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Abstract

The first Futamura projection enables compilation and high
performance code generation of user programs by partial
evaluation of language interpreters. Previous work has shown
that it is sufficient to leverage profiling information and use
partial evaluation directives in interpreters as hints to drive
partial evaluation towards compiled code efficiency. How-
ever, this comes with the downside of additional application
warm-up time: Partial evaluation of language interpreters
has to specialize interpreter code on the fly to the dynamic
types used at run time to create efficient target code. As a
result, the tie spend on partial evaluation itself is a significant
contributor to the overall compile time of a method.

The second Futamura projection solves this problem by
self-applying partial evaluation on the partial evaluation al-
gorithm, effectively generating language-specific compilers
from interpreters. This typically reduces compilation time
compared to the first projection. Previous work employed
the second projection to some extent, however to this day,
no generic second Futamura projection approach is used in a
state-of-the-art language runtime. Ultimately, the problems
of code-size explosion for compiler generation and warm-up
time increases are unsolved problems subject to research to
this day.

To solve the problems of code-size explosion and self-
application warm-up this paper proposes CompGen, an ap-
proach based on code generation of subsets of language
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interpreters which is loosely based upon the idea of the sec-
ond Futamura projection. We implemented a prototype of
CompGen for GraalVM and show that our usage of a novel
code-generation algorithm, incorporating interpreter direc-
tives allows to generate efficient compilers that emit fast
target programs which easily outperform the first Fumatura
projection in compilation time. We evaluated our approach
with GraaljS, an ECMAScript-compliant interpreter, and
standard JavaScript benchmarks, showing that our approach
achieves 2 — 3X speedups of partial evaluation.
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1 Introduction

Many programming language implementations feature a
hand written and heavily optimized virtual machine (VM)
with an interpreter and one or multiple optimizing just-in-
time (JIT) compilers. This violates the principle to not repeat
yourself. The Futamura projections [7] generalize the compi-
lation process via partial evaluation (PE) to generate machine
from an interpreter, removing the need for language-specific
and hand-written compilers. The process of deriving ma-
chine code from an interpreter and data is referred to as
the First Futamura Projection (F1) [8]. With this, a VM can
implement a single unified compilation process, and let other
language interpreters benefit from optimization and com-
pilation, as well as system components and tooling a VM
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usually provides. GraalVM [21, 24, 27] employs partial eval-
uation of polyglot AST [29] interpreters implemented using
GraalVM’s Truffle API to derive high performance machine
code [28]. However, experiments with real-world programs
in GraalVM have shown that PE in Truffle can make up half
of the overall compile time. Truffle PE is compile time inten-
sive because the implementation is guest language agnostic,
i.e., the construction of the compiler IR during PE has to
function on arbitrary Java AST interpreter code.

To solve this problem we propose a compiler generation
approach called CompGen. It is loosely based on the idea of
self-applying partial evaluation on the partial evaluator, i.e.,
the second Futamura projection (F2). Our approach generates
compilers for individual AST nodes in the Truffle framework.
These generated compilers produce the associated compiler
IR during PE time specifically for an AST node directly. The
output of our compiler is Java code that compiles a particular
AST node.

In summary this paper contributes the following:

o A practical compiler generator (called CompGen) for
GraalVM that is loosely based on the idea of F2 [8].
CompGen generates language-specific compilers au-
tomatically for a selected subset of a language inter-
preter.

o A novel code-generation algorithm that considers PE
directives of a practical F1 to generate compilers that
produce efficient and fast target programs.

e An integration between a practical F1 and CompGen
allowing a hybrid PE mode to trade-off between code-
size increase and PE time.

e An analysis of compile time, run time and code size,
showing that our approach achieves significant speedups
in PE, generating compilers that produce target pro-
grams with run-time performance similar to a practical
F1, competing with highly optimized and hand-tuned
language implementations, and does not introduce
code-size explosion or additional warm-up in PE.

2 Truffle: Partial Evaluation in a High
Performance VM

In this section we present the state-of-the-art F1 application
used by the Truffle framework in GraalVM [21, 24, 27], and
the major challenges that arise from it that can be optimized
using a different PE algorithm.

2.1 Fist Futamura Projection (F1)

The first Futamura projection (F1) proposes compilation of a
user program by PE of an interpreter with the assumption
that the user program is a constant input to the interpreter.
For this, a partial evaluator has to reason about the instruc-
tions of the interpreter and decide, with respect to the given
user program, if an instruction should be evaluated now, i.e.,
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at compile time time, or if the instruction should be emit-
ted in the target program for evaluation at run time. This
is compile-time intensive. In Truffle F1 PE can consume up
to 50% of the overall compilation time (partial evaluation
time plus time spent in the optimizing compiler to produce
optimized machine code). Therefore, PE time is crucial for
application warmup and thus is worth optimizing in order
to reduce the overall compilation time.

