural component of a document may have assigned to it one or more named
chunks of text (each chunk is implemented as an instance of the text stream representation
described in Section 4.2.1). The name serves to associate related annotations. In simple
cases, only a single default name might be used (“Note” for example) so that there would be
only one kind of annotation present. More ambitious users might apply layers of annotations
distinguished by name. Most usefully, applications invoked by the user might create new
annotations with distinguished names; for example, a debugger interface might be requested
to “load” a particular stack trace into the database by annotating the structural components
involved with details about call frames, local environments, and the like.

Familiar basic services provide access to annotations:

¢ Ordinary structural navigation, followed by an invocation of Visit-Note-View, per-
mits users to see a particular existing annotation (in an alternate view), to modify its
text, or to create a new one at the cursor.

o A panel flag can be configured to appear whenever any annotations are present.
o A highlighter can be configured to reveal which components have annotations.

¢ An operand level “Note” permits smart cursor movement among annotated compo-
nents. After each movement at this level, an associated after-daemon causes the first
line of the notation to be announced in the panel.

e Finally, an invocation of Visit-Note-Summary-View (described in Section 4.3.11)
produces a single read-only view containing a list of all current annotations. Selecting
the text of an annotation in the summary view causes the cursor in the primary view
to move to the annotated component.

4.3.11 Alternate Views

Alternate views, configured by predefined view styles, display useful information derived
from a document. In most cases shared structural navigation (all views including the
primary one share the same structural cursor) makes it convenient for the user to navigate
document structure using several kinds of information.

Commands for visiting alternate views always check for the prior existence of an appro-
priate view, which is always made visible in preference to creation of a new view. As with
all views in Pan, the user is free to open any number of windows on a view, to close all
windows on a view, and to remove a view entirely.
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Error List View

An error list view displays all language-related diagnostic messages generated by Pan’s an-
alyzers. This read-only view supports shared structural navigation with the single operand
level “Language Error” permanently in effect. Thus, the operand level mechanism is in-
visible in this view style, but level-sensitive operand commands for navigation listed in
Table 4.18 on page 65, including pointing with the mouse, do the right thing. They select
and highlight diagnostic messages; at the same time they set the cursor in the primary view
to the structural location of the selected diagnostic, which in turn causes the active window
on the primary view, if visible, to scroll to the new cursor location.

Cross Reference View

A cross reference view lists all the names (variables, for example) defined in a program,
sorted alphabetically. Each name is annotated with its type and the name of the scope
in which it is defined, if this makes sense in the underlying language. Setting the cursor
structurally in this view moves the cursor in the primary view to the defining instance of
the name selected. ’

Table of Contents View

A table of contents view lists all the top level procedure headers defined in a program,
in order of appearance. Each is annotated with its argument signature, when this makes
sense in the underlying language. Setting the cursor structurally in this view moves the
cursor in the primary view to the definition of the procedure selected.

Note View"

A note view displays a textual annotation associated with some structural component
in the database. Unlike most alternate views, this view is editable. Setting the cursor
structurally in the view highlights the entire note and sets the cursor in the primary view
to the component being annotated.

Note Summary View

A note summary view lists the concatenation of all annotations of a particular kind. As
with other list views, a smart cursor movement selects ‘an entire annotation and moves the
cursor in the primary view to the annotated component.

Prettyprinting View

An experimental family of prettyprinting views were developed as part of a research
project that explored alternate program presentation techniques.

Graphical Tree Views

A family of commands create alternate views that graphically depict Pan’s internal tree
representation; they differ only in the information that appears labeling each node. These
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are generally useful only for Pan developers and authors of Ladle and Colander descriptions,
since they cast no useful light on program structure as perceived by a user.

Debugging Views

A number of other text-based alternate views present various kind of debugging informa-
tion, usually text-based descriptions of internal data structures whose display is updated
automatically with each analysis. When any relationship exists that associates displayed
text with particular structural components, the relationship can support shared naviga-
tion. More general graphical display mechanisms for internal data structures are under
development using this framework [98].

4.3.12 Access to System Information

Fred Hansen argued as one of his “user engineering principles” for Emily, the grandparent
of all language-based editing systems [52], that:

The user should be given access to [various parameters] and should be able to
modify from the console any parameter that he can modify in any other way.
With access to the system information, the user need not remember what he
said and is not kept in the dark about what is going on.

Pan’s help system, along with interactive versions of option-setting commands, follows
Hansen’s principle precisely. Table 4.20 lists commands that display various aspects of
Pan’s configuration in any context.

4.4 View Style Design

The view style layer in Pan’s design framework (Figure 3.7 on page 30) configures col-
lections of Pan’s basic services into editing contexts known as view styles. Each view
style is designed to support particular tasks confronting a particular group of users using
a particular underlying language. Whereas Pan’s implemented collection of basic services
presents an intentionally simple and language-independent model of the system, each view
style presents a model of document browsing and interaction that is language and situation
specific. And while view style design is cast as a form of configuration, the issues involved
and decisions to be made are substantial.

User-centered design is just as important for view styles as for basic services, but only
users, or people working closely with them, have the local knowledge necessary for effective
view style design. Experience with the SMARTSystem, a single-language commercial sys-
tem that shares some goals with Pan, confirms heavy demand for local customization to
enhance productivity [44,97].

A goal for this layer of Pan’s implementation framework is to make view style design
and specification accessible and straightforward. As with design in general, any framework
powerful enough to permit good design can only encourage good design. It cannot prevent
bad design, but examples and guidelines can help. This section describes view style design
in Pan: what kind of people can be expected to do it, how they express their designs, and
what they should know for effective design.
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Apropos-String
Display-All-Key-Bindings
Display-Apropos-Index
Display-Auto-Exec
Display-Auto-Load
Display-Bug-Report-Info
Display-Char-Set-Documentation
Display-Char-Sets
Display-Command-Documentation
Display-Commands
Display-Configuration
Display-Constant-Documentation
Display-Default-Menu
Display-File-Ids
Display-Flags
Display-Function-Documentation
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Display-Hooks

Display-Key-Binding
Display-Key-Bindings-For-Command
Display-Language-List
Display-Language-Specifier-Documentation
Display-Macro-Documentation
Display-Notifiers
Display-Operand-Class-Documentation
Display-Operand-Command-Bindings
Display-Operand-Command-Documentation
Display-Operand-Level-Bindings
Display-Operand-Level-Menus
Display-Option-Documentation
Display-Option-Variables
Display-Trace-Status
Display-Variable-Documentation

Display-Highlighter-Documentation Display-Version
Display-Highlighters Display-View-Class-Key-Bindings
Display-Hook-Documentation Display-Viewed-Objects

Table 4.20: Help System Access to Configuration Data

4.4.1 The Role of the View Style Designer

View style design in Pan must be carried out in the context of intended use, where infor-
mation about particular groups of users, their tasks, and the way they use their languages
is available. View style designs developed along with the system itself can only serve as
examples.

View style design cannot be automated in the sense of Mackinlay’s APT system [81].
View style design in Pan has more degrees of freedom, and is more sensitive to context
than APT. A presentation design generator might be specialized for this task via deeper
domain-based reasoning (e.g. the model-driven presentation design system [5]), but even
if the power of these systems were sufficient, local designers would still have to supply the
system with enough information about the local context to make the results appropriate.
There remains an inescapable need for site-specific expertise.

Experience shows that powerful systems used at large sites tend to attract individuals
who are representative users, but who also become adept at configuration and extension.
People in this role have been called variously “local developers” [41], “translators” [80], and
“tinkerers” 78], in recognition of their potential contribution to the local community. This
role is becoming more formal and well-supported, and is seen to be essential to increased
productivity, since it involves both considerable technical sophistication and working know!-
edge of a user population and their tasks [41]. These are precisely the people who would
modify and adapt sample Pan view styles to meet specific needs (other than low-level
language-description work).
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Figure 4.11: Specification Layers

4.4.2 Specification Layers

A complete view style specification in Pan contains three parts, whose relationship is sug-
gested by Figure 4.11. Each layer depends on at least some of the specifications in lower
layers; a preprocessor for each produces data used by parts of the run time system, as
depicted in Figure 4.1 on page 36.° From the perspective of a view style designer, there
are important degrees of freedom in each layer.

The Ladle Specification

The Ladle specification, introduced in Section 4.1.2 and described more thoroughly by
Butcher [22], contains a lexical specification, an abstract syntax specification, and additional
concrete syntax specifications to enable parsing. Most important to the view style designer is
the abstract syntax, which together with directives on grammar rules, permits considerable
control over Pan’s run-time internal tree representation.

Experience shows that tree representation choices are best made in conjunction with the
Colander specification, since most of Colander’s analysis is expressed in terms of goals at
tree nodes and node properties. Choices include abstraction (removal) of nodes representing
chain rules, use of explicit sequence nodes in place of recursion, and the operator names at
tree nodes.

Structural choices can be made without concern for usability precisely because of the
user interaction layer, which frees the Ladle description from the kinds of user-motivated
demands on AST design suggested for Mentor [29,63]. The view style designer need only be
aware of the general structure and operator names in order to specify appropriate operand
classes.

!%Sharing of lower layers by more than one upper layer is desirable and theoretically possible, but current
implementation restrictions permit this only by copying.
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The Colander Specification

The Colander specification, introduced in Section 4.1.3 and described more thoroughly in
Ballance’s dissertation [9], consists primarily of goals to be satisfied at each node in the
internal tree representation. Other specifications include computed node properties, facts
asserted into the database as side effects of goal satisfaction, and procedures that implement
complex database queries.

Colander’s specification language offers many degrees of freedom, some relevant to the
view style designer. The first decision concerns the scope of the constraints to be checked.
Although common practice is to check at least all context-sensitive constraints specified as
part of an underlying language’s formal definition, this need not be the case, especially for
specialized view styles where a subset might suffice (and might yield better run-time per-
formance). The Colander specification can even be omitted entirely, in which case the user
interaction specification must rely on structural information alone. Conversely, a Colander
specification can be extended beyond language definition; experimental Colander specifica-
tions have checked stylistic rules, performed data flow analysis, and computed prettyprinting
directives.

A view style designer must be partially aware of the Colander specification’s database, so
that the information can be used for operand class specification. Some services may require
that new queries be supported in Colander, for example complex queries concerning names
and scopes that can’t be cast in terms of simple node properties. Unfortunately, additions to
Colander specifications involve time-space tradeoffs of the sort that confront database design
in general as well as interaction with other aspects of the specification. This shortcoming of
the Colander prototype effectively places extensions depending on complex queries beyond
the reach of many potential view style designers.

The User Interaction Specification

A user interaction specification configures Pan’s basic services, introduced in Section 4.3,
to define visible behavior of a view style. The specification relies on a Ladle specification
for structural information and on a Colander specification for results of Colander’s run-
time analysis, but the model of document structure exposed to the user and the choices of
available services are made in the user interaction layer.

Appendix A contains an annotated example of a user interaction specification for the
language Modula-2. Appendices B and C describe the provisional language in which view
style specifications may be expressed. The next section discusses issues that confront view
style designers.

4.4.3 Design Issues and Guidelines

This section describes part of the design process for the user interaction layer in a Pan view
style, beginning with general issues and progressing through document modeling, visual
design, keybindings, and integration with other services. The discussion of design decisions
that confront the view style designer is accompanied by specific guidelines. Chapter 5
explores the importance of these design decisions in the context of various aspects of user
interaction.



74 CHAPTER 4. LAYERS OF DESIGN IN PAN

Important to Pan’s general framework are the design metaphors, described in Sec-
tion 3.5, which present a coherent system model to users. Although the collection of basic
services described in Section 4.3 supports these metaphors, that support must be continued
throughout view style design, revealing again the pivotal role played by designers in making
the system effective in practice. The first two are meta-guidelines that apply implicitly to
all that follow.

Design Guideline 1 For any target group of users, configure all view styles as much alike
as possible and vary them in detail only as needed for language idiosyncrasies or the needs
of services delivered. It is especially important that visual design themes, including colors,
fonts, and logos, be uniform.

A typical user interacts with many view styles, one per language in the simple cases,
but with more when they are specialized to support particular activities. Uniformity of
interaction across multiple view styles, an important part of Pan’s framework, can only be
realized if all view styles that each user sees are likewise uniform.

Design Guideline 2 Make all useful information available to the user redundantly through
as many channels as possible, for example by highlighting, by navigation, and by projected
views.

This second meta-guideline emphasizes the value of redundant encoding. In some situ-
ations this simply increases effective bandwidth, but it also allows for task variations which
cause users to need information in different forms. Finally, it acknowledges variation in the
abilities of users to absorb information by different means. Color-blind users, for example,
might rely more heavily on projected views and navigation than on highlighting.

Conceptual Design

View style design begins with two related questions: what model of document structure to
present and what services to make available that help manipulate and browse that structure.
Answers depend on the intended user population, tasks, and the underlying language. For
example, a novice might appreciate syntax-directed editing templates for writing new code,
but an experienced user might not want to waste the menu space. Tools for re-engineering
old software would be of little use for coding a small prototype. Knowledge of specialized
libraries should only be included in view styles for relevant languages and particular systems
in which they are used. Finally, slightly specialized view styles can help check for the kinds
of problems that arise when porting compilers, language versions, and platforms.

Design Guideline 3 Define and name syntactic operand levels following local vernacular
for describing document parts; use the singular.

A view specification implies a model of document structure by the membership of its
operand level menu. This list of named classes forms the working vocabulary with which
user and system communicate. Simple syntactic levels should reflect the way users think
and talk about components. This is straightforward in many languages, where levels for
“Procedure”, “Declaration”, “Statement”, and “Expression” are usually appropriate.
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Other cases require judgement, for example whether to reveal the fact that the categories
called “statements” and “expressions” in C actually overlap, and whether to create separate
categories in languages that formally distinguish among “definitions,” “declarations,” and
“specifications.” Logic-based languages like Prolog and Colander’s specification language
present an entirely different set of choices. An introductory language textbook is a good
starting point for building a taxonomy of document components, but refinement based on
experience and personal preferences is usually necessary.

Design Guideline 4 Include standard operand levels, as needed for basic services.

Predefined operand levels, for example “Query” and “Language Error”, should always
be available, since interaction with many common services is based on them. The level
“Note” is important only when annotation based services are to be used. Other standard
levels are optional, “Lexeme” for example, but may also represent added services (for ex-
ample, lexeme-bounded regular expression search and search-replace are available at this
level). Pseudo-structural levels “Character”, “Word”, and “Line” are entirely optional and
not very important in the standard configuration, but could be important in configurations
where level-sensitive commands are more central.

Design Guideline 5 Add task-specific operand levels.

Complex operand class definitions may be needed for task-specific operand levels. In
a code review, for example, a user might want to browse all uses of problematic language
features, general ones such as Goto, and language-specific ones like C’s longjmp and set jmp;
these might be defined in separate levels or grouped together in a level named “Control Flow
Exceptions.” Even more complex and specialized levels might be useful, for example when
porting software to a new compiler with guidelines such as the following:

In the'current version of GNU CC, there are three ways that the stack pointer
can change value: (1) calls to alloca, (2) use of variable-sized objects, and (3)
calls to functions with parameters that do not all fit in the argument-passing
registers (e.g., more than 6 parameters). You should avoid all three in functions
that call setjmp.

Another example might arise in the context of a language or a particular system plagued by
unexpected data type conversions. A task-specific operand level might defined to identify
assignments that evoke implicit coercions known to be troublesome.

The above examples might also be expressed as Colander constraints, adding them to
level “Language Errors” or “Stylistic Violations”. The designer must judge how often
users may want the information; for occasional browsing, a separate operand level is the
right choice.

Design Guideline 6 Add menus for groups of specialized commands.

Based on judgement about users’ needs, commands can be made available on the view
style’s standard menu and redundantly through keybindings. Predefined menus contain-
ing suites of commands are available, for example the name-related commands (including
among others Query-Def-And-Uses, Goto-Declaration, and Announce-Type), but only
for languages in which the notion of named, typed entities makes sense. Other potential
services, for example syntax-directed editing and those described in Section 5.8, would also
be candidates.
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Integration with Language Description Layers

References to the Ladle and Colander descriptions from the user interaction layer are usually
simple, tree operator names and node properties for example, but additional support must
sometimes be added to the lower layers. This is unfortunately not as simple as one would
wish. In some cases automation could help, but there is always the need for at least some
“glue” between the particular specifications and Pan’s language-independent services.

Design Guideline 7 Parameterize generalized services to the extent that they match the
language.

Generalized services require a certain amount of abstraction that may or may not mesh
with every language. The suite of name-related services, for example, listed in Table 4.21 is

Query-Name-Instances Set current query to all uses.
Goto-Name-Declaration Move cursor to declaration.
Announce-Type-0f-Name Announce description of type.
Show-Value-0f-Name-In-Place Show constant value if known.

Rename Change name uniformly.

Visit-Cross-Ref-View View sorted list of names, types, and scope names.

Table 4.21: Suite of Name-Related Commands

based on the notion of “named entity.” For these to work, a view style specification must
include the following information:

o Define “use of a name” in the form of a designated operand class;
o Define “declaring use of a name” similarly; and

e Implement in the Colander specification the generalized queries listed in Table 4.3 on
page 44.

The designer faces considerable latitude in how to apply generalized models to particular
languages. For this example the designer must decide which kinds of language entities
can participate (procedures, labels, enumerated type constants?), and what the “declaring
instance” is. At the same time, development of more detailed and flexible generalized
services remains a promising line of inquiry (much of the work can be done in the extension
language).

Pan’s prototype syntax-directed editor is another example of a generalized service, one
for which relatively more glue is necessary. As part of the user interaction specification, the
designer associates a list of possible templates with each placeholder operator in the tree
representation. In the Ladle layer the designer extends the grammar with additional rules
involving placeholder operators and their textual counterparts (for example an operator
stmt_ph with literal token “@statement”); this process could be semi-automated.
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Visual Design

Good visual design is essential, not only for ergonomics and overall look and feel, but also
to reinforce each view style’s conceptual design and the system’s design metaphors. The
most immediately apparent choice concerns fonts, specified as a logical mapping between
categories (unanalyzed text, keywords, identifiers, and comments) and specific fonts. The
fonts in a map must look good together, but must also satisfy particular guidelines.

Design Guideline 8 Select fonts for keywords and identifiers to look nicely typeset; em-
phasize legibility of identifiers and non-alphabetic characters in the keyword font.

An analyzed document should look pleasing; proportionally spaced fonts look best.
Serif fonts help contrast with unanalyzed text (design guideline 9), but sans-serif fonts have
advantages too. The distinction between keywords and identifiers should not be emphasized
as much as other distinctions. Legibility of identifiers is more important than keywords in
general, but the keyword category unfortunately includes crucial punctuation (especially
commas and arithmetic operators) that are hard to see with many display fonts. Any font
assignment is a compromise in this situation, given current screen resolutions, limitation of
Pan’s typesetting model, and the lack of fonts suitable for this use [6].

Design Guideline 9 Select a font for unanalyzed text that looks “dumb” and contrasts
unpleasantly with other font choices.

Unanalyzed text must be particularly legible, even a bit more so than analyzed text,
since the visual redundancy of a program known to be syntactically well-formed is not yet
present. It should contrast dramatically with other fonts to help reveal the location and
extent of inconsistency between text and derived data. It should look “dumb” in support
of Pan’s “Smart versus Dumb Services” design metaphor; a good choice is a fixed-width
screen font suggestive of traditional (dumb) text editors. Finally (and this usually follows
from the previous suggestions) it should be visually unappealing compared to analyzed text,
subtly encouraging frequent reanalysis by the user, which in turn keeps the granularity of
analysis small (and fast), which in turn encourages frequent reanalysis.

Design Guideline 10 Select a font for comments that sets them apart from the real pro-
gram.

Comments should be visually distinct from both analyzed and unanalyzed program
text, suggesting that the designer exploit a different degree of freedom. When font style
distinguishes analyzed from unanalyzed text, as in Pan’s sample view styles, then font size
is a good choice to set comments apart. A noticeably smaller, proportionally spaced font
is a good choice. Legibility is less of a problem for comments because they are primarily
natural language, therefore more redundant and easy to scan. Furthermore, problems with
illegible punctuation are less severe, since punctuation carries less information in comments
than it does in programs.

Design Guideline 11 Define highlighters for all operand classes users may want to track
continuously. Highlighted classes should also be available as levels.
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Highlighters that involve standard services, for example “Language Error” and “Query”,
should always be defined and should be “on” by default.?’ Highlighters should be added
for other useful categories, for example subsets of Colander’s constraints such as the class
“Stylistic Violation”. Highlighters for task-specific operand levels should in most cases
be “off” by default.

Any class interesting enough for highlighting is likely to be interesting enough to nav-
igate: a corresponding operand level should be added. The converse, adding a highlighter
for every operand level, is not necessary. The user can highlight the members of any level
temporarily by invoking Query-Oplevel-Nodes, which sets the current query result (usually
highlighted) to every node at the current level.

Design Guideline 12 Define highlighters to be strict only when the information they
represent would be misleading or useless during periods of inconsistency.

Strict highlighting disappears when a document becomes inconsistent; gracious high-
lighting persists, but may represent approximate information. Most of the time most of the
information displayed by approximate highlighters is correct, so strict highlighters should
be avoided. Making highlighters strict often amounts to an unwarranted interruption of
service.

Design Guideline 13 Specify panel flags for important system states and for the presence
of interesting operand classes. Flagged classes should also be available as operand levels.

Standard flags reveal whether a document has been modified, whether it may be mod-
ified, and whether certain services, text filling for example, are in effect.?! A crucial flag
(or flags) reveals whether text and derived data are consistent. This is important because
textual clues to consistency (the special font for unanalyzed data for example, design guide-
line 9) are not always visible because of scrolling or when there have been only deletions.

Most other flags reveal whether any members of a particular class are present, for
example the standard flag “Language Error”. Comparable flags should be added when
the mere presence of a member is important, for example the “Placeholder” flag, which
indicates that a document is incomplete.

Any class interesting enough for highlighting is likely to be interesting enough for a
corresponding flag; this additional clue is useful, since highlighting only shows class members
that happen to be visible in a window.

Design Guideline 14 Flags should either vanish or change appearance when off, depend-
ing on the semantics of the information they reveal.

Flags should disappear when there is no information, when there are no occurrences of
something, or when services are not in effect. Flags should dim when approximate versions
of information or actions are available. For example, the flag that represents derived data
dims during inconsistent periods, to suggest that the information is still there, but that it
isn’t as good.

20The background shading that reveals the extent of Pan’s structural cursor is implemented as a distin-
guished operand class with associated highlighter; this should also be “on” by default.
21This is the same kind of information revealed in the GNU EMACS “status line.”
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Design Guideline 15 Select text highlighting colors for legibility.

Color map assignments for ink and background shading must be able to draw attention.
At the same time, they must reduce legibility as little as possible since the most important
information is always the text. For ink, avoid highly saturated colors. For background
shading, use highlighter pen pastels. Good choices, the ones that are no more dramatic
than necessary, are unfortunately sensitive to variations in display hardware, ambient light
levels, and individual color vision [116].

Design Guideline 16 Select alternate text highlighting colors for similarity and to sup-
port the “approximate” metaphor.

Pan’s text display uses alternate color maps during inconsistency. Assign corresponding
colors with similar hue so that shifts (which happen often) are barely noticed by a user
attending to something else. Assign less saturation and/or luminance to the alternate
choices, however, so that the current state is readily apparent and so that reduced color
intensity implies a metaphorical weakening of the information.?

Design Guideline 17 Respect cultural color conventions.

People have strong associations with some colors. For example, use red only when it is
appropriate to imply that something is wrong or to be avoided.

Design Guideline 18 Associate colors with important operand classes.

Information about particularly important operand classes may appear in several ways.
Use thematic colors to connect them visually. For example, Pan’s sample view styles
associate red thematically with language errors:

o the highlighter for class “Language Error” uses red ink;
o the panel flag for the class is red when on; and

o the view style logo in the alternate view for error lists is red.
Design Guideline 19 Associate graphical themes with important operand classes.

Use graphics to connect visual displays associated with an operand class and relevant
keybindings. This reinforces the associations and makes keybindings easier to remember.
For example Pan’s sample view styles associate the exclamation point thematically with
language errors:

o the panel flag for class “Language Error” has the shape of an exclamation point when
on;

o the view style logo in the alternate view for error lists has the shape of an exclamation
point;

?2Many of Pan’s alternate views support the same metaphor. When all information in an alternate view
depends on the results of analysis, the standard ink color in the view changes to grey during inconsistency.
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o the keystroke sequence “~C !” follows a keybinding convention to set the current
operand level to “Language Error”;

o the keystroke sequencev “=C =C !~ follows a keybinding convention to toggle the high-
lighter for class “Language Error”; and

o the keystroke sequence ““C ~V !” follows a keybinding convention to visit the alter-
nate view for error lists.

Design Guideline 20 Design expressive view style logos.

The panel logo, specified as part of each view style, is an important visual cue for
identifying context. Design a logo that suggests the underlying language graphically, and
create slightly modified versions to suggest task-specific view styles that share a language.

Text Editor Configuration

Some of Pan’s text-based facilities work best and most predictably when configured for
each underlying language.

Design Guideline 21 Configure character classes and bracketing characters to agree with
lexical properties of the underlying language.

The character class word-characters controls how word-oriented text commands work.
Add special characters, for example hyphens and underscores, to the class when they can be
part of identifiers in the language. When designing placeholder tokens for syntax-directed
editing (the sample configuration in Pan uses tokens of the form “@statement”) be sure to
adjust the class accordingly (by adding ‘@” to word-characters).

Bracketing characters control how Pan’s text-based commands for moving over nested
expressions; default pairs include parentheses, square brackets, and curly brackets. Add
others when needed, for example angle brackets for the Colander language.

Design Guideline 22 Configure other text services as needed.

Options specify the default width for text windows, expressed in number of characters in
the default font, and the display width for tab characters. It may be useful in some contexts
to enable automatic line wrapping by default. If so, set the line-length option suitably,
taking into account default window width so that wrapping usually happens comfortably
before a horizontal scroll is forced. Regular expression searching is case-sensitive by default,
but it should be specified case-insensitive when this is the case for the underlying language.

Bindings

Design Guideline 23 Provide both menu- and keybindings for commands; display key-
bindings in menu titles to help users learn them.

Many users prefer keybindings to menu bindings, but menus are effective for browsing,
learning new commands, and locating infrequently used commands. A user interaction
specification may request automatically created menus (for highlighter toggles and level-
setting commands) with keybindings displayed.
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Design Guideline 24 Assign keybindings so that “smart” commands differ from their
“dumb” counterparts by an easily remembered rule.

Reinforce the “Strict versus Gracious Services” metaphor by pairing bindings to suggest
that a smart command is simply a variant on its dumb counterpart. Pan’s default bindings
follow a GNU EMACS convention by using the “C” key as a mode-specific (in this case
“smart” prefix). Thus, the default binding for moving forward textually is ““F” (command
Next-Character) and structurally is “°C “F” (command Oplevel-Cursor-Forward).

This guideline results partially from experience with alternate arrangements, in which
some keybindings changed modes between textual and structural commands. Aside from vi-
olating the “Augmented Text Editor” metaphor (since some familiar text editing commands
appeared not to work in some cases), those arrangements in effect led to unexpected behav-
ior when familiar commands became essentially unavailable when the level was set other
than at “Character”, an interruption of fundamental services that proved unacceptable.

Design Guideline 25 Add redundant keybindings that can be efficiently typed, even if
they don’t follow design guideline 24.

In some cases, accelerators can be special keyboard keys whose binding is natural, for
example the “Right-Arrow” key for Oplevel-Cursor-Forward, whose default binding is
“=C “F”.In other cases, it is just a matter of convenience, for example “Shift-Mouse-Left”
for the command Oplevel-Cursor-To-Mouse, whose default binding is “~C Mouse-Left”.
Bindings of the latter kind for each of the three mouse buttons permit expedient invocation
of long sequences of language-based commands with the shift key held down continuously.

These guidelines and default bindings in Pan are far from the last word. They are
based very strongly on GNU EMACS conventions, which are themselves poorly designed.
Walker and Olson suggest some fruitful techniques for globally redesigning GNU EMACS
keystroke bindings [133], techniques that should be equally adept at incorporating Pan'’s
design metaphors. These are discussed in more detail in Section 5.3.
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Chapter 5

User Interaction in Pan

This chapter reexamines many aspects of Pan’s design from the perspective of the user
rather than the builder. Unlike Chapter 4, which presents Pan’s design from a structural
point of view (how the system behaves and how it is built), this chapter takes a more func-
tional or task-oriented view (what it can do for users). The application of Pan’s architecture
and services to users’ tasks, described in this chapter, demonstrates the effectiveness of the
design strategies introduced in Chapter 3 and realized in Chapter 4.

Fach section in this chapter addresses a cluster of related issues, beginning with some
that derive directly from Pan’s originally stated requirements and leading through others
that arise indirectly. Each section describes the origin of the issues, along with historical
context when relevant, and shows how Pan’s design framework enables effective solutions
to design problems. A final section argues for the power and flexibility of Pan’s design
framework by enumerating a large range of applications to which Pan’s framework can be
applied.

5.1 Text Editing and Visual Presentation

Text editing is central in Pan. It is the primary medium for displaying documents to users,
for displaying information about documents to users, and for enabling users to manipulate
documents. This section examines some implications of this approach, including mention
of some usability problems that arise in purely textual systems, problems that foreshadow
deeper trouble when language-based interaction is added (Sections 5.2 and 5.3).

5.1.1 Text-Based Interaction

As shown in Figure 3.2 on page 23 Pan is designed to appear relatively conventional during
ordinary text editing, in keeping with the “Augmented Text Editor” design metaphor. This
reflects an early commitment in Pan’s design, expressed as the requirement for “familiar,
unrestricted text editing”, to powerful text editing services that people would gladly use. A
closely associated requirement, “uninterrupted service”, was to prevent Pan’s rich language-
based features from interfering with these services. In other words, if a document appears
as text than it can be treated as text.

So complete is the reliance on the textual presentation that it might not be apparent
at all when language-based information is present. Rather than hide the fact completely,
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Pan’s default configuration adds the panel flag “’»” (shown in Figure 3.3 on page 24) when
language-based information is being maintained. Even the text-based alternate views de-
scribed in Section 4.3.11, although usually protected from change by users, permit free use
of all non-destructive text commands (for example, searching, copying, and writing to files).

The use of fonts, point size, and color in Pan does not undercut the commitment to
conventional text-based interaction because these visual attributes are independent of the
text-editing interface and are not controlled directly by the user. New text created by the
user typically has default attributes (standard font, no enhancements); the system changes
the attributes to display information as requested by the user.

5.1.2 Typography and Document Legibility

Small experiments have suggested that high quality typography can enhance comprehension
by readers of program text on paper [6,95]. Pan’s typographical services represent a modest
attempt to achieve some of these gains. However the so-called “book paradigm” for static
program publishing, described by Oman and Cook [96] and pursued in great detail by
Baecker and Marcus [6], is not directly applicable because of Pan’s dynamic context:

o Display resolution on workstation screens is much lower than for even modestly priced
printers, a disadvantage that reduces the degrees of freedom available for text display;

e More kinds of information must be displayed, for example the current state of the
user’s interaction with the system (cursor placement, query results, and the like),
another disadvantage; and

e Many features of the display can be made dynamic and user-controllable, an advantage
since not all information must be displayed at one time.

These differences lead to different tradeoffs in the static versus dynamic contexts.

For example Pan’s use of fonts is primitive compared to the elaborate vocabulary of pro-
gram typography developed by Baecker and Marcus [6], but it helps.! Following established
custom, automatic font shifts reveal the lexical category of program text: language key-
words, identifiers, and comments. Fonts may be assigned to each category by configuration
of a font map for each view style; fonts may vary in size and may be proportionally spaced.
An additional font category, which has no counterpart in the static program publishing
paradigms, is used for text that has not been analyzed yet (raw text that is metaphorically
“dumb”).?

Informal experience with Pan confirms that font shifting contributes greatly to pro-
gram legibility. Optimum font assignments, however, vary among languages in different
categories, for example, languages of the ALGOL family versus logic languages like Colan-
der. Two kinds of visual separation are especially helpful when fonts are chosen carefully:
between comments and program text, and between “raw” and analyzed text. The latter
distinction supports several design metaphors and helps reveal a crucial aspect of system

!For a small example of typography in Pan see Figure 3.3 on page 24.

2Pan does not use color to distinguish lexical categories, even though Baecker and Marcus mention
and demonstrate the possibility. Color in Pan is reserved for much more important and ephemeral use by
highlighters (see the next section), keeping basic typography monochrome and visually familiar.
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state: consistency (Section 5.6). Several of the design guidelines presented in Section 4.4.3
deal with these visual issues.
On the other hand, limitations of Pan’s approach have become evident.

o Lexical-based font shifting fails to exploit the available information; it does help users
discriminate among simple categories, but it could do more.

o Experience with Pan confirms the observation by Baecker and Marcus that the visual
properties of even well designed fonts are not entirely appropriate for programs, a
problem exacerbated by inadequate pixel resolution in standard display screens. This
is an especially difficult problem for punctuation characters, which can carry signifi-
cant information in programs, but which are easily lost visually when proportionally
spaced.

e Pan’s prototype text rendering engine can only display simple lines of characters;
whitespace must be inserted for indentation. In the presence of proportionally spaced
fonts, which have significant advantages for legibility, it is beyond the power of the
prototype to perform any but the most trivial horizontal placements. The complex
and fine-grained typography explored by Baecker and Marcus, which for example can
vary the spacing in expressions to reveal operator precedence, and can vary the size
of parentheses depending on context, requires the full power of a document quality
text formatter.

With a better rendering engine, a system like Pan would be well equipped to produce
dynamically the kind of results that the SEE visual compiler built by Baecker and Marcus
achieves in a static setting. Pan’s advantage is the rich store of information already available
about each program, as well as a general purpose inference engine capable of propagating
attributes and computing complex context-sensitive information. For instance, most of
the computations necessary to implement Garlan’s unparsing scheme [42] would be easily
expressed in Colander. Problems reported with the implementation of SEE, an adaptation
of a traditional pass-oriented batch compiler, would be addressed easily in this information
rich environment.

An experimental subsystem, the Pan Program Presenter, explored this prospect using
presentation schema designed to exploit any kind of information in Pan’s run-time database,
including syntax, static semantics, and directives by users [16]. In one mode of operation
the Presenter performed indentation (analogous to conventional “prettyprinting,” but much
more flexible because of the information available); in another mode it performed even more
complex layout. The Ensemble project is pursuing this approach further by removing many
restrictions imposed by Pan’s prototype text rendering engine [48).

5.1.3 Typography and Metadata

Closely related to the value of typography for legibility is its potential for display of in-
formation about programs. Baecker and Marcus call this information “metadata.” They
tentatively identify categories (which necessarily represent only a subset of the metadata
that can be important in an interactive system, where the state of the interaction can be
as important as the state of the program) and explore choices for display on the page. One
important concern is to avoid visual clutter that can reduce legibility.
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Here the dynamic nature of Pan compensates somewhat for problems caused by lack
of screen resolution. A Pan highlighter superimposes a visual effect on the text associated
with program components in a designated category; for example, one standard highlighter
causes linguistically malformed text to be rendered with red ink® and another causes sites
of stylistic violations to be shaded pale yellow as if by a highlighter pen. Monochromatic
analogues use stipple patterns, although much less effectively because of inadequate display
screen resolution. Color, analogous to fonts, may be configured per view style by assignment
to color maps for logical foreground and background categories.

The highlighter mechanism has several advantages as a channel for metadata.

o Highlighters superimpose the display of metadata onto the user’s primary visual field,
an approach sometimes exploited for other information intensive tasks. Pilots, for
example, can benefit from the “heads up” approach that superimposes the display of
data concerning on-board systems onto the more important visual field beyond the
aircraft.

e Users may reduce visual clutter by switching highlighters on and off, depending on
the information needed at the moment.

e The membership (highlighted text) associated with any highlighter changes as the
program and context change.

e The semantics of a highlighter (the rule that determines class membership) can be
arbitrarily complex and context dependent, for example syntactic categories, ques-
tionable usage, hot spots identified by profile information, and many more.

Other display features mentioned by Baecker and Marcus would also be useful for certain
kinds of metadata: area shading, small glyphs such as stop signs and pointing fingers,
graphical rules (lines), and others. Unfortunately none are supported by Pan’s prototype
text rendering engine.

One aspect of Pan’s highlighter design has no counterpart in the static world of the book
paradigm: the information that drives them can sometimes be out of date and therefore
unreliable. Following the “Strict versus Gracious Services” design metaphor, highlighters
can be configured to be “gracious,” meaning that they continue to operate in this situation.
Displaying unreliable information, however, risks misleading the user. The typographical
solution in Pan relies on two sets of color maps, one used when information is reliable (when
the document is consistent) and one when it is not (when the information is only approx-
imate). When configured appropriately, following design guideline 16 in Section 4.4.3, the
transition from exact to approximate information is accompanied by a perceptible dimming
of highlighter colors, metaphorically suggesting the change, but distracting as little as pos-
sible. As elsewhere in Pan’s design, the user is presumed capable of reasonable judgement
about the relative accuracy of this kind of approximate information, as long as the the
distinction between approximate and exact information is evident.

Pan supports other, non-typographical channels through which metadata can be dis-
played to users: panel flags, the panel annunciator, and alternate views. Section 5.4 shows
how all these can work together to provide alternate and sometimes redundant display of
even a single category of information (language errors in this case).

%Ink colors are never so high chroma as to impede legibility.
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5.1.4 Models of text structure

Designing a text editor is a surprisingly difficult undertaking. Among the many challenges
is the need to exhibit a coherent conceptual model of what is being edited, a model reflected
by both visual presentation and editing operations. Pan also presents an effective model
of language-oriented editing, subject to the requirement that it not clash with the textual
model (Section 5.2). Models clash when they suggest to users conflicting interpretations of
how the editor is behaving or should be expected to behave.

Although seldom explicit, the design of effective conceptual models for text editors has
always been a problem. For example, some of the earliest interactive editors operated on
a virtual deck of punch cards; users could think of these editors as card punch machines
with an erasing backspace key. Two important historical improvements added support
for lines of varying length and eventually replaced the line-oriented model with a stream
model. Meyrowitz and van Dam argue that the long term significance of these changes was
that “displayed text was no longer considered to be a one-to-one mapping of the internal
representation, but rather a tailored, more abstract view of the editable elements” (86].

The conceptual distinction between a one-dimensional text stream (the “editable ele-
ments”) and a virtual two-dimensional page (the “displayed text”) usually makes itself most
apparent in the mysterious and idiosyncratic behavior associated with whitespace charac-
ters (spaces, newlines, and especially tabs). This behavior leads to a class of user problems
best described as “ostension errors”: how a user may identify an object by pointing at
it, without reference to its components or to the area surrounding it [39]. For example,
typical text editors permit cursor placement by pointing into the left margin but not the
right margin; it is impossible for the user to “talk about™ the right margin naturally when
communicating with the editor, since the user is only permitted to “point at” (invisible)
spaces in the text stream. This kind of behavior contributes greatly to the difficulty novices
encounter when learning text editors, especially when misled by the typewriter and blank
page metaphors [30,79).

This bit of historical reflection offers two lessons for the design of Pan. The first is
that a well designed user-interface, together with user experience, can compensate for an
apparently inconsistent underlying model. People become quite proficient with text editors,
presumably building something like diSessa’s distributed models [113] of the editing domain.
The effect is so powerful that experienced users of text editors are often tempted to instruct
novices with obviously inaccurate metaphors such as blank page. The second lesson is that
learning to use any text editor is a difficult task, one that should be expected of users as
seldom as possible. This observation lies behind the commitment in Pan’s design to emulate
familiar text editing models.