Wiirthinger et al. [28] showed that a pure generic F1 cre-
ates many technical challenges because the PE algorithm
has to decide when to stop inlining and evaluating and
when runtime-performance can justify larger program size
or longer compilation times. For F1 to be practical, especially
in the context of dynamic languages, it is sufficient to intro-
duce PE primitives, such as annotations and intrinsics in the
interpreter implementation [28]. This allows PE to leverage
profiling information gathered during interpretation, and
make optimistic assumptions when reasoning about the in-
terpreter instructions, in order to produce efficient target
code that speculates on the fast path and deoptimizes [10]
when necessary. This comes with the downside of additional
warm-up due to profiling, however, greatly increases run-
time performance after compilation.

Listing 1 shows a stylized version of Truffle’s PE algorithm:
It takes an AST node as the starting point. It first parses the
node’s exec method into a compiler IR graph. The exec
method denotes the logic for the interpretation of this node.
Then, doPE iterates the IR and performs partial evaluation
accordingly. If it sees, e.g., the invocation of another exec
method, and the receiver represents an AST child node, the
receiver is assumed to be constant. This allows parsing the
exec method of the given child and replacing the invocation,
by inlining the child graph into the current graph. Method
parsing and dispatching on given IR is what makes partial
evaluation slow for large ASTs.

1 IRGraph doPE(ASTNode node) {
IRGraph graph = parseBytecode (node);
for (IRInvoke invoke : graph.invokes) {
if (isExec(invoke.method) && isChild (invoke.receiver)) {
ASTNode child = (ASTNode) invoke.receiver.asConstant();
IRGraph childGraph = parseBytecode(child);
graph.inline (childGraph, invoke);
}
}
return graph;

}

—
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Listing 1. Truffle’s Partial Evaluation.

2.2 Second Futamura Projection (F2)

The second Futamura projection (F2) proposes a solution
to the compile time problem of F1 as it allows to speed up
the compilation by generating a language-specific compiler
for an interpreter that compiles faster than a generic F1.
Originally, this is described as a process of self-application.
Instead of partially evaluating an interpreter with respect to
a static user program, the partial evaluator is applied to itself,
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with the assumption that the provided interpreter is static
input to the partial evaluator. With this, the overhead of PE
in F1, i.e., reasoning about and processing of interpreter in-
structions when compiling a user program, can in theory be
avoided. In this case, the partial evaluator specializes itself
for a given interpreter. With this, it can directly emit target
programs for given source programs from partially evalu-
ated interpreter instructions. This should yield the target
program much faster than a general partial evaluator. How-
ever, self-application approaches often do not support all
language features, may produce code that only gives modest
speedups, or impose other problems which are avoided by a
hand-written code generator that creates specialized partial
evaluators [2, 17]. For self-application to work in Truffle,
partial evaluation itself would need to be re-implemented
in form of a dedicated Truffle language with properly in-
corporated Truffle primitives. However, since these Truf-
fle primitives are currently targeted for actual interpreters
(i-e., executing a method) and not abstract interpreters (i.e.,
converting a method into compiler IR), it is unclear if this
self-application can be made practical or even possible in
Truffle.

2.3 CompGen: Compiler Generation for High
Performance Partial Evaluation in Truffle

In order to speed up PE in Truffle we propose CompGen, an
approach that uses a hand-written code generator instead of
self-application. CompGen generates specialized versions of
compilers for selected AST interpreter nodes ahead of time,
removing the method parsing and instruction dispatching
overhead. If partial evaluation is then requested for such an
AST node, a partially evaluated IR graph is emitted directly.

We illustrate this for a simple AST interpreter which only
adds long constants. Listing 2 shows the node classes that im-
plement this logic. AddNode has two fields, left and right.
Both are annotated with Truffle’s @hild primitive, which
the isChild method in doPE checks to enable parsing and
inlining of these nodes. The exec method calls both children
and returns the sum of the two long values. ConstNode has
a final long field that is returned by the exec method.

class AddNode extends ASTNode {

@Child ASTNode left;

@Child ASTNode right;

long exec() { return left.exec() + right.exec(); }

class ConstNode extends ASTNode {
final long value;

1

2

3

4
5}
6

7

8 long exec() { return value; }
9

}
Listing 2. AST Interpreter Node Classes.

CompGen generates source code for the specialized ver-
sions of doPE ahead of time by parsing the exec methods
of these node classes and traversing the IR graph in reverse
post-order. IR nodes describing values already known, e.g.,
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literals, are constant-folded through the graph. IR Nodes de-
scribing values annotated with Truffle primitives, e.g., loads
of fields annotated with @Child, are assumed to be known
during partial evaluation. In this case, source code is gen-
erated that computes these values without emitting any IR.
Nodes describing other values are assumed to be unknown
during partial evaluation. In this case, source code is gen-
erated that emits IR for the target program to compute the
values at run time when the program is executed.