5.1.5 Text Cursor and Selection Models

Familiar text editing models, however, vary. They also lack the generality needed for a
system like Pan, where language-based services are modeled as extensions to familiar text
services. This becomes most clear when evaluating conventional models for navigation
and selection. Conceptually the two imply different kinds of information, reflecting the
distinction between location and contents (a selection is usually a contiguous subsequence
in the one-dimensional stream model), but in practice text editors blur them. As mentioned
in Section 4.3.1, Pan’s model of text editing is a hybrid based on elements of both the
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EMACS [122] and Macintosh [108] models, and the relationship between cursor and selection
accounts for the most blatant disagreement between the two.

Macintosh Model The user may select text by pointing and dragging. Selected text
becomes the operand for subsequent operations; for duration of the selection there
is no separate cursor — the only locational state is the one implied by the selection.
When no text is selected, a cursor appears in the text stream, positioned between two
characters (or before the first character in the stream or after the last), which the user
may move freely. This cursor is locational (with respect to insertion, for example) but
is also used to infer an operand for commands like delete forward and delete backward,
according to the rules of the particular command. Even though these two situations
have different implications for location and selection (both are folded together), the
two are presented to the user as a single “cursor” that can contain characters from
the stream (when selected), but which often contains zero characters.

Emacs Model An EMACS selection (called a “region”) is distinct from but linked to the
cursor. The cursor is always present, displayed as a box positioned over a single
character in the stream; to a Macintosh user it would appear as a selection of a single
character. The cursor is nevertheless mostly locational, having semantics equivalent
to the Macintosh cursor with no characters selected. To operate on a contiguous
region of text, the EMACS user must first place an (invisible) mark at the current
cursor location; from that time on the text between the mark and any cursor location
is an implied selection (also invisible) that may be used as an operand (or may not,
depending on the subsequent command).

Pan Model A Pan user makes a (visible) selection with the mouse, which then becomes
the operand for both the Macintosh-like operations Cut and Copy and for Emacs-like
region-oriented commands.* Unlike both other models, the cursor and selection are
separate, and the cursor can be placed elsewhere while a selection persists unchanged.
Unless a user explicitly does this, however, many sequences of operations familiar to
both kinds of users work much as expected. Differences among the models only show
up in more complex situations, for example when making selections larger than the
display window.

The Pan model bridges the gap between the two other models; users familiar with
one or the other find no initial barriers to using Pan for text editing. A more important
aspect of the model is that it shifts users gradually toward thinking of location (cursor) and
contents (selection) as two distinct pieces of the editing context, used for different purposes.
This conceptual shift helps with the layering onto the text editing model of language-based
operations, as described in Section 5.3.

5.2 User Models of Document Structure

User and editor must be able to communicate about what is being edited. A central problem
in the design of any interactive editor is that the structure of an object being edited seldom

*Unlike the Macintosh, typing text does not first delete a pending selection; although this policy could
be implemented it would complicate the organization of more complex services.



5.2. USER MODELS OF DOCUMENT STRUCTURE 89

maps nicely to the object’s visual presentation created by the system. Presentation and
structure are quite similar for familiar text-oriented editing, so simple kinds of navigation
and pointing are obvious and effective. Even here small discrepancies create the kind of
problems, mentioned in the previous section, that make ordinary text editors confusing for
beginners.

For documents with rich language-based structure the problem is potentially much more
troublesome; formal language structure is both less familiar to users and less evident from
textual presentations. Ignoring for the moment problems that arise from the mixture of
textual and structural models (Sections 5.3 and 5.6), there are two important aspects of
this user model: how documents decompose into structural components and how those
components are named for communication between user and system. The design of this
model amounts to an exercise in user interface design, applied here to the interface between
documents and users.

Pan’s design framework embodies a solution that rests on several points:

o The user model of document structure is designed for each language-based view style,
depending only loosely on the underlying language description;

o In the user model the visible text is the program, and structural components are
regions of that text;

¢ Components are named in language- and task-specific terms; and

e Operands of structure-based commands are named instances of component classes,
for example “this statement” and “next language error”.

The rest of this section discusses user models of document structure in more detail.

5.2.1 The “Structural Hypothesis”

Early syntax-directed editor designs were based on the presumption that language-defined
structure is an effective organizing principle for user interaction, for example: “In the
[Cornell Program] Synthesizer, the fundamental tenet is that all operations are based on
the underlying program structure” [126]. In this case “the underlying program structure”
was explained to be an abstract syntax tree; cursor movement, for example, was presented
to the user as navigation over nodes in a tree. However experience with early editors of
this kind showed that users had difficulty with fine-grained structural interaction, so the
hybrid approach was developed. For example, even the Cornell Program Synthesizer did
not support its “fundamental tenet” at granularity finer than a statement, shifting instead
to text-based interaction that relied on a parser.

Section 2.2.1 described three problems with the structural hypothesis. The first problem
is that internal representations are typically designed to meet the needs of tool implemen-
tations, not people. Pan’s internal representation is based on an abstract tree,> and Pan’s
language description mechanism offers considerable flexibility in the design of this repre-
sentation. Experience with language descriptions for Pan confirms that the design of tree
representations is driven primarily by issues concerning language description and analysis.

*Using incremental parsing to maintain an abstract tree representation demanded novel specification and
implementation techniques [10].
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The second weakness with the hypothesis is that editing operations carry additional
cognitive overhead, since users must understand the complex relationship between the tree
and its two-dimensional textual presentation. The third limitation is that simple syntactic
categories do not correspond naturally to the kind of information users consider when
thinking about programs.

The unifying theme behind these weaknesses is the observation that people understand
programs in very different terms than those reflected in language-based analyzers (compil-
ers for example) whose implementation decisions do not address the need for a coherent
conceptual model for documents in the language.

5.2.2 A Separate Model for Users

In Pan’s design framework conceptual models of document structure are decoupled from
internal representations. The view style specification mechanism described in Section 4.4
provides a loose framework in which the author of each view style is expected to design a
model of document structure, following general guidelines. Each view style design is under-
stood to be specific to a particular underlying language, but also potentially to particular
groups of users performing particular tasks.

Each view style reveals to users relevant aspects of document structure, specified in terms
of operand classes. Operand classes are implemented as arbitrary, possibly overlapping
collections of nodes in the internal abstract tree representation, defined in terms of any
kind of information available (for example, “declarations” or “assignment statements that
evoke implicit type coercion”). These classes define potential operands for Pan browsing
and editing commands, but need not reveal implementation decisions. For example, some
classes may aggregate more than one kind of internal tree node when the distinction is
judged unimportant or potentially confusing to users.

That operand classes may overlap distinguishes them from operator-phyla [63] and other
grammar-based approaches to interaction; this becomes important with more complex kinds
of operand classes. The operand class “Language Error” (Section 5.4) overlaps many of
those classes; for example, a single internal structure might represent both a “Statement”
and a “Language Error”.

Furthermore, operand classes need not be defined for all possible internal nodes; those
not defined within any operand class are essentially invisible to users. This possibility, com-
bined with Pan’s incremental parser, represents an alternate solution to the “intermediate
node” problem that vexes many syntax-directed editors [73].

5.2.3 Text-based Models of Structure

Operand class specifications in each Pan view style define user-visible structural components
in terms of nodes of the internal tree representation having specified properties. Following
the “Augmented Text Editor” design metaphor, and in contrast to the structural hypothesis
mentioned above, the user’s model of document structure in Pan is grounded in text.
The user need not consider any embodiment of a “Statement”, for example, other than
its constituent text. From this perspective, an internal tree node is little more than a
convenient place for the system to maintain information associated with regions of text;
another internal representation might serve just as well.
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Behind this approach is the observation that people generally think not in terms of
trees but in terms of familiar structural components, the ones that might be described in an
informal language description. For programs these might include procedures, declarations,
statements, and expressions. People understand nesting but only weakly. For example,
even though natural language permits arbitrary nesting, people find sentences with even
three nested levels difficult to understand. Other naturally nested information structures,
for example hierarchical file systems, are often most successfully presented to users using
task-centered metaphors, for example the Macintosh folder metaphor [108].

In practice, Pan displays a document component to the user only by highlighting the
text in some fashion, for example, when the cursor is set structurally. Following the “Heads-
Up Display” design metaphor, any operation on a structural component is presented as an
operation on its text. This approach solves several problems associated with the structural

approach, most importantly maintaining congruence between what is seen and what is being
edited.

5.2.4 Names for Components

Related to structural decomposition is the choice of terminology by which document com-

ponents can be named. Simple structure editors (especially when designed to support

multiple languages) may not name components at all, requiring the user to think in terms of
representation-oriented commands (for example Left, Right, In, Out, and Delete-Subtree).
A single-language editor can provide more natural language-oriented commands (for exam-

ple Next-Function, Previous-Declaration, or Delete-Statement), but this approach

doesn’t generalize across languages. In some cases appropriate names overlap and depend

on context; for example a structural component internally called “variable” in a program-

ming language representation might be conceptually both a “variable” and an “expression”

in some contexts but only a “variable” in others.

All operand classes in Pan, and therefore all structural document components about
which system and user can communicate, are named in user- and task-specific terms, inde-
pendent of implementation.

5.2.5 Interaction Using Operand Classes

Most structure-based user interaction in Pan exploits operand classes: navigation, high-
lighting, projection, and many panel flags are based on this mechanism. The class mech-
anism and terminology itself, however, is not part of the model. Instead, all interactions
are wrapped in specific, named instances, for example “this statement here” (pointing with
mouse), “move to the next procedure,” “highlight all language errors,” and “display all
declared variables” (in a cross-reference).

This preference for the concrete over the abstract, for the instance over the class, ad-
dresses the tendency of people to favor the same approach. This is an instance of the more
general observation that users’ perceptions of systems are much more sensitive to surface
representations than to underlying structure.
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5.3 Mixed-mode Editing

Section 5.2 described how Pan users are encouraged to think about document structure, as
both text and structure. In this section techniques are discussed for enabling the system to
operate in both modes simultaneously, the approach being to broaden rather than narrow
the user’s options. The user should be able to edit textually any time, any place in the
document presentation; it should be equally possible to edit structurally.

Doing so without confusing users, however, presents a challenge for user interface design
(in this case between user and system). The authors of the Mentor system justified their
own decision not to attempt the mixture by noting that

A major drawback of mixing structure editing and display editing is that the
user would have to learn how to use two command languages instead of one. We
believe that most users would stick to either mode, but would not like mixing
them [29)].

Pan’s design is based on the assumption that users would be comfortable mixing the two
as long as they do not have to use two command languages, which is to say, as long as little
mental overhead arises from the mix. The approach taken in Pan’s design rests on three
points:

e It is meaningful to invoke any command, whether text- or structure-based, at any
time; thus, there are no modes in the traditional sense.

e Structure-based interaction is presented not as a separate set of services, but as espe-
cially well-informed text-based services following the “Augmented Text Editor” design
metaphor.

o Each structure-based operation is presented as a “smart” variation on a text-based
operation, following the “Smart versus Dumb Services” metaphor; structural com-
mands are easily remembered, and the metaphor reinforced, by careful attention to
command formation.

This section describes in more detail how the two kinds of editing are combined in Pan,
and in particular how the many opportunities for user confusion may be avoided.

5.3.1 Shifting Perspectives and Mixing Commands

A text-oriented operation followed by a structure-oriented operation implies a shift of per-
spective about the document, on the part of both user and system. Humans are adept at
shifting perspective, and do so frequently to suit the cognitive task of the moment. For
example, studies of experienced programmers reveal that both reading and authoring ac-
tivities involve a variety of fine-grained cognitive tasks, with rapid switching among them
[74,107). Pan supports these activities by being ready to operate in either perspective at
any time.

In contrast, many language-based editors that provide mixed text- and structure-oriented
operations require user activity, both mental and physical, to shift the system’s perspec-
tive. This can distract, slow down, and possibly confuse the user. For example, some
editors require that a structural component be specially selected for text-oriented editing;
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the textual content of the component then becomes the focus until the user wishes to resort
to structure-oriented editing, at which time another explicit action may be required. Some
editors provide a textual focus only in a separate window, preventing the user from editing
textually in the natural visual context.

Any Pan editing command, text- or structure-oriented, may be invoked without pre-
requisite. Two mechanisms make this work. The first, automatic reanalysis (Section 4.3.9)
ensures that derived information is consistent with the text before performing any opera-
tions that require it. In many editors a similar transition can be interrupted by analysis
that encounters ill-formed text. The ways in which this problem is avoided in Pan’s design
are discussed in Section 5.4.

5.3.2 Navigation

The second mechanism is the dual nature of Pan’s edit cursor, described in Section 4.3.7.
Rather than reveal to users two separate pieces of system state that involve navigation, as
do systems that have both a text cursor and structural “focus,” Pan’s cursor is presented
as a single entity whose state (and appearance) varies only slightly between “dumb” (when
positioned textually at the beginning of a statement, for example) and “smart” (when
positioned at the same location by a statement-oriented structural command). This design
resolves the “point versus extended cursor” problem identified by Teitelbaum and Reps
[126] by providing both behaviors simultaneously.

The difference between the two cursor states, as perceived by the user, is one of extra
information: whether the cursor somehow “knows” that it is at a statement (because the
user just instructed it to move there) or whether it doesn’t know (yet) about the statement
or any other structural component. The operational consequences of the two cursor states
are slight; subsequent operations that need a cursor location simply use the appropriate
aspect. If the cursor has no structural aspect, then one is inferred from the text location
(using techniques described in Section 4.2.7) as if the user had simply pointed there with
the mouse before invoking the command. This apparent sloppiness, combined with Pan'’s
operand level mechanism, addresses the ostension problem, making it possible for the user
to mention “this statement” (by pointing, for example) or “the next declaration” (relative
to the cursor) without regard for the state of the cursor. Users are never expected to express
tree-oriented commands (e.g. Up or Left). ‘

People have little difficulty with the ambiguity, presumably for the same reasons that
they can shift perspectives themselves so effectively and can manage complex, possibly
ambiguous domains [113]. For example Raskin reports that a dual-aspect text cursor solves
a particular user-interface problem: his cursor simultaneously highlights a character and
underlines a character, but not always the same one [100]. Each aspect identifies the
operand of a subsequent command, and careful design produced a style of interaction that
reduced both learning time and error frequency for experienced users. The crucial point is
(as with Pan) that both aspects are visible and predictable, an example of Norman’s mode
feedback [91]. '

Navigation commands that operate either structurally or textually are listed in Ta-
ble 5.1. The two searching commands operate textually and lexically, but have not yet been
implemented structurally. Cursor-In, Cursor-0Out are additionally supported for compati-
bility with certain kinds of structural editors, even though they have no natural counterpart
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Cursor-To-Mouse
Cursor-Forward
Cursor-Backward
Cursor-To-First
Cursor-To-Last
Cursor-Search-Forward
Cursor-Search-Backward

Table 5.1: Mixed-Mode Navigation Commands
in text editing.

5.3.3 Command Formation

It is important for any interactive system that the user be able to invoke desired operations
without unnecessary mental overhead. As one step in the process, users must syntactically
form and execute a command in the input language of the system; for Pan and similar
systems this amounts to assembly of a sequence of keystrokes, mouse button presses, and
menu selections. As with many systems designed for expert users, mouse-invoked menus
in Pan play a specialized role: they make simple commands available to users with little
prior learning, and they help teach users about available operations. Command formation
by menu is therefore assumed to take place in a context of high cognitive overhead; the
relative slowness of menu-based interaction is not an issue.

For commands invoked frequently by experienced users, however, efficient command
formation is important. Two issues affect this phase of interaction:

¢ Difficulty deciding what sequence of keystrokes will invoke a desired command; and
e The time it takes to press them.

Walker and Olson argue convincingly that the former is more important than the latter
for systems like Pan: “the time involved in making and correcting a keybinding that is
difficult to remember is far more costly than the extra keystroke that is required in an easily
remembered keybinding” [133]. Given that Pan’s command set and default keybindings are
presented to users as an augmentation of the already complex GNU EMACS conventions,
the paramount challenge is to make mixed-mode commands both memorable and easy to
infer. Experience with Pan reveals a further dimension: the general scheme adopted for
remembering keybindings can either support or detract from important design metaphors.

The general approach taken in Pan’s design to chunk together analogous textual and
structural commands and then to provide easily remembered techniques for refining the
semantics of basic command invocations. The potential complexity involved can be seen by
considering the user’s options when invoking the simplest possible command, to move the
cursor forward:

1. The user may want to move forward either textually or structurally.
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2. When moving textually, the user may want to move using familiar text-oriented com-
mands, for example by a character, a word, or a line.

3. When moving structurally, the user may want to move to a component called a
“Statement”, a “Procedure”, or any other class made available by the author of
the view style.

4. The user may want to move more than one at a time.

Each of these complications is addressed in turn. The general solution, as with much of
Pan’s interaction, is to emulate familiar text editing models and require as little additional
learning as possible. For Pan the decision was made to embed complex command formation
into the GNU EMACS model, but the same kind of adaptation could be applied to other
models as well.®

First, the text-oriented command for moving the cursor forward in Pan is named
Next-Character and is bound by default, following GNU EMACS convention, to the
key ““F”. Its structural counterpart for moving forward is implemented as a separate com-
mand, named Oplevel-Cursor-Forward, but the Pan model dictates that it be presented
to the user as a simple variation of the command bound to ““F”. Since the standard
GNU EMACS command modifier “~U” is already used for command multiplers (see below),
some other modifier must be used. The alternative (a completely unrelated set of keybind-
ings for structural commands) would result in unmemorable bindings that did nothing to
support the metaphorical relationship between the two kinds of commands in Pan. Another
GNU EMACS convention sets aside the key “~C” as a prefix key for special modes, and
this permits adoption of the following rule of thumb in Pan:

To invoke the smart version of an ordinary textual command, precede its invo-
cation with the “~C” key.”

Thus, Oplevel-Cursor-Forward is bound by default to “~C ~F”. This rule of thumb is
easily remembered and even applies to mouse buttons. For frequently used commands so-
called accelerators are also in place, menu and keybindings that are much faster to invoke,
but their use is optional; for example, the right arrow key on most keyboards is also bound
by default to Oplevel-Cursor-Forward for quick single-step navigation.

Second, following GNU EMACS conventions, standard variants on text-oriented nav-
igation commands are bound to separate keystroke sequences: “Escape F” is bound to
Next-Word for example. Also like GNU EMACS, word-oriented commands in Pan are
configured by character classes that define, for example, which characters should be consid-
ered parts of words and which should be considered word separators. Character classes may
be adjusted as part of each view style so that this kind of text-oriented command operates
in a natural way for the underlying language. Note that Pan also supports lexeme-oriented
commands that use structural rather than textual information, and in many cases this can
be more exact than class-based text commands. Both are necessary, however, since they

®For example, Walker and Olson present a rationalized keybinding set for EMACS editing commands
and demonstrate that it is easier to learn and remember; Pan’s augmentation would fit nicely with that set
too.
"This rule is very similar to the hierarchical approach to designing the keybindings advocated by Walker
and Olson.
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operate differently in some cases; a comment is a single lexeme, for example, but contains
many textual components.

Third, an entirely new mechanism in Pan permits users to specify the granularity
of structural operations, for example whether to move forward by a “Statement” or a
“Procedure”. The operand level mechanism, described in Section 4.3.6, helps users cope
with the generality of many languages, many view styles, and many potential operand
classes; it is a weak input mode that serves as an alternative to the kind of command pro-
fusion that might otherwise be needed. The user specifies a current operand level in each
window by menu selection (or keybinding), where the options listed in the menu are deter-
mined by the view style specification. The current level modulates structural commands
such as Oplevel-Cursor-Forward but has other effects and implies no restrictions on user
actions.

Finally, Pan supports command multipliers following GNU EMACS convention for use
of the “~U” prefix. The default multiplier for commands is one, but the prefix may be used
to specify any number of repeats, for example, to move forward by three statements.

Informal evaluation of several earlier keybinding sets led to this solution. Given the
ease with which alternate keybindings can be implemented in a customizable system like
Pan and EMACS (all but the most naive users can learn how to rebind keys), it is sur-
prising the degree to which variations colored users’ experience with the system. One early
arrangement, in which simple keys such as “~F” were level-sensitive, led many users to per-
ceive the entire system as much more “moded,” and therefore “unusable” than it needed
to be; this was a failure to meet the requirement for “familiar, unrestricted text editing”,
since users felt that text commands were sometimes unavailable or produced unpredictable
results. A redesign of the default keybindings, based on more careful consideration of basic
design metaphors, corrected the problem and led to an improved perception of the system
by users.

This experience with keybindings in Pan mirrors a result noted by Ledgard, Singer, and
Whiteside during a carefully controlled experiment: subjects in an evaluation of command
languages for text editors failed entirely to detect the equivalence of two editors that dif-
fered only in details of their command languages [72]. As in many other contexts, surface
manifestation (the syntax as opposed to the semantics) is the system for most users most
of the time.

5.3.4 Structural Selection

Unlike navigation in Pan, where the structure cursor is presented to users as an extension
to the text cursor, the need for a structural analogue to text selection was not anticipated.
Although navigation and selection are distinct in the text editing model, they are blurred
together in the extended language-based model. This section describes the limitations of
the current model and discusses a proposed model for structural selection that addresses
them.

In Pan’s current configuration, the text selection aligns automatically with the text of
the cursor whenever set structurally. This expedient allows a structure movement to be
combined efficiently with a subsequent textual Copy or Delete operation, both of which
operate on the text selection.

Experience has shown this arrangement to be inadequate, just as would be the case if it
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were possible for user and system to communicate textually only about a single character
at a time. User and system must sometimes communicate in terms of multiple structural
components simultaneously. For example, the query mechanisms described in Section 4.3.8
must return an answer to the user in just this form (an arbitrary collection of structural
components) and a special-purpose mechanism now plays this role. Further, several appli-
cations designed for Pan require the user to designate more than one structural component
as collective arguments to a single command; these are unimplemented because there is at
present no support for multiple operand selection.

The need for collection-based interaction arises in a surprising variety of contexts. For
example, a recently developed compiler-debugger interface permits stepping through opti-
mized assembly code; highlighting the corresponding source code at each step sometimes
results in disjoint components being highlighted because of optimizations [19]. Systems
that deal with higher-level programming constructs, including many transformation based
tools (for example the KBEmacs editor, in which clichés manifest themselves visibly as
non-contiguous components [135]), likewise need this kind of interaction (although Waters
mentions that the “EMACS-style program editor,” with which KBEmacs is integrated, can’t
even support this).

Task analysis has led to an unimplemented design that generalizes selection in precisely
the same way that the cursor has been generalized in Pan’s model. In this model there
would be only one notion of selection, which might or might not be set at any given time
(in contrast to the cursor, one of which is present in every window). The crucial general-
ization at the textual level would be to allow disjoint regions to be selected, that is, the
current selection would be modeled as a set of text regions. The potential complexity of this
generalization when seen from a text-only perspective does not justify its addition, since
complex policy questions would arise concerning overlapping and nested selection compo-
nents. In practice, this selection would never contain more than one member during normal
text editing, and all text-oriented commands would work as expected.

The selection could, however, become “smart” in precisely the same way that the cursor
does: by alignment to correspond to structural components. Pan’s query mechanism,
instead of invoking a special-purpose highlighting mechanism, would then simply “select”
the result. This would enable the query mechanism to be presented to users as a “smart”
version of the familiar text-based query mechanism based on regular expressions. Each
component of the answer would be selected textually (displayed by underlining) and the text
would additionally be highlighted in some distinguished way to show that the selection is
structurally motivated. Most cases of multi-selection would result, as in this example, from
invocation of suitable commands; additional user commands would seldom be necessary.

There would be commands, however, for the user to construct a multiple selection
manually, for example with commands to select the component at the cursor, to add the
component at the cursor to the selection, to delete it, and to navigate structurally over
the current selection (much as the user can now navigate over members of the most recent
query result).

Underneath all this would be a general mechanism for collecting, naming, and retaining
arbitrary collections of nodes on the fly. This would be available to advanced applications
of the sort mentioned above.
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5.3.5 Simple Editing

The prototype implementation supports no user commands that modify internal document
structure directly. A Delete command, invoked with a structural selection, removes the
text associated with the selected component. The internal structure corresponding to the
deleted component persists until the next reanalysis, but it is invisible to the user: automatic
reanalysis will delete it before any commands can use it and in particular before the cursor
can land on it. Cut places text in the clipboard, and Paste simply inserts text from
the clipboard. If the context is appropriate, subsequent incremental analysis derives the
equivalent structural information quickly.

This implementation costs a small amount of analysis time by discarding derived infor-
mation when the user moves structural components. On the other hand, it guarantees the
integrity and well-formedness of the document’s internal representation, since the language
definition is already built into Pan’s parser.

Complex mechanisms for direct structural editing can be a source of confusion to the
user, since those editing operations may fail, something Pan commands never do. Worse,
they may fail for the kinds of reasons best hidden from the user, for example the presence
of “intermediate nodes.”® Solutions ultimately involve guessing about the user’s intent,
an approach avoided in the design of Pan. When a structurally inspired Cut and Paste
sequence in Pan violates the underlying language definition, the operations succeed anyway
and the problem is diagnosed by precisely the same mechanism that handles other language
violations (discussed in Section 5.4).

The only loss at present caused by this text-based implementation is the loss of non-
derivable annotations on document components during Cut and Paste sequences. Strategies
are possible within Pan that avoid this information loss and provide functionality equivalent
to direct structural operations, but the successor to Pan is addressing the problem in more
fundamental ways.

5.4 Ill-Formed Documents

Inherent in the syntax-recognizing approach adopted for Pan is the certainty that docu-
ments being modified are more often than not ill-formed: at variance with an underlying
language definition. This section discusses the problem of ill-formed documents from two
perspectives. The first is the need to meet Pan’s requirement for “uninterrupted service”,
using a pervasive set of techniques organized around the “Imperfect World” design metaphor
to make all of Pan work as well as possible in this situation. In the second perspective, a
cluster of Pan services® make diagnostic information available to users in a variety of ways,
demonstrating the flexibility of the basic elements of user interaction detailed in Section 4.3;
the presentation of diagnostics is an example of a Pan application for exploiting one kind
of metainformation about documents.

Ill-formed documents are often said to contain “errors,” a pejorative term reflecting
the limitations of many analysis methods. Many language-based editors that permit text-
oriented editing inherit this bias. Unable to analyze ill-formed documents, these editors

8Section 2.2.3 presents an example of a structural cut and paste sequence that might fail this way.
?A cluster of low-level services and configurations in Pan that exploit a particular kind of information or
relate to a particular user task is sometimes called a Pan application.
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insist that the user correct any newly introduced “errors” before proceeding. Often claimed
to be an advantage, because it limits the extent and duration of “errors,” this treatment
has unpleasant side effects.

¢ It narrows options available to the user, who may prefer to delay trivial repairs while
dealing with more important issues. An “error” may often be part of an elaborate
textual transformation.

e It implies that derived information is only available and accurate when documents are
well-formed, again constraining the user.

e It implies that the user has done something wrong, when in fact the system may
simply be unable to understand what the user is doing {76].

Par’s approach to the treatment of ill-formed documents pervades the system. It is
an entirely normal state in Pan for documents to be ill-formed; every attempt is made to
provide all services in the presence of any such variances with respect to the constraints
imposed by the language description. In fact, information about variances is an important
and useful kind of derived information, available whenever the user wants it.

Pan’s approach decouples ill-formedness from inconsistency between the textual and
language-based aspects of a document, discussed in Section 5.6. A consistent document
may or may not be well-formed; likewise an inconsistent document may or may not be
well-formed, but the system can’t know in this case.

5.4.1 Tolerance for Variance

Par’s design includes two special mechanisms for handling variances, reflecting the two
layers in which the author of a Pan language description defines well-formedness: a context-
free grammar and contextual constraints. These layers are reflected in turn by separate
analysis technigues, reflecting the traditional division of analysis in language-processors
into syntactic and static-semantic analysis.

As described in Section 4.1.2, Ladle builds internal tree representations as specified by
the relevant part of each language’s description. Ladle implicitly extends this specification
to include special document components, created automatically during incremental syntax
analysis to represent instances of syntactic variance. Each of these special components
is named after a specific kind of variance, for example “malformed statement”. These
components may retain well-formed subcomponents produced during prior analysis. For
example, a “malformed block™ might still contain well-formed statements that are accessible
to the user as instances of “Statement”. As much derived information as possible is retained
along with these subcomponents for later analysis. This is an important implementation
strategy for bounding the effects of minor or ephemeral syntactic variances.

As described in Section 4.1.3, Colander’s semantic analyzer attempts to prove that ev-
ery description-defined constraint on each document component is satisfied.!® For example,
many programiming languages require that all variables be declared. In a Pan language
description, this requirement is enforced by placing an appropriate constraint on each doc-
ument component where a variable can be used. If an undeclared variable appears, a

1°A Pan language description may include useful additional constraints that do net derive from the
language definition, but rather from local and possibly personal conventions for the use of each langnage.
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constraint variance is added to the relevant component as one of many properties that
may be recorded there.

5.4.2 Classes of variance

As with most language-based systems, the distinction between syntactic analysis and con-
textual constraint checking is fundamental to Pan’s language description and analysis in-
frastructure. Early versions of Pan inappropriately exposed this distinction to the user in
the form of the two predefined operand levels that corresponded to the underlying imple-
mentation: “Syntax Error” and “Unsatisfied Constraint”.

A more general mechanism now permits the author of each language-based view style
to specify one or more classes, each of which may contain arbitrary subsets of possible
variances. For example, a simple view style might reflect the way naive users think about
errors; the single operand class “Language Error”!! would include all possible instances
of syntactic errors and unsatisfied constraints. On the other hand, experienced users seem
to place variances into categories according to various criteria, for example severity, non-
locality, or perhaps even level of surprise; this may likewise be modeled by appropriately
defined and named operand classes. This generality becomes even more important when
extra-lingual constraints are added, since they are implemented as Colander constraints,
but reflect a different category of metainformation from the perspective of users.

5.4.3 Diagnostic Services

Well-formed documents in Pan differ from ill-formed documents only by the absence of
variances, and both text- and language-based operations may proceed in the presence of
variances. Pan’s diagnostic application offers the user several different ways to communi-
cate about variances, reflecting a rich set of channels available for meta-information. As
with most of Pan’s interface, all are optional and under user control. Furthermore, the
implementation of these services serve as an example of how visual design, in particular
design guidelines 18 and 19 described in Section 4.4.3, can connect different channels for a
particular class of meta-information. In the default configuration (shown in in Figure 3.6
on page 28) the color theme for language errors is red and the graphical theme is the
exclamation point.

Announcement As part of each incremental analysis, a panel message notes the number
of variances present.

Panel Flags Panel flags appear when specified kinds of variance are present; the default
flag for class “Language Error” appears as a red exclamation point. This may be all
the information a user needs when it appears subsequent to a small modification.

Highlighting Highlighters render text associated with specified kinds of variances spe-
cially; the default highlighter for class “Language Error” uses red ink. Experienced
programmers often diagnose problems at a glance, once attention is drawn to their
location.

11 Although these are “variances” in Pan’s design, users still know them by the conventional term.
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Navigation The user may request more details setting the level appropriately (default con-
figurations make the level “Language Error” available) and navigating structurally.
The default configuration for this level includes an after-daemon that announces the
diagnostic each time the cursor is positioned structurally at the level, “malformed
statement” for example.!?

Alternate Views The Error List view style, described in Section 4.3.11, lists all diagnostic
messages in a separate window whose view style logo is a red exclamation point.
Exploiting shared structural navigation, a simple command to set the cursor in the
list causes the cursor in the primary view to move to the location of the variance.

5.5 Incomplete Documents

Section 5.4 began with the premise that documents being modified are more often than not
ill-formed, and it described efforts in Pan’s design to provide as much service to users as
possible in this situation, following the requirement for “uninterrupted service”. This level
of service can be improved (and new services added) through attention to the special case
that arises when ill-formedness results from the absence of required structural components,
for example from a newly entered while loop whose termination condition is still missing.

One useful outgrowth of the syntax-directed approach to editing is first-class treatment
of documents that are incomplete in this way. The standard technique (prompted origi-
nally by the need to make sense of unexpanded nonterminals in grammar-based derivation
trees) is to support insertion of visible placeholders that act as surrogates for designated
classes of structural components (typically operator phyla such as “statement”), but which
lack any further detail. Analyzers treat placeholders specially by not raising unnecessary
error conditions in their presence. Placeholders in syntax-directed editors are typically
protected against text-oriented modification; they serve instead as expansion points where
“elaboration” or “expansion” commands replace them with more detailed templates that
may themselves contain placeholders (a “while loop” template might replace a “statement”
placeholder for example).

A Pan experiment with this style of interaction demonstrated that the advantages of
placeholders can be made available entirely within Pan’s design framework,!® and that they
can in fact be implemented as just another application built upon kernel mechanisms and
configured with basic elements of user interaction.

Consistent with the text-based approach to document structure that pervades Pan’s
design framework (and unlike conventional syntax-directed editors), placeholders in Pan
are simply text and can always be manipulated as such. For example, the string “@decl”
appearing in Figure 5.1 is simultaneously text, a member of the language-specific class
“Declaration”, and a member of the special class “Placeholder”. All standard structure-
based commands work appropriately at both levels, and some special ones are configured
to work at the “Placeholder” level. In particular, the level-sensitive (or “smart”) menu

12A “malformed statement” is in both the “Statement” and “Language Error” operand levels; the an-
nouncement appears only when the user navigates at the latter level.

13This experiment covered only the interaction mechanisms and configuration. Ladle descriptions were
extended manually in ways that could be automated. Colander support for placeholders is likewise absent,
but can be implemented by manual additions to the description.
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Figure 5.1: Using Pan: Expanding a Placeholder
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command Oplevel-Menu, bound by default to “~C Mouse-Right”,is configured in this case
to be context sensitive: it presents the user with the usual menu of level-sensitive commands
augmented by a submenu of templates (visible in Figure 5.1) appropriate for replacing the
placeholder at the cursor.

Pan’s other user interaction techniques contribute as well. A standard flag may be added
to the panel, as shown in Figure 5.1, that appears when there are placeholders present.
This flag (whose default appearance is a purple “€” to support the visual theme for syntax-
directed editing) indicates that a document is incomplete in the sense being discussed here.
A standard highlighter for placeholders may be installed, helping the user locate them at
a glance (this highlighter is of course configured by default to color placeholder text in
purple).

This approach permits a convenient mix of text-oriented and syntax-directed expansions.
For example, once a user sets the level to “Placeholder”, repeated template expansions
may be invoked by iteration over the following sequence of actions:

1. The user points at a placeholder and presses “Shift-Mouse-Left”* to set the cursor,
causing the placeholder to be highlighted and selected textually.

2. The user presses “Shift-Mouse-Right” to bring up a context-sensitive menu that in-
cludes a submenu of template expansions for the placeholder at the cursor (Figure 5.1).
Selecting one invokes the expansion, followed by an automatic reanalysis.

An expansion also leaves the cursor positioned at the first placeholder, if any, in the inserted
template; the user may then expand that placeholder in turn with only one additional action.
An experienced user would repeat this sequence quickly by holding down the shift key for
the duration and invoking commands with mouse buttons only.

A common digression from this purely structural sequence is textual replacement of the
placeholder at the cursor, especially for placeholders. This sequence can be fast too:

1. The user types “~W” to delete the (already selected) text of the placeholder (the
characters “@identifier™).

2. The user types replacement text.

Unlike placeholder expansion, this sequence leaves the analysis slightly out of date, but the
user’s next structural move to a placeholder (either by pointing or invoking Oplevel-Next)
triggers reanalysis (fast in this case since the amount of analysis is kept small by frequent
analysis). Other textual digressions are just as convenient, for example moving to the end
of the current line, adding a comment, and then moving forward structurally to the next
placeholder.

Finally, there is no reason to limit template expansion services in Pan to simple expan-
sion of nonterminals in abstract grammars. For example simple clichés of the kind supported
by KBEmacs might be inserted (though not necessarily stored in any way to permit their
recovery) [135]. Some might be parameterized in complex ways, for example by selection of
a program fragment to fill a central “slot” in the cliché; some might need multiple structural
selection of the sort advocated in Section 5.3. This all works because template expansion

This keybinding is an accelerator, bound for convenience to Oplevel-Cursor-To-Mouse, a command
whose memorable (and slower) default keybinding uses the control-C prefix instead of the shift key.
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in Pan is implemented on top of kernel mechanisms and language-based infrastructure, not
integral to them as with earlier generation syntax-directed editors.

5.6 Incrementality and Inconsistency

Any situation where one kind of information is derived dynamically from another invites
inconsistency’® between the two. The syntax-recognizing approach adopted for Pan,
where language-based information may be derived from document text, is no exception.
During text-oriented editing, language-based information maintained by the system some-
times disagrees with what the user sees. For example, Pan’s lexical font shifts become
incorrect immediately after a statement has been transformed textually into a comment,
and no derived information may be available at all for newly entered text.

Inconsistency between text and derived information should not be confused with a re-
lated but distinct issue: the well-formedness of a document with respect to its underlying
language. Many language-based editors that permit text-oriented editing are able to resolve
inconsistency only for well-formed documents: a user who modifies a document textually
is not permitted to continue until all changes meet the system’s requirements for syntac-
tic well-formedness. Pan’s analyzers never fail (Section 4.1), and there is no need for this
restriction. It is possible for a document’s text to be linguistically well-formed but incon-
sistent with respect to derived information, for example when the user has just corrected a
language error textually. It is equally possible for the document to be ill-formed but con-
sistent, in which case the derived data includes accurate diagnostics. Section 5.4 discusses
well-formedness in more detail.

Two general aspects of system behavior concern the problem of inconsistency. The first
is how often and under what circumstances the system should reanalyze, given that the
mechanisms involved have the potential to confuse the user, to degrade performance, and
to make the system’s behavior unpredictable. The second is how the system should behave
during periods of inconsistency, given that services based on incomplete and unreliable infor-
mation, when they can work at all, may mislead users. Workable solutions demand delicate
compromises involving user interface issues, analysis methods, and system performance.

In Pan’s design framework these system issues are refined into four user-centered goals:

1. Don’t let analysis obstruct or distract users.

2. Keep the extent of inconsistency small by analyzing often.
3. Make inconsistency visible.

4. Minimize the distinction in service.

Unfortunately these goals conflict. For example, a policy of reanalysis only upon explicit
request is nonintrusive, but invites extensive inconsistency. Likewise, making the distinc-
tion between the two states visible implies a perceptible threshold, but such a threshold

15The term “consistency” is unfortunately used in a variety of ways not directly connected to the meaning
intended here. For example, it is sometimes used to name a desirable property of a system’s user interface,
although it is debatable whether this meaning is either well-defined or useful [49]. Mindr uses the term in
yet a different way when describing his language-based editor, concerning grammars in trees in this case [87)
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can distract when the state changes (for example, after the insertion of a single character
immediately following analysis).

Earlier syntax-directed editing systems implicitly addressed subsets of these goals, but
they did so by imposing restrictions on users and by not attempting to meet all of them. For
example, a pure structure-editor prohibits inconsistency by restricting user actions to syn-
tactically legal transformations on a derivation tree. Hybrid editors bound inconsistency to
a structurally-defined “focus” and make it visible, but they impose awkward mode changes
on the user, restrict options in the presence of language errors, and may often make the
focus much larger than necessary.

The remainder of this section discusses interrelated policies and mechanisms in Pan’s
design framework that address these goals. These solutions demonstrate that, when the
goals are addressed together, workable compromises can be made that are consistent with
Pan’s design requirements. Fundamental to these solutions is the following assumption:

An experienced user is almost always a better judge of the extent and implica-
tions of recently introduced inconsistency than the system.

After all, the user is responsible for the changes and (mostly) understands them; the system
seldom knows what the user is really doing.

5.6.1 Unobtrusive Analysis

One way to keep analysis unobtrusive is to make it fast. Pervasive reliance on incremental
analysis (Section 4.1) helps. For many simple textual changes, analysis time is roughly
proportional to the extent of the changes. Unfortunately, non-local linguistic structure
means that the potential for extensive reanalysis is always present. A reasonable assumption
here is that experienced users develop an intuition about the kinds of changes that have
extensive implications and that they do not perceive variations in analysis time as caprice
on the part of the system.

Even well designed incremental analyzers can incur perceptible delays on present-day
workstations, so a careful policy is important. An overly ambitious policy, attempting
reanalysis after every character insertion or deletion, encounters serious problems. First,
analysis at this granularity would find documents nearly always ill-formed. There is little
to be gained by insisting that the system perform useful analysis on documents that are
in intentionally meaningless states. Second, this drain of resources degrades performance
in ways beyond the user’s control. Third, over-eager update of the display is visually
distracting. The Magpie editor [111] successfully analyzes after every keystroke, but it
supports very few services compared to systems like Pan.

Two somewhat less ambitious policies are possible. First, the system might guess when
the document is reasonably well-formed and suitable for analysis. This policy shares the
disadvantages of the more ambitious policy—the potential for unpredictable and uncontrol-
lable behavior. Second, the system might restrict text editing to a bounded context (or
focus) based on some internal structure, performing analysis automatically when the user
attempts to leave the context in some way. This policy can create confusion about the exact
nature of the context and is incompatible with Pan’s general insistence on unrestricted text
editing with no overhead on shifts of perspective.
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Pan’s policy is lazy and predictable, based upon the assumption that the user under-
stands the general state of the document and can judge the tradeoffs involved. Incremen-
tal analysis is only performed when requested by the user, either implicitly by invoking
an operation that triggers automatic reanalysis (Section 4.3.9) or explicitly by invoking
Analyze-Changes.

5.6.2 Frequent Analysis

Nothing in Pan’s analysis policy prevents a user from typing an entire document without
once invoking the analyzers. This largely defeats the purpose of many Pan mechanisms,
overtaxes other techniques for dealing with inconsistency, and renders analysis time rel-
atively more obtrusive. Although the user is always the final authority in Pan’s design,
several techniques encourage frequent analysis.

The overt technique is to deliver helpful applications so that users perceives analysis
time as cost-effective. Since invoking strict services causes automatic reanalysis, the more
frequently these are used the smaller the increments of analysis. Gracious services do not
require consistency, but users will often want to invoke analysis explicitly if services are
known to work better as a result.

The covert technique exploits one of Pan’s gracious services, lexical font shifting. The
font category reserved for unanalyzed text helps the user judge the extent of inconsistency
(see below), but it also disturbs the visual harmony of the display during inconsistency,
subliminally encouraging frequent analysis to make it more aesthetically pleasing. This
only works with appropriate font assignments, as suggested by design guideline 8, which
encourages fonts for analyzed (“smart”) text that look “nicely typeset,” and by design
guideline 9, which recommends a font for unanalyzed (“dumb”) text that not only looks
dumb, thereby reinforcing an important metaphor, but which also “contrasts unpleasantly
with other font choices.”

5.6.3 Visibility and Soft Thresholds

Inconsistency can have important consequences, so it is important that the user know when
this is the case; this is another example of Norman’s recommended mode feedback [91].
It is also important to give the user whatever help possible in judging the extent of any
inconsistency. The cues must be be subtle, however, so that they do not intrude when
the user is occupied with tasks for which the information is irrelevant. As a special case,
transitions between the two states should be perceptible but not distracting.

It is especially important to avoid threshold effects, distracting visual changes perceived
as disproportionate to recent user actions. But a single keystroke in Pan can trigger the
transition from consistent to inconsistent. The problem is made worse by the fact that this
keystroke, the first after an analysis, is nearly always the first of a planned sequence for
which the transition is cognitively irrelevant; the user, having made the plan, has already
made a commitment to the document becoming inconsistent. In early versions of Pan
that first keystroke caused all highlighters to be turned off, a severe annoyance to any user
making changes by following a highlighted trail through the code. Highlighters no longer
do this (see below) and several other techniques help soften the transitions.

The only authoritative indicator of inconsistency is the panel flag “’+”; this flag, otherwise
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displayed boldface in dark green, appears dim red during periods of inconsistency. Other
visible transitions include color changes for any highlighters configured to be gracious; here
careless color choices can produce unpleasant visual thresholds (see below). The extent of
inconsistency is revealed in some cases by the amount of raw, unanalyzed text visible, but
this cue is not completely reliable: raw text may be present in areas not visible in any
window, and there are no visual cues at sites where text has been recently deleted.

It is an open question whether inconsistency might be quantified usefully; if so, revealing
inconsistency as a finer-grained change could be helpful to users.

5.6.4 Approximate versus Exact Services

A deeper approach to softening the threshold between consistent and inconsistent states
is to make it less important to the user, meaning that the system should behave as much
alike in the two states as possible. Maintaining service during inconsistency addresses Pan’s
fundamental requirement for “uninterrupted service”, but risks misleading the user by using
obsolete derived data. Presumably because of this risk, other editing systems, and early
versions of Pan as well, offer no general services that continue to operate in approximate
modes during inconsistency.

Pan’s design framework addresses this prospect with the distinction expressed in the
“Strict versus Gracious Services” design metaphor, introduced in Section 4.2.3. A gracious!®
service in Pan ideally:

e Operates normally when a document is consistent, using exact information;

¢ Approximates normal operation otherwise;

Contributes no distracting behavior to transitions between consistency and inconsis-
tency,;

Operates correctly most of the time when operating in the presence of small inconsis-
tency; and

e Never lies in ways incomprehensible to users.

Notions like “approximate” and “most of the time” are informal but precise, having meaning
not in formal language theory but in the cognitive experience of users. By analogy a spelling
checker always operates in approximate mode, but well designed ones are both unobtrusive
and useful.

Lexer-based font shifting was a gracious service in Pan before the concept had been
articulated in the design framework. Operationally, the lexer assigns font categories to
all text touched during analysis, and those font assignments persist until touched again
by the lexer. Applying the “strict” policy (implicitly in effect for all other services at
that time) would have meant resetting all fonts to the raw category whenever a document
became inconsistent, since the information upon which they were based is suspect. Actually.
language theory suggests that only text to the right of any change need be reset this way,

1$The term derives from the engineering term “graceful degradation,” referring to products and services
that fail gradually rather than abruptly.
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but the visual effects (and loss of almost-correct information) would be just as unpleasant
if not more so.

Pan highlighters began as strict services but may now be configured to operate in either
mode; design guideline 12 suggests that the choice be made by considering whether approx-
imate operation could be either misleading or useless. To a certain extent this amounts
to determining whether local textual changes can have confusing and unpredictable impli-
cations for the information being displayed, but there hasn’t been enough experience with
gracious highlighters to articulate any more precise guidelines.

It is important that colors be assigned carefully to any highlighter configured to work
graciously: design guideline 16 suggests that the two relevant colors (one for exact, one
for approximate operation) support the “approximate” metaphor by having the same hue,
for example, but with a bit less saturation and/or luminance for approximate mode. This
avoids distracting thresholds when the state changes, helps makes the state visible, and has
the correct connotation for the “quality” of the information being displayed.

Structural navigation in Pan remains strict but is a good candidate for elevation to
graciousness. Pan’s internal tree representation and its connection into the text stream
would permit straightforward implementation, but interesting policy questions concerning
fine points and boundary questions would have to be explored; these would amount to
elaboration of the “location mapping” mechanisms and heuristics described in Section 4.2.7.
For example, a textual location in a new region of text would map into nearby structure
using simple rules; similarly, a policy would specify a threshold of damage permitted to
the textual yield of a tree node to permit placement of the structure cursor on it. As with
all gracious services in Pan, approximate operation would be an optional convenience: the
user can make all services exact at any time with an invocation of Analyze-Changes.

5.7 Alternate Views

As noted in Chapter 2, software documents have rich internal structure, with different re-
lationships important to users at different times. In his 1979 essay Beyond Programming
Winograd argued that multiple, dynamic views of software are important: “The program-
mer needs to be able to reorganize the information dynamically, looking from one view and
then another, going from great generality down to specific detail, and maneuvering around
in the space of descriptions to view the interconnections” [139].

Pan’s design framework for alternate viewing, described in Section 4.2.8, represents a
step in that direction within Pan’s current implementation framework. Simple view frame-
works can display batches of derived text, permit access to textual annotations on structural
components, project component classes onto textual lists, and paint graphical trees with
labeled nodes. Many sample views have been implemented within these frameworks; for
example tree-to-list projections include a list of error diagnostics, a cross reference of names,
a table of contents, and a summary of textual annotations. As with Pan’s other elements of
user interaction, alternate views will be as useful as the kinds of information used to drive
them; the following section describes many possibilities.

Other viewing frameworks would help, giving the view designer the power to filter and
transform information in more general ways. Some of these also appear in the following
section.
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5.8 Other Applications

The ultimate advantage of language-based interaction lies in a rich and open-ended col-
lection of services (organized into thematic or task-related applications) that draw upon a
rich repository of information to assist users in commonly performed tasks. This chapter
has already described some of these, for example the collection of services that deals with
the location and diagnosis of variances (Section 5.4). This final section lists other examples
in three categories: those already implemented as prototypes, those unimplemented but
straightforward, and those requiring further development or integration with other tools.

In all cases it is emphasized first that applications are implemented by combining generic
and language-specific services, and second that the user need not be aware of the complex
internal representations needed to make them work. Perceived complexity derives from the
particular application and the kind of information involved, not from the elements of user
interaction in Pan’s design framework through which they can be delivered.

5.8.1 Example Applications

This section describes Pan applications that have been prototyped in some way. A few have
been mentioned elsewhere, but are included here for completeness.

Structural Search/Replace Like all powerful text editors, Pan supports textual replace-
ment based on regular expression matching. However, one sometimes wants replace-
ments to depend on the language structure, not on the textual structure, even when
the two are similar. For example, whole-word replacement (where replacing substrings
of longer words is not desired) in natural language documents is difficult to specify
using patterns. One variant of Pan’s replacement command matches patterns only
against words (lexemes) as defined by the particular language. Another variant re-
names variable instances in programs, drawing on information in Pan’s database to
avoid renaming enclosed variable definitions that have the same lexical name but
which are logically different variables.

Queries and Non-Local Navigation One of the few forms of query supported by or-
dinary text editors is textual search. Searching in Pan can draw on any derived
information. For example, one command locates the declaration and all uses of a
program variable, which the user identifies by pointing at any instance. The results
of this and other structure-based queries are made available using the query interface
described in Section 4.3.8, including a highlighter and operand level for navigation
over the results. This particular command is implemented by using a database query
defined as part of the Colander description in the view style specification. The same
underlying Colander query supports other services, for example a command that
moves the cursor to the declaration of a variable pointed to by the user; this is only
one example of a navigation command that follows hypertext-like links defined by the
underlying language.

Names, Types, and Values Other sample applications exploit information that is de-
rived in the process of checking a language’s static semantics. The cross reference
and table of contents view styles (Section 4.3.11) are among these. Another com-
mand announces (in the panel) the type of a name, and another announces its value
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if known. A variant of the latter displays the value temporarily in place of the name.
Value computations could be augmented by other sources of information and more
advanced reasoning. For example, expressions might be evaluated when enough values
are known, and the user might direct that certain assumptions about variable values
be made (these might be context- or name-specific “rules,” for example to assume
that a particular error flag is never true).

Style Checking Stylistic and usage constraints, added to the Colander description in a
language-based view style, specify violations that do not show up as language errors.
Violations can can be viewed by adding a standard panel flag, a standard highlighter,
and by navigation at level “Stylistic Violation”.

Textual Annotations The user can create textual annotations, in a special alternate view
for each. A separate summary view lists all existing annotations, and supports shared
structural navigation to help the user relate annotation and document component
(Section 4.3.11). A programmatic client interface for the facility exists, which might
permit a debugger, for example, to annotate various components with context infor-
mation derived from a stack trace being studied.

Debugger Integration An experimental debugger permits code modifications to be com-
piled incrementally from Pan’s internal representation and patched into an executing
image while preserving execution state [18].

5.8.2 Easy Additional Applications

This section describes applications that would not be difficult to implement within Pan’s
existing framework.

Classes for Library Calls An operand class might be defined to include call sites involv-
ing particular libraries, for example calls to window system libraries. Basic services
would let users highlight call sites, navigate over them, or generate a separate list
view showing all calls. A specialized command available for this operand class might
display documentation for a selected library function.

Classes for Particular Language Constructs As part of a software re-engineering task,
operand classes might be defined for particular constructs of interest, for example all
uses of “goto,” allowing rapid determination of their presence, their number, their
location, or perhaps the diversity of their target destinations.

Classes for Other Annotations Operand classes might be defined for any other class of
information that could be imported from tools in the environment, for example dead
code analysis, test coverage, and many others.

Type Checking for Complex Argument Sequences The conventional static-semantic
goals for a language, for example ordinary type checking in C, could be extended to
check complex, dynamically defined argument sequences to procedures, for example
the attribute/value list discipline used by the XView libraries [53]. This argument dis-
cipline calls for alternating keywords (defined constants) and values, where the type of
the value must be appropriate for the attribute. Some values are sublists, which must
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be terminated by an argument of zero, and some attributes take no values. None of
this can be checked by standard type systems, but they could be encoded into a set
of Colander constraints specialized for the library.

Current Modifications An operand class might be defined to include all new structure
created since some previous reference point (originally visiting the file, or perhaps a
user specified reference point). Either a highlighter or a query would make it possible
to see code newly introduced during the current session.

5.8.3 Complex Additional Applications

This section describes more speculative Pan applications. These are the kind of applications
that would exploit more fully Pan’s basic design framework, but all would require additional
mechanisms and possibly integration with outside tools.

Graphical Cues in Display Small glyphs or icons might be associated with particular
flavors (or layers) of structural annotations or properties, and these might appear
in the display at each site where one is present. Baecker and Marcus suggest some-
thing similar for static document display in their “Essay on Comments,” complete
with twenty suggestive examples for categories such as “Warning/Sensitive,” “Added
Code,” “Fragile Code,” and “Unreachable Code” [6]. This application would require
a more flexible presentation engine than Pan’s current prototype.

Extra Notation in Display Redundant notation generated by the system can aid com-
prehension. For example, certain scope markings have been shown helpful for some
kinds of reasoning [117] but not for others. Studies such as these focus on language
design, in this case examining the tradeoff between redundancy (and therefore more
opportunity for entry errors) and comprehension. Generating the extra notation auto-
matically (and optionally) in a system like Pan gives the user the best of both choices.
This application would require a more flexible presentation engine than Pan’s current
prototype.

Transformed Notation in Display Notational transformations, produced by the sys-
tem, can aid comprehension, especially when placed in situ in the display so that
continuity with surrounding context is not disturbed. These would be helpful for
constructs known to be confusing, for example deeply nested conditionals which can
be transformed into decision tables or other representations advocated for manual use
[99]. This application would require a more flexible presentation engine than Pan'’s
current prototype, as well as some special-purpose analyzers.

Slicing Program slicing is a form of visual program condensation based on the question
“what can affect the value of this variable at this point in the program™ [137]. A family
of queries of this sort might be answered by a general analyzer. This application would
require a more flexible presentation engine than Pan’s current prototype, as well as
integration with a data-flow analyzer. '

Control Folding in Display A specialized transformation would elide certain control
branches, producing a “collapsed view” based on contextual assumptions. Most help-
ful would be the assumption that no error-handling branches are taken, yielding a
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normal-case view to help explain the main program. Identification of error-handling
branches might take place by inference, based on pattern matching and stylistic rules,
by importation of profile information, by direct annotation from users, or by a mix of
these. This application would require a more flexible presentation engine than Pan’s
current prototype, as well as possible integration with a profiler.

General Debugger Interface Pan would serve well as the source code viewing compo-

nent of a generalized debugger (perhaps multi-language, as is the rest of Pan). Special
glyphs, mentioned earlier, would mark control and break points in the customary fash-
ion, but Pan’s other services would also be available for the user to browse and query.
The debugger could be requested to store a stack trace by automatically generated
annotations, for example stack frame information at relevant nodes.

Specialized Debugger Interface Pan is flexible enough to serve as an interface to many

specialized tools, for example a recently developed debugger for optimized code [19].
The debugger displays both the source (the primary view in Pan) and the optimized
assembly code (an alternate view in Pan), with jointly visible stepping (shared nav-
igation in Pan). In this debugger certain steps manifest themselves as discontinuous
components in the source code because of compiler optimization, a prospect that
would be handled by the kind of multi-structural selection described in Section 5.3.4.

Improved Diagnostics A high level diagnostic service, tunable with declarations based on

experience, would use as much information as possible (including perhaps judiciously
stored history information in the database) to produce better explanations of language
errors than is now possible.



Chapter 6

Experience

This chapter reviews some aspects of Pan’s design framework in which research results have
been mixed and where useful lessons can be learned. The first such aspect is the relationship
between Pan’s enabling technology (imported and adapted from compiler technology) and
the demands of user-centered design. Although considerable progress was made in this area,
the legacy of the batch-oriented compiler still causes problems in Pan. A second aspect is
the difficulty that comes with designing and building a completely new text editor. The
cost was extremely high, the result still isn’t good enough, and yet no other known editor
(neither when the project began nor now) would meet Pan’s needs. The third aspect
includes a number of observed shortcomings of Pan’s mechanisms and user elements for
language-based interaction.

6.1 Porting Compiler Technology

From this effort to apply user-centered design have emerged insights concerning the de-
mands that it places on the enabling technology, and in particular on the Ladle and Colan-
der subsystems in Pan. This adds to general evidence, exemplified by Shaw’s discussion of
input/output mechanisms [115], that underlying computing models designed for batch exe-
cution are characteristically unsuited for interactive systems. This section articulates these
special demands, explains how advances in the technology (including Ladle and Colander)
have met them partially, and discusses ways in which they remain unsatisfied.

A recurring theme is the failure of the analyzers to capture and exploit the complete
context of user interaction. For example, incremental algorithms are typically designed
to bound the context (and thereby the amount) of computation necessary to process each
increment of change by the user [141]. In practice users’ changes are related to other user
actions separated by space and time. Failure to capture the broader context of interaction
causes loss of information in surprising (and annoying) ways. Consider for example nesting
delimiters BEGIN and END, which might in an incremental system become unmatched either
through addition of a BEGIN or deletion of an END. Most parsers would produce the same
diagnostic in either case, for example “Unmatched BEGIN”, but to the user who has just
accidentally deleted an END this message suggests that the system ignores the obvious.’

!This example is from Wegman and Alberga {136], whose incremental parser would produce different
messages in the two cases, for example “Migsing END” in the latter.
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This is a small example, and it has little consequence for users experienced at deciphering
messages encoded in the compiler’s frame of reference, but there are many more examples
like it; each adds a small amount of unnecessary cognitive overhead to the user’s task. As
with this example, none of the issues raised in this section translate directly into visible
breakage in (or absence of) particular services. Rather, each is a potential degradation in
overall capacity of the system to provide effective services.

The fact that the issues raised here are not directly visible to users is an advantage of
the boundary between the lowest two design layers in Pan’s implementation model (Fig-
ure 3.7 on page 30). This observation renders the issues no less problematical, but it does
help characterize a large class of interaction problems. The rest of this section addresses
specific challenges to Pan’s language-based infrastructure, organized for exposition and not
necessarily in order of difficulty or consequence.

6.1.1 Convenient Language Description

Following Pan’s requirement for “description-driven support for multiple languages” both
language-based analyzers are driven by declarative descriptions, and any number of de-
scriptions may be loaded into a running system (Section 4.1). Writing LALR grammars
isn’t simple, but Ladle eases the burden by permitting primary specification in terms of an
abstract syntax (with control over details of the tree representation to be maintained); with
only a few additional rules Ladle’s preprocessor is able to infer a complete parsing grammar.
The Colander description language likewise achieves perspicacity with a language modeled
on goal satisfaction and named collections of facts [9]; an explicit design goal for that model
was to enable descriptions that read naturally, more so for example than attribute grammar
specifications [28,105] or action routines [64,84].

Since these goals are common to both batch compilation systems and Pan, advances
such as these represent mutual progress. Even so, convenient language description remains
an elusive goal. For example, Pan’s distinction between syntax and contextual constraints
(static semantics) is common to almost all language description techniques because of the
simplicity it achieves for both description and implementation. But it creates problems in
practice for badly designed languages in which, for example, parsing and semantic analysis
must be intertwined [35,85], as with the well known “typedef” problem in the C language.
Furthermore, experience with Colander descriptions suggests that the language, while ap-
propriately expressive, embodies a level of abstraction too low for convenience. Research
into general solutions to these problems within Pan is currently underway.

Meanwhile, problems that arise in the interactive world confound the picture. For
example, there is a need for description sharing, both piecewise and in whole, that is poorly
addressed by current technology, Ladle and Colander included. This need arises most
simply in Pan when two or more different view styles, perhaps written for different users
or tasks, are based on identical underlying language descriptions. Slightly more complex
examples include the design of view styles with separate concrete grammars but a shared
abstract syntax, and the design of view styles with various partial descriptions for static-
semantic checking. More complex yet would be the capture of general syntactic and static-
semantic abstractions for reuse when describing related languages. Finally, there is a need
for descriptions that cross traditional language boundaries, linking together parts of software
systems that are realized in more than one language (including documentation languages).
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6.1.2 Unconstrainted Text Editing

Pan’s requirement for “familiar, unrestricted text editing” demands an unrestricted “smart
text editor” that also supports language-based interaction. Pan is syntax-recognizing,
as are Babel [57], the Saga editor [67], and SRE [21]: the user provides text and the
system infers the syntactic structure by analysis. An implementation problem with this
approach has been the necessity to maintain large and unwieldy syntactic representations
for incremental reanalysis. The theory of grammatical abstraction [10,22] was developed to
resolve this problem in Pan (Section 4.1.2).

In contrast, syntax-directed systems such the Cornell Program Synthesizer[125], Men-
tor [29], and Gandalf [50] require that the user explicitly construct internal structure by
selecting syntactic templates. The historical distinction between the two approaches reflects
divergent goals: users prefer no restrictions on text-based editing, but implementors prefer
that modifications be expressed in terms of atomic changes to internal representations.

To users the distinction between the two styles is becoming less sharp. Syntax-directed
systems are evolving toward hybrids with increasing text-based support, beginning with
Emily [52], which supported almost none, through recent incarnations of the Synthesizer
Generator [103], which are increasingly flexible about the context (still structurally defined)
in which text editing may take place. Conversely, Pan can support a syntax-directed style of
editing superimposed on (and coexisting with) the syntax-recognizing model, as described
in Section 5.5.

To implementors, however, the distinction continues to reflect design tradeoffs. These
don’t exist in the world of compilers, where analysis is usually a batch-oriented operation in
which history plays no role. The tradeoffs become acute in the presence of incrementality
and error recovery, issues to be discussed subsequently.

6.1.3 Incremental Analysis

Incremental computation is conventionally held to be important for interactive program de-
velopment environments, since useful information must be derived from constantly changing
programs. The guiding principle has been that performance gains can be realized by min-
imizing the amount of computation performed in response to each change [141]. Naive
application of this principle to systems like Pan, however, ignores the full context of inter-
action and produces system behavior that is unacceptable to users.

The problem arises from modeling such systems as interactive compilers whose input
(program text) is constantly changing and whose behavior depends only on the input.
This model is inadequate for Pan, where users and other applications create ephemeral
but useful information superimposed on the linguistic structure of a program. One can
think of this information as the state of an ongoing conversation between the user and the
system. As in any conversation it is important that the referents of the conversation be
stable and persistent; incremental analyzers must maintain the identity (as opposed to only
the equivalence) of program components in the presence of change, a goal not addressed
by standard implementations. Systems that support conversations among people encounter
similar problems, for example users’ “difficulty determining that they were talking about
the same objects...” [124].

Ladle’s incremental parser, for example, is based on an algorithm that first “unzips”
the tree along a path between the leftmost change site and the root; when the algorithm
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eventually reconstitutes the tree, using new nodes as needed, it has effectively discarded
the identity and any annotations associated with nodes along that path. This has serious
consequences even from the strictly compiler-oriented point of view. Widely-shared contex-
tual data often appears closer to the root of the tree, and its loss would incur lengthy and
often unnecessary recomputation. Ladle’s parser ameliorates this effect with a heuristic for
reconstituting unzipped nodes: “divided” tree nodes are kept on a special stack and may
be reused whenever a node represents the same production in the abstract syntax as in its
previous use and when its leftmost child is unchanged between parses. Although effective
at restoring tree nodes near the root, this heuristic doesn’t always maintain identity in the
vicinity of small changes.

Ladle’s failure to retain nearby context derives from a deeper problem related to the
origin of the technology. This incremental parser is designed as a batch-oriented left-to-right
parser with the added ability to be restarted at any intermediate point. In the vicinity of
a change, the parser examines the new text stream but ignores the difference between old
and new, which is the real context of the user’s modification. This weakness leads to the
“Unmatched BEGIN” example cited at the beginning of this section.

Earlier generations of syntax-directed editors avoided the problem by permitting textual
editing only in the narrowest of contexts, expressions or statements for example [66,126)].
But the hybrid approach, which syntax-directed editors have had to adopt for reasons of
usability, encounters a variation on the same problem. All textual changes take place in a
structurally defined “focus” that amounts to “destructured text”; at reanalysis time it is
precisely the local structure that has been discarded and must be reconstrued by the parser.

Because of this weakness, no Pan services that depend on identity are robust in the
immediate neighborhood of changes, however small. This is a partial failure to meet Pan’s
requirement for “uninterrupted service”.

6.1.4 Granularity of Analysis

In a syntax-recognizing system, the choice of policy for initiating reanalysis has profound
implications for the underlying technology. Pan’s policy is lazy, only analyzing when the
information is needed or when the user requests it explicitly. This implies that derived
data and the text stream are often inconsistent, which in turn creates problems for user
interaction that are described in Section 5.6. It also leads to situations (not anticipated in
the design of either Ladle or Colander) where derived data must be made available, even
though it is incomplete and unreliable, during periods of inconsistency.

An opposite extreme, adopted for the Magpie editor [111], is to run the analyzer after
every keystroke. This system needs no machinery to deal with inconsistency, but the ana-
lyzers must be very fast and extremely adept at dealing with malformed programs (since
at this granularity programs are nearly always malformed). Magpie’s analyzer is fast, but
it drastically curtails analysis upon encountering a single language error and provides fewer
services in general. Furthermore this approach exacerbates the problems faced by Pan’s
analyzers in tracking the identity of program components during change.

The compromise offered by hybrid syntax-directed editors such as the Synthesizer Gen-
erator[103] and Gandalf [50] permits textual change only within a structurally defined focus.
This bounds the structural context of text-based changes, but typically prohibits naviga-
tion away from the focus until its text has been parsed successfully without appearance of
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language errors; this is an unacceptable interruption of service.

6.1.5 Tolerance for Language Errors

Pan’s lazy analysis policy ensures that analyzers are confronted with malformed programs
less often than would be the case following other policies. Users tend to request analysis
or invoke language-based commands only when they judge their recent changes to be at
least locally error-free. Even so, language errors are common and Pan’s requirement for
“uninterrupted service” applies in their presence. One crucial service in the presence of
language errors is the presentation of diagnostics, discussed in Section 5.4. For this and
other services to continue operating at all in the presence of errors places pervasive demands
on the language-based infrastructure.

Pan’s design implicitly extends internal representations to subsume ill-formed programs,
and a design goal for Ladle and Colander was to treat them as interesting but relatively
normal occurrences. This happens uniformly, without imposing excessively on language
description authors, and it interferes little with other language-based interaction.

Whenever lexical analysis fails, a lexical variance is signaled. For instance, an untermi-
nated comment may lead to a lexical variance. A variance detected during lexical analysis
inhibits both parsing and contextual-constraint checking, and all information that existed
prior to the attempt to reanalyze the document is preserved.

During parsing Pan uses a panic mode mechanism [26] for syntactic error recovery. Di-
rectives in Ladle descriptions tune the recovery mechanism for each language. The presence
of a syntactic variance is marked in the internal tree by an error subtree annotated with
an appropriate error message. The children of an error node are the lexemes and subtrees
that were skipped over during the recovery. This recovery strategy is similar to that used
in the Saga editor [67]. Any extant annotations on the subtrees within the error subtree are
preserved, including annotations created by Colander. Contextual constraints within an
error subtree are not attempted by Colander, but remain available for possible reuse after
correction of the variance. Unsatisfied contextual constraints detected by Colander are also
variances, resulting in annotations on offending nodes.

Experience suggests that these mechanisms are still inadequate. Panic-based recovery
inherits a deficiency, mentioned earlier, of the simple left-right parsing algorithm: it only
considers the new text and not the actual change. A more thorough analysis of the changes
would permit better heuristics for narrowing the scope of error nodes. Even more problem-
atic, however, the system is unable to restore information (and in particular the identity
and annotations of nearby nodes) lost during the presence of even ephemeral and trivial
errors. For example, a carelessly typed character adjacent to the outermost BEGIN in a
program would cause the analyzers to discard nearly all of the useful information about
a program; even after an immediate correction (prompted by diagnostic results) expensive
and possibly irreplaceable information might be lost. This information loss is an interrup-
tion of service, caused by another failure to capture the entire context of user interaction
(in this case closely related changes separated by time).

Finally, Ladle’s implementation reflects a tendency in the parsing literature to treat
error recovery and diagnosis together (to the detriment of both in this case). In Pan’s lay-
ered implementation model, however, they should be assigned to different layers reflecting
different demands being placed upon them. The goal of error recovery (part of Pan’s in-
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frastructure) is to produce a representation of a badly-formed program with as little loss of
information as possible. The goal of error diagnosis (a basic user service in the third layer)
is to help the user locate, understand, and possibly correct the problem. The two mecha-
nisms are strongly related, both must exploit contextual information, both could be at least
partially heuristic, and both must be tuned (perhaps per-language) based on experience.
There is no reason, however, to expect that the same mechanisms and configurations will
address both goals completely.

6.1.6 Broad Domain of Analysis

Colander’s analyzer was designed to be general purpose as well as multi-lingual [9]. Its
expressive power suffices for static-semantic checking in programming languages, but it
can and has been used for other purposes. For example, an experimental constraint on
variable naming conventions required only the addition of a new built-in operator (a reg-
ular expression pattern matcher) to the Colander language; since a pattern matcher was
already available in the text editor, it was easily added to Colander using its internal lan-
guage extension facilities. But experiments also suggest that finer-grained control over the
Colander analyzer will be needed as more kinds of analysis are added. One might wish to
check language-based constraints frequently while deferring more complex tests. Colander
analysis at present is monolithic, however; all potentially unsatisfied constraints must be
attempted at each invocation.

Experience with Colander has revealed other limitations:

¢ A data flow analyzer implemented in Colander required a convoluted description and
resulted in inefficient computation.

e An investigation of stylistic guidelines revealed that non-local structural relationships
such as “before” and “after” do not find natural expression in Colander, and that
some might better be described as tree patterns than as Colander goals.

o As described in Section 4.2.6, the Colander specification language has no provision for
requesting incremental computation of operand class membership and for propagating
changes in class membership. General support should be added to the analyzer at a
low level.

e Diagnostics are failure-based, so that information about unsatisfied constraints is
handled specially and is not available uniformly in the database.

o There is no first-class way to deal with partial knowledge in Colander. There ‘a.re no
tools to help the author control propagation of failures and spurious diagnostics, so
this must be done manually. Similar support for placeholders (Section 5.5) would be
helpful.

Whether these would be best addressed by extensions to Colander or by additional analyzers
(for example, a tree pattern matcher like the one used for prettyprinting in the Mentor
system [63,89]) is open pending further research.
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6.1.7 Data Sharing

One reason additional analyzers can be considered at all is that Colander’s database was de-
signed to be shared with other tools. For example, a prototype context-based prettyprinter
attached information to nodes and relied on Colander for incremental data propagation
[16]. A relatively open data model is crucial for the kinds of user-oriented services that
fully exploit the potential for such systems. ‘

Not enough of this sharing was done in Pan, however. For historical reasons, Ladle and
Colander use separate data representations, even though much of the structural information
ends up being replicated. Aside from the obvious inefficiencies, clients suffer from lack of a
uniform access mechanism.

6.2 Building a Text Editor

One of the costliest and perhaps most frustrating parts of the Pan project was the creation
of an entirely new text editor. It takes a tremendous amount of effort to build and maintain
an editor whose textual facilities even approach those of GNU EMACS, which is available
without cost. At the time the project began, however, no editor available had the facilities
needed, for example an open architecture, a rich internal text representation, and a display
engine capable of rendering multiple proportionally spaced fonts using colorful highlighting
effects. Section 5.1 discuss Pan’s achievements in the effective use of fonts and colors. More
recently developed GNU EMACS variants, for example Epoch, have added some facilities
of this kind and may be more promising platforms for a system like Pan.

6.2.1 Needed Improvements

At the same time, however, Pan’s rendering engine remains inadequate; it has constrained
the services that could be built as part of this research. All of the following would also be
useful:

o Selective elision, including holophrasting {3,119];

o Direct spatial layout, free from the vagaries of explicitly represented whitespace char-
acters (spaces, tabs, and newlines);

e Spatial modes, for example wide margins in which any inserted text is presumed to
constitute a comment;

¢ Graphical cues, including rules (lines), boxes, long arrows, and shading, all used to
suggest relationships among textual components [6];

o Special non-textual symbols to annotate text, for example pointing hands, and traffic
signs [6]; and

o Nested displays, for example, to permit a program component to be displayed in situ
using a different (perhaps graphical or tabular) formatting discipline.

Many of these are being addressed as part of the Ensemble project, Pan’s successor, by
combining high-quality document presentation with Pan’s language-based services [48].
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6.2.2 Toolkit and UIMS Support

Window system toolkit support for Pan was never especially helpful for the most difficult
part of the window interface: the text rendering engine. Successive versions of Pan were
implemented upon Suntools, SunView, and the Athena Widget Set. At each stage text
rendering was implemented using raster-level primitives, since nothing better was (or is)
available.

More attention is being directed to the development of user interface management sys-
tems (UIMS), which permit mappings between internal data, behaviors, and external ap-
pearance using declarative specifications [55,58). It seems unlikely that one would ever
support Pan’s richly overloaded text display, since it acts as the output channel for so
many different kinds of information simultaneously.

6.3 Other Design Issues

Other problems and lessons have become apparent for each of Pan’s four design layers,
as presented in Figure 3.7 on page 30. The first section.in this chapter concerned the
infrastructure layer. This section addresses the remaining three.

6.3.1 Kernel

The most glaring omission from Pan’s kernel services is the absence of a general mechanism
for propagating changes. For historical reasons Ladle’s parser, Colander’s analyzer, the text
representation and rendering engine, scoped editor variables, operand class membership
computation, and highlighting all evolved separate mechanisms. Although the interfaces
among these components have been carefully controlled as the system evolved, a more
general paradigm for event propagation would make their implementations more tractable.
One unexplored possibility would be to expand the role of Colander’s database and inference
engine, to provide low-level support for these functions in a more general way.

6.3.2 Basic Services

Experience has revealed weaknesses in some of the elements of user interaction described in
Section 4.3. For example, the structure cursor has been the subject of ongoing development,
although the version described in Section 4.3.7 represents a stable point in its evolution.
Selection, on the other hand, has proven to be a design problem severe enough to hinder
development of some otherwise implementable prototypes. The next evolutionary stage for
this aspect of Pan’s design, described in Section 5.3.4, would be a mechanism for multiple-
component textual selection, with an optional structural aspect in the same sense as the
cursor.

Pan’s panel flag mechanism has proved useful and robust throughout most applications,
but there have been cases where more than two flag states would be appropriate. The
flag service was always based on simple boolean operation, so the extension would involve
changes at every level from implementation through specification.
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6.3.3 View Styles

A number of interesting problems become apparent at the view style layer, where the
interface between a class of users and a class of documents must be specified and fine-
tuned. '

For example, the choice of colors to satisfy various design guidelines has a large impact
on the success of Pan’s design metaphors, but the decisions can involve subtle differences
of colors to get them just right. Unfortunately, color perception is subject to variations
in display screens, ambient light, and individual differences, factors that can dominate
the subtle color distinctions that are most effective. Convenient personal adjustment is
therefore important, but window system support for color specification is crude,? and where
the relationships among colors are paramount, that support is nonexistent. More helpful
would be some way for basic color schemes (sets of colors in a Pan color map, for example)
to be continuously adjustable by a single control; thus, a user might dynamically turn the
colors up or down on the display, adjusting for local conditions without affecting the basic
color assignment scheme. A second control might adjust relative hue selection, much like
Tognazzini’s “Relative Color” proposal [129].

Font choices are also difficult; as discussed in Section 5.1, none are really suitable. Bigger
fonts are much nicer, but take up too much space. Punctuation is especially hard to read in
some languages, for example Colander, where it is very important to distinguish between
commas and periods. Punctuation characters in proportional spaced fonts tuned for text
aren’t very satisfactory in general for programming languages.

A final meta-problem concerns the fundamental premise of view style design in Pan.
As the many guidelines in Section 4.4.3 suggest, and the discussions in Chapter 5 confirm,
careful configuration is essential to successful implementation of Pan’s design metaphors.
In Pan’s design framework this is considered to be a design task, not necessarily to be
carried out by every user. At the same time, however, the requirement for “extensibility
and customizability” dictates that the user be permitted to customize freely. Thus any
user might, mindfully or not, degrade the effectiveness of Pan’s fundamental services with
careless or ill-advised customizations. The only practical solution (short of the unacceptable
restriction of user rights) rests with plentiful alternative view styles for users to choose
among and with presumed close collaboration between the kind of local experts described
in Section 4.4.1 and their user population.

2 Pan’s color maps are now specified by selection from a standard X window system list of idiosyncratically
named colors.
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Chapter 7

Conclusion

This dissertation began with the hypothesis that language-based editing, when implemented
with suitable attention to user-centered design principles, can become a practical, usable
component in the working environment of experienced software professionals. Investigation
of this hypothesis began with a reconsideration of the technology and the assumptions, both
stated and unstated, about how it should best be used. From that reconsideration emerged
a proposed set of design requirements for such a system.

These requirements have complex implications that often conflict; worse, they threaten
to drown users in a sea of system-induced complexity when exactly the opposite effect is
needed. The design framework developed as part of this research, applied with a judi-
cious mix of attention to users and tasks, carefully chosen design metaphors, and flexible
abstractions, permits such a system to be built.

The Pan I Version 4.0 prototype described in this dissertation meets the proposed
requirements:

1. Pan is a practical, powerful, text editing system whose conventional functionality is
never restricted by the addition of language-based features.

2. Pan presents documents in a rich text-based information display using multiple, pro-
portionally spaced fonts with potentially many kinds of metainformation (information
about documents) superimposed via colored highlighting.

3. Pan’s interface between user and system is built around a small number of easily un-
derstood and flexible services whose apparent complexity derives only from the kind of
information being displayed and the task at hand; view styles in Pan specify interfaces
between users and documents that are tuned for particular tasks and languages.

4. Pan supports multiple simultaneous views of software documents, presenting different
kinds of information organized in different ways; the framework permits creation of
more such views as additional kinds of information become available.

5. Pan’s services degrade gracefully when documents contain language-errors, when they
are incomplete, and when analysis-derived information is out of date.

6. Pan can load any number of declarative language-based view style definitions on de-
mand, each including a Ladle description, a Colander description, and a specification
for user interaction.

123
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7. Pan is customizable, extensible, and programmable; it has proven to be an effective,
flexible research platform.

The Pan I prototype continues to support ongoing research at UC Berkeley and elsewhere;
current topics include advanced software viewing and browsing, code optimization and
generation, reverse engineering, and static-semantic analysis. Some of Pan’s technology is
being carried forward into Pan’s successor at UC Berkeley, the Ensemble project [48].

Several novel aspects of Pan’s design, developed while meeting these goals, deserve
recapitulation: ’

Isolation of Language-Based Technology It is tempting think of language-based edit-
ing systems as interactive compilers, but the needs of programmers are dramatically
different from those of compilers. Language-based technology developed for compilers
ports badly into the domain of user interaction, even in Pan where the project began
with the benefit of insight from two earlier generations of language-based systems.
Pan’s layered design model separates language-based analysis mechanisms from user-
oriented, language-independent services; most of the system’s design accommodates
user-centered design choices without excessive coupling to the batch-oriented, com-
piler model of software structure. Pan’s user-oriented services work equally well in
an alternate version of the system built with an experimental replacement for the
Colander analyzer [18].

Operand Class Abstraction The operand class has proven to be an effective abstrac-
tion. The description-driven operand class mechanism in Pan’s language-independent
kernel drives a variety of user-oriented services, ranging from simple navigation to
complex projections in alternate views. The abstraction solves several problems in
user interface design and permits services to be adapted for uniform operation across
multiple language-based view styles.

Gracious Services Metaphor Frequent inconsistency between edited text and analysis-
derived data is inescapable in Pan, and will persist in any similar system that scales
up to confront large-scale propagation of changes. An appropriate design metaphor
(as well as some experimental implementations) leads to services that continue to be
useful when operating with approximate information.

Elements of User Interaction Pan users see a simple system through which an open-
ended variety of potentially complex information may be exploited. Simplicity derives
from a few basic services that can be applied in a variety of ways, but which have
simple and predictable behavior of their own. Examples include highlighters, panel
flags, projection views, and the dual-aspect cursor.

Smart Services Metaphor Pan’s structure-oriented commands are presented as optional,
better-informed elaborations of familiar text-based commands, avoiding the confusion
that can arise from a separate command set based on unseen structure.

Coherent Interaction with Document Structure A view style specification describes
an interface, implemented by Pan, between users and documents in a particular lan-
guage. Each interface can be tailored for particular users, their tasks, and an under-
lying language. Much of the richness and effectiveness of Pan derives from view style
design.
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The View Style Designer Formal language description is not an adequate basis for spec-
ifying user interaction. A tool like Pan embodies a complex relationship among its
users, the medium in which they work, and the tasks they perform; it must be designed
with these factors in mind, a challenging task. The Pan system cannot guarantee good
design; it offers a framework, building blocks, examples, and guidelines that enable
good design.

This research suggests further investigation in several areas.

User Experience More empirical evidence is needed to validate and refine the user inter-
action techniques developed here. This kind of experience can only be gathered by
experimenting with a flexible system such as Pan in production environments using
production languages.

Advanced Visual Presentation This research suggested many potentially useful pre-
sentation techniques based on the static book publishing paradigm. Many of those
techniques are not supported by Pan I’s prototype rendering engine, but are being
explored by the Ensemble project. Just as batch-oriented compiler technology doesn’t
necessarily port well into an interactive environment, however, some design choices
made for a static publishing paradigm may not be appropriate in a more dynamic
context, and some techniques may not justify their implementation costs.

Integration with Other Tools Pan mechanisms for viewing software documents are de-
signed to exploit a wide variety of possibly large scale information. Pan’s potential
will only be realized through integration with other tools one expects to find in a
modern computer-aided software engineering environment: more ambitious analyzers
(data flow for example), debuggers, profilers, test coverage generators, design docu-
mentation systems, and persistent storage.

Object-Oriented Programming Much of the experience and insight that drove Pan’s
design predates widespread acceptance of object-oriented design and languages. These
languages are still in flux, and only the most tentative research results are starting
to appear that will cast light on the cognitive processes of programmers working
in the new design paradigm. Many of Pan’s techniques will apply, but new ones
will probably be needed to accommodate changing notions of system modularity and
interconnectivity.

Language Extension Pan’s language description and analysis model is not well suited to
languages with powerful extension facilities, for example the macro processing facilities
supported by CoMMON Lisp. Closely related is the delivery of services that effectively
blur the boundary between language definition and editing system. Pan’s techniques
for user interaction should apply in most cases, but they may need to be adapted (as
the language analysis model must change) for the more dynamic context.

Language-Based Technology Technology that can be shared between language-based
editing systems and compilers must be developed and exploited in order to avoid the
kinds of infrastructure problems discovered during this research. In the best cases,
the boundary between the two applications will become blurred (as it will between
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editing systems, compilers, and their underlying languages). But it will not succeed
until each component of the technology is recast into this new, more general role.
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Appendix A

Annotated View Style
Specification for Modula2

;;; Create a new view style called “modula2,” to be based on the standard Ladle and
;;; Colander specifications for modula2 (not shown). This view style specification is
;;; writlen in a provisional language described more fully in Appendices B and C.

(lang:Define-Language-View-Style "modula2"

;; Add to the new view style a default configuration for many language-based features:

;; menus and key bindings for language-based operations, standard panel flags, and default
;; fonts and colors. This keeps the specification small and promotes a uniform look and feel
;; across view styles. All of the standard tezi-based behavior and configuration is

;; inherited unchanged from the global configuration contert.

(:add-defaults)

;; Build up the basic menu of services, named after this view style, by combining standard
;; parts, following conventions for all view styles. Add eztra features, for ezample

;; automatically generated menus for controlling highlighters and operand levels, as well as
;; special views that are supported by the underlying Colander specification.

(:default-menu
(:menu "Modula2"

(user::global-clipboard-menu)

(user::global-textedit-menu)

(user::global-undo-menu)

(user::global-store-menu)

((:copy-menu user::global-language-menu "Language"
((:level-menun) "Levels")
((:highlighter-menu) "Highlighters")))

((:copy-menu user::global-names-menu "Modula2 Names"
(lang:Visit-Cross-Ref-View "Visit Cross Ref. View")))

((:copy-menu user::language-view-menu "View"
(lang:Visit-Cross-Ref-View "Names Cross Reference" 3)
(lang:Visit-TOC-View "Proc. Table of Contents" 4)))

(user::global-text-vindow-menu "Window")

(user::global-lang-help-menu)

))
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APPENDIX A. ANNOTATED VIEW STYLE SPECIFICATION FOR MODULA2

(:define-operand-classes

7
”
Ead
1

2

;; Some operand classes, for ezample “Language Error,” are predefined and can be used in
; any view style. Define here a basic sel of view-style-specific operand classes 1o drive

;; standard services. The first few are purely syntactic; each is defined by a set of tree

;; operator names for the Ladle internal representation, taken from the associated

;; Ladle specification for modula2.

(modula2-proc-opclass

:title "Procedure"
:documentation "Modula2 procedures.”

;; For this view style, don’t distinguish among procedures, functions, eand modules.

:definition (:operators “procedure_declaration"
“function_declaration"
"module_declaration”)

;; Declare that this is a “structural” operand class (the ordinary case), and that all
;; the default language-based commands should be made available through the operand
;; level command dispatch mechanism.

:bind-structural-commands

;; Use a standard operand menu available that’s titled ”Procedure”

:operand-menu user: :procedure-oplevel-menu

:before lang:Analyze-Quietly)
(modula2-decl-opclass

ititle - "Declaration"

:documentation "Modula2 declarations.”

:definition (:operators "declaration"

"definition")
:bind-structural-commands
:operand-menu user::declaration-oplevel-menu
:before lang:Analyze-Quietly)

(modula2-stmt-opclass

ititle "Statement"

:documentation "Modula2 statements."

:definition (:operators "stmt")

:bind-structural-commands

:operand-menu user::statement-oplevel-menu

:before lang:Analyze-Quietly)
(modula2-expr-opclass

ititle "Expression"

:documentation "Modula2 expressions."

:definition (:operators "expr")

:bind-structural-commands

:operand-menu user::expression-oplevel-menu

:before lang:Analyze-Quietly)
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;; The nezt few operand class definitions serve to parameterize standard services that deal

;; with named entities in programming languages. For ezample, the first specifies what

;; structural components correspond to uses of names in the language. Although they could be
;; used to define operand levels, for supporting language-based navigation and the like, they

;; are not judged to be useful for that purpose.

(modula2-id-opclass

ttitle "Identifier Instance"

:documentation "Lexemes - occurrences of identifiers."
:definition (:operators "id")

:set-command nil

:before ) lang:Analyze-Quietly)

;; Class definition to support Identifier Cross Reference.

(modula2-decl-id-opclass

:title "Id Declaration”
:documentation "Lexemes - declarations of identifiers."
:definition (:and

(:operators "id")

(:grandparent-operators "var_declaration"))
:set-command nil
:before lang:Analyze-Quietly)

;; Class definition to support Procedure Table of Contents.

(modula2-header-opclass

1title "Procedure/Function Header"

:documentation “"Procedure name and argument list"

:definition (:operators "procedure_heading"
"function_heading")

:set-command nil

:before lang:Analyze-Quietly)

)

.- Parameterize various language-based services for this view style, using view-style-specific
: operand class definitions (see above).

:option-values
lang:¥ame-Instance-Opclass-Kame modula2-id-opclass
lang:Name-Decl-Opclass-Kame modula2-decl-id-opclass

lang:TOC-Header-Opclass-Name modula2-header-opclass)



140 APPENDIX A. ANNOTATED VIEW STYLE SPECIFICATION FOR MODULA2

;s Define the menu of operand levels available to users in this view style, specified in terms
;; of both generic and view-style-specific operand class definitions. Add keystroke bindings as
;; accelerators for selecting them quickly, following general and view-style specific conventions.

(:operand-levels (text:character-level "“c c")
(text:word-level "c w")
(text:line-level "sc 1")
(lang:note-opclass "“c ")
"(lang:lexeme-opclass "“c x")

(modula2-expr-opclass "~C e")
(modula2-stmt-opclass "~C s")
(modula2-decl-opclass "~C d4")
(modula2-proc-opclass "~C p")
(lang:query-opclass "=C q")
(lang:lang-err-opclass "~C !" "~C #"))

;; Some highlighters, for ezample one for the class “Language Error,” are predefined and
;; can be used in any view style. Define here view-style-specific highlighters.

(:define-highlighters

;; Create a highlighter for procedure headers that uses the color specified in the

;; third slot of the foreground color map for the view style. This highlighter is gracious

;; (not strict), meaning that it continues to operatle (in approzimate mode) during periods
;; when text and derived structure are inconsistent, during tnconsislent periods, however,
;; the highlighter display color is taken from the alternate foreground color map for the

;; view style, which should by convention be a similar but less saturated version of its

;; counterpart in the primary color map.

(modula2-header-highlighter

:opclass modula2-header-opclass

:title "Function & Procedure Headers'

:documentation "An example using color to set off procedures."
:apropos (function procedure)

:effect :1g3

:strict? nil))

;; Define the collection of highlighters available to users in this view style, combining
;; some generic predefined ones with the view-style-specific one defined above. Specify
;; whether each is to be initially on or off. Add keystroke bindings as accelerators for
;; toggling them quickly, following general and view-style specific conventions. Do not
;; permit users to turn off highlighting of the structure cursor in this view style.

(:highlighters (lang:lang-err-highlighter :om "~C ~C !")
(lang:query-highlighter tom  "°C °C q")
(modula2-header-highlighter :on  "“C “C p")
(lang:note-highlighter :off "°C °C n")

(lang:cursor-highlighter ton))

; Configure the appearance of window panels for the view style, beginning with.
: a vtew style logo.

(:option-values
win:Panel-View-Logo-Bitmap "mod2-logo.29x17")
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;; Add panel flags to the default set inherited from the global configuration. The default

;; set includes one that appears when the view permils no editing, one that indicates unsaved
;; modifications, and one that announces when automatic text filling is in effect. The flags
;; added here are specified using scoped variables (whose local values dynamically define

;; whether the flag is on or off), and standard bitmaps and colors for a uniform look and

;; feel across view styles.

(:add-flags
(user:%pad-flag-variable, user: :Space-Bitmap)
(otree:Parse-Is-Current? (user: :Parse-Current-Bitmap

user::Panel-Flag-Green)

(user: :Parse-Not-Current-Bitmap

user: :Panel-Flag-Pale-Red))
(sem:Database-Updated? (user::Database-Updated-Bitmap

user: :Panel-Flag-Green)

(user::Database-Not-Updated-Bitmap

user::Panel-Flag-Pale-Red))
(lang:Language-Errors-Present? (user: :Language-Errors-Present-Bitmap

user::Panel-Flag-Red)))

;; Configure teztl rendering for the view style.
(:option-values

;; Assign font selections to the font map for the view style. There are eight slots but only

;; five are used by the current implementation. Font assignments are made by the lezer as
;; follows: (0) newly entered, unanalyzed tezt; (1) scanned but not parsed (this slot is only
;; effective during debugging); (2) language keywords; (3) comments; and (4) language

;; tdentifiers.

twin:Text-Window-Fontmap
("-*-lucidatypewriter-medium-Ir-*-#-12-#-%-%-*—%—%—*"
"-*-lucida-medium-r-¥-*-12-k—k—k-k-k—%-x"
"-*-lucidabright-medium-r-*-*-12-#-%—%—%—k-%-x"
"-*-new century schoolbook-medium-Ir—#—%—12-%—k—k—k—k—k—x*'"
"-*-lucidabright-demibold-r-*-#*-12-%-—%-%—%—%—%-x")

;; Assign font selections to the alternate font map for the view style. A single, global
;; “demo” switch (option variable) controls whether the demo fontmaps are used.

twin:Text-Window-Demo-Fontmap
("-*-lucidatypewriter-medium-r-#*—#-17-#-k—%—k—k—k—x"
"-*-lucida-medium-r-*-%-1B-%-k—%—%-k—%-x"
"-#-]lucidabright-medium-r-*-#-18-%-%—%—%-%—%—x"
"-#-lucidabright-medium-r-#-%-14-%—#—%—%—%—%-%"
"-*-]ucidabright-demibold-r-*-*-18-#-*-%—%-%-%—x")

;; Specify default (initial) size for newly created tezt windows in the view style, computed
;; relative to the nominal width and height of the default (font map slot zero) font for the
5, view style.

twin:Text-Window-Init-Cols 60
twin:Text-Window-Init-Rows 25
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1

; Color assignments sustable for the single user don’t show up at a distance, so demo colors

bR

bRl
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;; Render tezt using a tabwidth computed in pirels as 5 times the nominal width of the
;; default (font map slot zero) font for the view style. This width is used for all fonts in
;; the view style so tab alignment may be oblained in the presence of multiple,

;; proportionally-spaced fonts.

twin:Text-Window-Tabwidth 5

;; Assign color selections to the foreground (ink) color map for the view style. There are

;s four slots corresponding to possible ink selections, with the default (the first) color

;; being black by convention. Each slot contains a pair of color specifications: the left

;; stde is used for color monitors and the right side for monochrome monitors. These color
;; specifications are normally inherited unchanged from the global defaults in order to

;s promote a uniform look and feel.

twin:Text-Window-Fg-Colormap (("black" . "black")
("IndianRed1" . "black")
("SlateBlue3" . "black")
("turquoise3" . "black"))

;; Assign color selections to the background (shading) color map for the view style. There
;; are three slots corresponding to three possible shadings, where the background is assumed
;; to be white when no shading is in effect.

twin:Text-Window-Bg-Colormap (("LightYellowi" . "white")
("alice blue" . "white")
("lavender" . "white"))

; Assign color selection to alternate versions of the two color maps: foreground and

; background. These alternate versions are used during periods when text and derived

' language-based information are inconsistent. User interface design convention dictates

' that these colors be chosen similar in hue to their counterparts in primary color maps,

; but with reduced saturation to suggest metaphorically that the information they represent
s 15 not strictly reliable.

tvin:Text-Window-Fg-Alt-Colormap (("black" . "black")
("IndianRed3" . "black")
("'SkyBlue2" . "black")

("turquoise4" . "black"))
twin:Text-Window-Bg-Alt-Colormap (("ivory" . "white")

("azure" . "white")

("lavender blush" . "white"))

There 1s also “demo” version for each of the above four color maps (now shown here).

are typically brighter and more saturated.

))

is; This concludes the view style specification for the view style named “modula2.” Any of

;;; the many other configuration options in Pan may also be assigned values in a view

i;; style specification. Templates may be specified to add syntaz-directed style of editing

;;; to standard language-based commands. New view-style-specific commands may be defined and
;;; bound to keystrokes or menus. Finally, procedures may be attached 1o various “hooks”

;i; run at predefined events (for ezample at view initialization and after each analysis).



Appendix B

Language-Based View Style
Specification

A language-based view style in Pan is a design for interaction between some intended cate-
gory of users, performing some collection of tasks, and their software documents expressed
in some formal language notation. This appendix summarizes how such a design can be
recorded in Pan’s provisional specification language.

Language-based view styles are constructed in isolation from the main Pan system and
from each other. The system has (almost) no information concerning the name, the location,
or even the existence of any view style until it is loaded. View styles (and in particular the
Ladle and Colander descriptions they use) can be loaded at any time, as many as desired, as
long as they do not conflict in name. Each contains all specifications necessary to enable the
system to provide a wide variety of language-based services in the target language, including
per-language control of almost every aspect of user interaction. A sample specification for
Modula-2 appears in Appendix A.

B.1 Associating View Styles with File Types

View style configuration in Pan is arranged so that the system contains as little information
as possible about view styles not yet loaded. Something must be known, however, so that
a view style can be located and loaded when needed. A declaration of the following form
supplies the needed information for Pan’s file system interface:

(File-Type-Use-Language-View-Style "col" 'colander")

This specifies that any file whose name ends with the extension “.col,” will be visited by
Pan in the context of the view style named “colander.” Pan’s default configuration file
contains similar declarations for standard file extensions, but they may be overridden and
extended at any time. Should Pan be extended (as its design permits) with an interface to
another kind of persistent store, a similar declaration would map types (in whatever sense
supported by the store) to view styles.

Personal customization code may alter a standard language-based view style configura-
tion by changing the values of options and other bindings. For example, in a file named
mlv-colander-mode.cl the following form would request that a customization file be loaded
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immediately after the loading of view style “colander” (or at editor startup time if the view
style is preloaded).

(Add-Language-View-Style-Auto-Require "colander" "mlv-colander-module")

The customization file mlv-colander-module.cl might then override configurations with
the following form. The characters “<>{}*” are metacharacters in this and all other exam-
ples in this section.
(With-View-Style-Scope (view-style colander-view-style)

...<set options> )

B.2 The View Style Specification File

A language-based view style specification resides in a file named “<view style>-lang”
located somewhere on the system’s search path, where “<view style>” is the view style’s
name. In the provisional specification mechanism, the specification file is loaded directly
by CoMMON LisP, so it may contain mix of traditional Pan extension code and declarative
specifications in S-expression form. The aim, of course, is to minimize the amount of aux-
iliary procedural code that is needed for routine cases, but to retain flexibility to prototype
new variations that cannot be expressed (yet) by the specification language. Eventually,
auxiliary COMMON LisP code will reside in separate COMMON LispP source files, just as
they do now for Colander descriptions.

B.3 The Define-Language-View-Style Form

The declarative part of a view style configuration file consists of S-expressions in the pro-
visional specification language. This syntax amounts to the intermediate form of a specifi-
cation language that has not yet been implemented. These expressions are wrapped in the
top-level form Define-Language-View-Style, a COMMON LIsP macro that processes the
specifications. Building the intermediate form first permits early development of the back-
end mechanisms necessary to process the specifications. This intermediate form is analogous
to Colander’s PLI intermediate form, as produced by the Colander preprocessor.

In this intermediate language, a complete and workable Pan language-based view style
is defined by an instance of following form:
(Define-Language-View-Style <name>

{<specifier>}* )

The string “<name>” identifies the language; the detailed nature of a “<specifier>” will
be described below. A complete example for Modula-2 appears in Appendix A. Loading a
file containing this top level form has several effects:

1. it loads Ladle and Colander descriptions, using conventions for names and locations
of files;

2. it creates a new view style (a configuration binding scope); and

3. it configures the newly created view style according to the list of specifiers.

As always with Pan scoping, considerable default behavior may be inherited from the global
scope.

%
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B.4 View Styles, Object Classes, and Scopes

The top-level form Define-Language-View-Style automatically creates a view style named
“<name>-view-style,” where “<name>” is the view style name supplied to the form. The
existence and name of this view style may be relevant to end users and designers (see above
how one might add personal language-specific customizations). Nothing else in this section
needs to be exposed to end users or designers.

Loading the Define-Language-View-Style form also also creates new language-specific
subclasses (in the CLOS sense) of edit objects and views. These are part of the implemen-
tation, but they generally need not be exposed to designers. These are:

¢ a new edit-object class named “$<name>-edit-object$”
e a new view class named “$<name>-text-view$”

where “<name>” is the view style name supplied to the form. These classes are subclasses
of $1b-edit-object$ and $1b-text-view$ respectively, both of which carry methods for
generic language-based functionality (even though there will never be instances of the two
superclasses).

Figure 4.4 on page 45 shows Pan’s edit object class hierarchy, and Figure 4.5 on page 47
the hierarchy for view classes.

Loading the Define-Language-View-Style form additionally:

1. establishes an internal map between the file type (e.g. “col”) and the edit-object
class for visited files of that type;

2. makes <name>-view-style the default view style for all visited files of that type.

B.5 View Style Specifiers

A “specifier” in the intermediate specification language is a CoMMoN Lisp form (list)
that begins with an identifying keyword and whose subsequent arguments are suitable to
the particular specifier. Arguments may be symbols (unquoted names), CoMMON Lisp
data literals, lists of arguments, and keywords. For example, the specification fragment in
Figure B.1 establishes simple key bindings for the view style; the fragment in Figure B.2

(:bind-keys
Set-0Oplevel-To-Language-Error =g 1
Set-Oplevel-To-Query "=C q")

Figure B.1: Key Binding Specification

sets option values in the view style; the fragment in Figure B.3 defines an operand class
(and level, partially) for the “Colander” view style; and the fragment in Figure B.4 specifies
the standard menu for the “Colander” view style.

Specifiers currently defined appear in Table B.1; see Appendix C for documentation on
each.
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(:option-values
Text-Window-Tabwidth 7
Announce-Error-Counts-After-Analysis nil)

Figure B.2: Option Value Specification

(:define-operand-classes
(colander-decl-opclass

:title "Declaration”
:documentation "Colander declarations."
:definition (:operators "fact_decl"

"entity_property_decl"
"maintained_property_decl"
"node_property_decl"
"entity_name_decl”
"datapool_name_decl"
""pure_decl"
"mode_decl")
:bind-structural-commands
;; Use a standard operand menu titled "Declaration"
:operand-menu user: :declaration-oplevel-menu
:before lang:Analyze-Quietly))

Figure B.3: Opclass Specification for “Colander Declarations”

(:default-menu
(:copy-menu user::default-language-menu "Colander"
((:copy-menu user::global-language-menu "Language"
((:level-menu '"Levels"))
((:highlighter-menu "Highlighters")))
nil 4)
((:menu "Preprocess"
(Save-Write-PLI-File "Save/Write-PLI File")
(Write-PLI-File "Write-PLI File"))
nil 5)))

Figure B.4: Menu Specification for “Colander”
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:add-char-matches {<left-char> <right-char>}* )
:add-char-sets {<char-set-name> <char-list>}* )
:add-defaults)

:add-flags {<flag-descriptor>}* )
:after-analysis-function <function> )
:before-analysis-function <function> )

:bind-keys {<command> <key-descriptor>}* )

:default-menu <menu-spec> )

:define-highlighters {<highlighter-description>}* )
:define-operand-classes {<class-description>}* )
:delete-char-matches {<left-char> <right-char>}* )
:delete-char-sets {<char-set-name> <char-list>}* )
:delete-flags {<flag-descriptor>}* )

:highlighters {(<highlighter-name> <:on|:off> <key-spec>* )}* )
:init-function <function> )

:operand-levels {(<operand-class-name> <key-spec>* )}* )
:option-values {<option-name> <value>}* )
:sde-oplevel-menus <oplevel-menu-name> {<opl-menu-spec>}* )
:shadow-char-matches {<left-char> <right-char>}* )
:shadow-char-sets {<char-set-name> <char-list>}* )
:shadow-flags {<flag-descriptor>}* )

Table B.1: Language-Based View Style Specifiers

14
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(setf (variable ...) ..)
Add-Default-Language-Configuration-To-View-Style
Bind-Key

Bind-Menu

Bind-Oplevel-Command
Bind-Oplevel-Menu

Copy-Menu

Create-Menu

Define-Highlighter
Define-Operand-Class
Define-Structural-Oplevel-Commands
Set-Char-Match

Set-Char-Set
Window-Modify-Flag-Collection

and some view methods

Table B.2: Configuration Forms That Implement Specifiers

B.6 Specifier Implementation

Specifiers are implemented by macro expansion into appropriate calls on existing Pan con-
figuration mechanisms, including those listed in Table B.2.

The implementation of Define-Language-View-Style ensures that all of these are eval-
uated in the proper context: in the scope of the new view style so that bindings will be
added correctly, and with the Ladle global syntactic state to the newly loaded language so
that operator names in the Ladle description may be named and processed correctly.

B.7 Creating New Specifiers

The implementation of Define-Language-View-Style defines no specifiers directly; all
are created dynamically via calls to a defining form, so more can be added at any time.
This feature is of special value during development of the intermediate language and its
supporting mechanisms, but it might also be of use by designers and users.

For example, the experimental module for syntax directed editing (module sde.cl) is
normally loaded from the library only when needed (possibly at runtime), typically along
with the first language-based view style that uses it. When loaded, the sde module extends
the view style specification language by adding the new specifier :sde-oplevel-menus. A
client view style need only ensure (via a COMMON LISP require) that the sde module
be loaded before attempting using this specifier to create menus that support placeholder
expansion templates.

It is not clear whether this degree of flexibility can persist usefully after the addition of
a front-end syntax with preprocessing.

'In many cases the internal equivalent of the configuration form is used.

N
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For example, an unusually simple definition (one with no argument checking at all) is:?

(def-language-description-specifier :add-flags
"(:add-flags {<flag-descriptor>}* )
Add all specified flags to the flag collection in the view
style of the language. See Window-Modify-Flag-Collection."
#’ (lambda (arglist)
‘((win:Window-Modify-Flag-Collection :view-style
radd
?,arglist))))

This translates a specification of the form
(:add-flags <flag specs>)

into

(vin:Window-Modify-Flag-Collection :view-style
:add
<flag specs>)

which is how an equivalent specification for some other view style might appear in the
standard configuration file default.cl.
A slightly more complex definition is:

(def-language-description-specifier :bind-keys
"(:bind-keys {<command> <key-descriptor>}x )
For each pair in list, bind <command> to the key sequence
<key-descriptor> in the view style of the language.
See Bind-Key."
#’(lambda (arglist)
(do ((in-forms arglist (cddr in-forms))
(out-forms (create-empty-queue)))
;3 loop termination
((or (null in-forms)
(length=1 in-forms))
(vhen (length=1 in-forms)
(Editor-Warn ":bind-keys ignoring odd argument ~S"
in-forms))
(list-queue-elements out-forms))
;3 loop body
(let ((cmd (first in-forms))
(keyspec (second in-forms)))
(enqueue ‘(Bind-Key ’,cmd ,keyspec :view-style)
out-forms)))))
Some specifiers are rather more complex, especially those that accept complex nested spec-
ifications. Each implements what amounts to a compiler, along with error diagnosis and
recovery, for a “little language.”

2Note that this definitional form takes a string argument containing documentation; this is incorporated
by Pan’s online help system.
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Appendix C

Language-Based View Style
Specifiers

This appendix contains documentation that was generated automatically from information
collected by def-language-description-specifier. Similar information is available in
Pan’s help view (see the “Documentation” submenu).

In many cases, the documentation here refers the reader to documentation for other
definitional forms in the language. These are available in Pan’s online documentation, and
the services are described in more detail the Pan user manual [31]. The characters “<>{}*”
are metacharacters in this documentation.

(:add-char-matches {<left-char> <right-char>}* )

For each pair of characters, add their definition as a matching pair in the view style of
the language. See Set-Char-Match for more documentation about character matching.

(:add-char-sets {<char-set-name> <char-list>}* )

For each pair, add every character in <char-1ist> to the character set <char-set-name>
in the view style of the language. See Set-Char-Set for more documentation about char-
acter sets.

(:add-defaults)

Adds the default bindings for general language based editing to the view-style of the
language. These may be overridden piecewise by subsequent specifications.
(:add-flags {<flag-descriptor>}* )

Add all specified flags to the flag collection in the view style of the language. See
Window-Modify-Flag-Collection for more documentation about panel flags.
(:after-analysis-function <function> )

Add a view method function to be run after each analysis; it is called in the full context of
<view>. Note that the definition of this function will not be evaluated with the new language
syntax current, so it should contain no load-time grammar transformations. See defgeneric
of view-notify-after-analysis for more documentation on this generic function.
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(:before-analysis-function <function> )

Add a view method function (of one argument <view>) to be run before each analysis;
it is called in the full context of <view>. Note that the definition of this function will
be not be evaluated with the new language syntax current, so it should contain no load-
time grammar transformations. See defgeneric of view-notify-before-analysis for more
documentation on this generic function.

(:bind-keys {<command> <key-descriptor>}* )

For each pair in list, bind <command> to the key sequence <key-descriptor> in the
view style of the language. See Bind-Key for more documentation about key bindings.

(:default-menu <menu-spec> )

Use the menu described by <menu-spec> as the default menu in the view style of the
language. <menu-spec> may take several forms:

e <menu-name>

A symbol specification causes the named menu, presumed to exist already, to be used.

e (:menu <title> { (<entry> [<label>]) }* )

A newly created menu will be used, to appear with <title>,a string, at the top. Any
number of bindings may be follow, each of which will be added in order to the newly
created menu. <entry> may be one of:

— the name of a bindable editor command,

— the name of another menu to be added as a pullright submenu,
— a <menu-spec> recursively, or

— the keyword :non-selectable.

The entry will be labeled with the string <1abel>, if given, or a default. See Bind-Menu
for more documentation on new menu creation.

o (:copy-menu <menu-name><title> { (<entry> [<label> [<position>]]) }x )

A copy will be made of the menu, presumed to exist already, named by the symbol
<menu-name>, and the copy will appear with <title>, a string, at the top. Additions
will be made to the new menu as specified by any number of additional bindings.
Each binding is specified by <entry>, as described above. The entry will be labeled
with the string <label>, if given, or a default if <1abel> is missing or nil. The entry
will be inserted at <position>, an integer, or at the end of the menu if missing. See
Bind-Menu for more documentation on menu copying.

e (:level-menu [<title>])

A menu will be constructed, to appear with <title>, a string at top; default title is
“Set Levels”. Bindings will automatically be added for each of the current operand
levels for which a setting command has been defined. Each such binding will appear
as an entry whose title is the title of the operand level, annotated with a key binding,
if any, that invokes it in the local context.
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e (:highlighter-menu [<title>])

A menu will be constructed, to appear with <title>, a string at top; default title is
“Toggle Highlighters”. Bindings will automatically be added for each of the currently
available highlighters for which a toggling command has been defined. Each such
binding will appear as an entry whose title is the title of the highlighter, annotated
with a key binding, if any, that invokes it in the local context.

(:define-highlighters {<highlighter-description>}* )

Define a new highlighter for each <highlighter-description>. A highlighter asso-
ciates with an operand class a visual effect that, when a highlighter is activated, will be
maintained automatically. A <highlighter-description> has the form:

(<name>
:opclass <operand-class-name>
[:title <title>]
[:documentation> <documentation>]
[:apropos <apropos>)
[:effect :fgil:fg2|:fg3|:bgll:bg2 ]
[:toggle-command <toggle-command-name>]
[:strict? t|nil ]
)

¢ <Operand-class-name> is a symbol naming a previously defined operand class. This
class defines which nodes will be highlighted.

e <Title> is a string by which the highlighter is described to users, for example, in a
menu. The title need not be unique; for example many languages may have a level
titled “Statement”. Default is the name of the operand class.

e <Documentation> is a descriptive string.

e <Apropos> is a symbol or a list of symbols. Apropos is generated for the specified
symbols as well as for the name of the highlighter.

e <Effect> must be one of the specified keywords. The three foreground effects use ink
colors 1 through 3 respectively, as configured by option Text-Window-Fg-Colormap.
The two background effects use shading colors 1 and 2, as configured by option
Text-Window-Bg-Colormap. Default is :fg1.

¢ <Toggle-command> specifies the name of the bindable command that toggles the
highlighter in current view between active and inactive. The default, when there
is no toggle-command specification, is to create automatically a command named
Toggle-<name>. That name may be overridden by this specification, or, if
<toggle-command> is nil, the creation of the command may be suppressed entirely.

e <Strict?> specifies whether the effect will be cleared when text and analyzed data
become inconsistent. Default is t.
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See Define-Highlighter for more documentation on highlighters.

(:define-operand-classes {<class-description>}* )

Define a new operand class for each class specification <class-description>. An
operand class describes a dynamically determined subset of the tree nodes in a docu-
ment, and associates certain kinds of useful behaviors with operations on those nodes.
A <class-description> has the form:

(<name>

:definition <test-spec>

[:title <title>]

[:documentation> <documentation>]
[:apropos <apropos>]

[:extension <extension> ]
[:set-command <set-command-name>]
[:bind-structural-commands]
[:operand-menu <menu-spec>]
[:operand-menu-command <menu-command>]
[:before <before-daemon>]

[:after <after-daemon>]

)

e <test-spec> describes the meaning of the operand class by defining a test (i.e. a
predicate) for deciding dynamically whether a given node is a member of the class or
not.<test-spec> is a possibly nested list in one of the following forms:

— (:operators {<operator-named>}* )

The arguments form a standard Ladle phylum specification, where each
<operator-name> is a string that names an operator in the language. Only
nodes whose operator is listed are members.

— (:parent-operators {<operator-name>}* )

The arguments form a standard Ladle phylum specification, where each
<operator-name> is a string that names an operator in the language. Only
nodes whose parent operator is listed are members.

— (:grandparent-operators {<operator-name>}* )

The arguments form a standard Ladle phylum specification, where each
<operator-name> is a string that names an operator in the language.  Only
nodes whose grandparent operator is listed are members.

— (:predicate <predicate> )

<predicate> is a function (or the name of a function) taking one argument: a
tree node. The function is guaranteed to be run with correct global language
state, both syntactic and semantic.

— (:member-variable <variable-name> [<test>] )

E
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<variable-name> is the symbol name of a Pan variable, as defined by one of
Define-Variable, Define-Option-Variable, or Defvariable. Class member-
ship is computed dynamically by evaluating a particular tree node for member-
ship in the list that is the current value of the variable. <test> is a function of
two arguments used to determine membership, default is #’eq.

— (tor {<test-spec>}* )
(:and {<test-spec>}* )
(:not <test-spec> )
<test-spec> may be a nested specification. Membership is determined by com-
bining the included specifications into a compound test, using standard Lisp
logical operations.

<Title> is a string by which the level is made visible to users, for example, in a

menu. The title need not be unique; for example many languages may have a level
titled “Statement.”

<Documentation> is a descriptive string.

<Apropos> is a symbol or a list of symbols. Apropos is generated for the specified
symbols as well as for the name of the level.

<Extension> is a symbol or a list of symbols, each of which names a Pan scoped vari-
able, created using Define-Variable, Define-Option-Variable, or Defvariable.
This provides an alternate definition of class membership that can makes some inter-
nal operations much faster. A single variable name identifies a variable whose value
can always be relied upon to be a list of nodes that enumerate the membership of the
class; when more than one variable is named, the set union of their values defines class
membership. The extensional definition is optional, and when present, no attempt is
made to verify equivalence between it and the predicate (<text-spec>) definition.

<Set-command> specifies the name of the bindable command that sets the current
view’s oplevel to this oplevel (a panel menu permits them to be set too). The default,
when there is no set-command specification, is to create automatically a command is
named Set-Oplevel-To-<name>. That name may be overridden by this specification,
or, if <set-command> is nil, the creation of the command may be suppressed entirely.

The presence of the :bind-structural-commands keyword specifies that operand
bindings for this level be created for the standard set of structural commands, see
Define-Structural-Oplevel-Commands for more documentation.

<Menu-spec> describes a menu to bind as the designated operand level menu for
this operand class. The specification may be a symbol naming a preexisting menu,
or it may be a recursive specification of a new menu, as with the argument to
:default-menu. See documentation for specifier :default-menu (above) and for
Bind-Oplevel-Menu for more documentation on operand level menu bindings.

<Menu-command> replaces the normal operand menu dispatch command; this causes
<menu-name> to be ignored unless handled specially by the replacement.
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e <Before-daemon> is a function of no arguments. It will be called before each execution
of an operation dispatched at the new level.

e <After-daemon> is a function of no arguments. It will be called after each execution
of an operation dispatched at the new level.

See Define-Operand-Class for more documentation on operand class definition.

(:delete-char-matches {<left-char> <right-char>}* )

For each pair of characters, delete their definition as a matching pair in the view style
of the language. See Set-Char-Match for more documentation about character matching.

(:delete-char-sets {<char-set-name> <char-list>}* )

For each pair, delete every character in <char-1ist> from the character set <char-set-name>
in the view style of the language. See Set-Char-Set for more documentation about char-
acter sets.

(:delete-flags {<flag-descriptor>}* )

Delete all specified flags from the flag collection in the view style of the language. See
Window-Modify-Flag-Collection for more documentation about panel flags.

(:highlighters {(<highlighter-name> <:on|:0ff> <key-spec>* )}* )

Specify the names of highlighters to be made available to the user. Each instance of
<operand-class-name>, a symbol, names a level, and these choices appear in a panel menu.
When one more instances of <key-spec>, a string containing a keystroke specification, are
included, the command that toggles the highlighter is bound to those keystrokes.

(:init-function <function> )

Add a view method function (of one argument <view>) to be run in the scoping context,
not the full context, of each newly created primary view for the language, after all other
initialization is done. Note that the definition of this function will be not be evaluated
with the new language syntax current, so it should contain no load-time grammar trans-
formations. See defgeneric of view-initialize for more documentation on this generic
function.

(:operand-levels {(<operand-class-name> <key-spec>* )}* )

Specify the names of operand classes to be made available to the user as possible
“operand levels,” which control some kinds of language-based interaction. Each instance
of <operand-class-name>, a symbol, names a level, and these choices appear in a panel
menu. When one more instances of <key-spec>, a string containing a keystroke specifica-
tion, are included, the command that sets the current level to this class is bound to those
keystrokes. Any attempt by users to set the level to an operand class not declared in this
way will signal an error.

(:option-values {<option-name> <value>}* )
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For each pair in list, set <option-name> to <value> in the view style of the language.
See Define-Option-Variable for more documentation on Pan options.

(:sde-oplevel-menus <oplevel-menu-name> {<opl-menu-spec>}* )

Specify a mapping between operators in the grammar and special operand menus for
syntax-directed editing with templates. Each operand menu described by an <opl-menu-spec>
is created automatically by copying the menu named by <oplevel-menu-name> and adding

a submenu for template expansion appropriate to the operator. Each <opl-menu-spec>
has the form:

(<operator-name> <template-menu-title> {<template-entry>}* )
where <operator-name> is the string name of an operator in the Ladle grammar for the
language, and <template-menu-title> is the string that will appear as the name of the
menu containing templates. Each <template-entry> has the form:
(<template-entry-label> {<template-string-component>}* )
where <template-entry-label> is the string name of the menu entry for invoking the tem-
plate and the <template-string-component> strings make up the template itself. When a
template contains more than one string, during expansion a newline will be inserted before
each component after the first.

(:shadow-char-matches {<left-char> <right-char>}* )

For each pair of characters, shadow their definition as a matching pair in the view style
of the language. See Set-Char-Match for more documentation about character matching.
(:shadow-char-sets {<char-set-name> <char-list>}* )

For each pair, delete every character in <char-1ist> from the character set <char-set-name>
in the view style of the language. See Set-Char-Set for more documentation about char-
acter sets.

(:shadow-flags {<flag-descriptor>}* )

Shadow all specified flags from the flag collection in the view style of the language. See
Window-Modify-Flag-Collection for more documentation about panel flags.