Listing 3 shows the generated partial evaluation methods
for the AST node classes, denoted as doPE_Gen. The first
method dispatches between the other two, based on the given
node type. The other methods take concrete AddNode and
ConstNode objects. Since the fields of AddNode are annotated
with @Child, these field loads are assumed to be known
during partial evaluation. This allows replacing the original
exec invocations in the interpreter, by calling doPE_Gen for
both fields and inlining the resulting graphs, to emit an IRAdd
node with the return values as inputs. For the ConstNode, its
value is stored in a final field, i.e., the value is also assumed
to be known during partial evaluation. This allows emitting
an IRConst node by reading the value field.

To clearly distinguish between nodes of the AST and nodes
of the compiler IR, we use the suffix Node for everything re-
lated to AST nodes and the prefix IR for everything related
to compiler IR. While in these simple examples it seems as if
there is a one-to-one matching between AST nodes and com-
piler IR nodes, this does not hold for real-world languages
like JavaScript where JavaScript addition has semantics far
more complicated than just adding two numbers.

1 IRGraph doPE_Gen(ASTNode node) {

2 if (node instanceof AddNode) {

3 return doPE_Gen ((AddNode) node);

4 } else if (node instanceof ConstNode) {
5 return doPE_Gen ((ConstNode) node);

6 } else { /* handle other ... %/ }

7}

8 IRGraph doPE_Gen(AddNode node) {

9 IRGraph leftVal = doPE_Gen(node.left);
10 IRGraph rightVal = doPE_Gen(node.right);
11 return new IRAdd(leftVal, rightVal);
12}

13 IRGraph doPE_Gen(ConstNode node) {
14 return new IRConst(node.value);
15}

Listing 3. Specialized Partial Evaluation.

Figure 1 shows a comparison of doPE and CompGen for
an example AST which adds two constants. doPE parses
the AddNode and sees both child invocations, so it parses
and inlines the IR of both exec methods, respectively. Fi-
nally, the compiler optimizes the addition in the IR to a con-
stant. In comparison, CompGen with its doPE_Gen methods
directly emits partially evaluated IR, i.e., the addition of both
constants, which the compiler then optimizes. Compared
to doPE, CompGen requires two steps less to produce the
same IR.
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doPE 1) Parse AddNode
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2) Parse left & inline 3) Parse right & inline 4) Optimize

IRAdd { IRAdd { IRAdd {
IRInvoke{left, exec}, IRConst{3}, IRConst{3},
» * IRInvoke{right, exec}} IRInvoke{right, exec}} IRConst{5}}
\'/5\\] 5\ compGen 1) Emit IR 2) Optimize
T T/ IRAdd{
Example AST IRConst{3}, IRConst{8}
IRConst{5}}
Figure 1. Comparison of doPE and CompGen.
3 Approach the receiver of a virtual dispatch on the AST level'. Listing 4

In this section we present CompGen, an algorithm for fast
compiler generation we implemented for the Truffle frame-
work. CompGen (see Figure 2) integrates seamlessly into
Truffle’s partial evaluation and compilation system. It uses
the same AST nodes F1 does, however, for each AST node
it creates a specialized compiler plugin that automatically
produces the Graal IR of the associated AST node.

In this section we present the problems that arise with
compiler generation and how we can optimize them by lever-
aging profiling information to keep code size increase as low
as possible while speeding up the partial evaluation process
as much as possible.

Example In order to illustrate the challenges and complex-
ity that arises from a compiler generation we use an example
in Listing 4 throughout the rest of this section.

class ANode extends Node {
static final int THRESHOLD = 10;
@Children Node[] children;

@Override @ExplodeLoop

1
2
3
4
5 ANode(Node[] children) { this.children = children; }
6
7
8 int execute(VirtualFrame f) {

9 for (int i = 0; i < children.length; i++) {
10 int r = children[i].execute(f);

11 if (r > THRESHOLD) return r;

12 }

13 return —1;

14 }

5}

Listing 4. ANode class.

Listing 4 shows a simplified AST node implemented using
the Truffle language implementation API. It uses Truffle’s
core primitives to generate a loop explosion of the compila-
tion final children node array during partial evaluation.

F1 In order to generate efficient machine code for this AST
node Truffle’s F1-based partial evaluation algorithm has to
parse the associated bytecode of an AST node. If during pars-
ing an invocation is encountered partial evaluation forces
the invoke to be inlined if possible. For this F1 has to decide
whether the invoke can be inlined (i.e., check if the receiver
is constant so it can be devirtualize the target method and
continue PE in the new method. In the Truffe framework
it is ensured node fields are compilation final (effectively
final during compilation) so the compiler can devirtualize

shows compilation final AST node children as they are anno-
tated with @Children. During partial evaluation of execute
in Listing 4 the F1 algorithm has to inline every execute
method of the children?. For each children[i] receiver that
is constant the F1 PE algorithm has to

e parse the execute method of the ANode class into a
new graph
e replace the this parameter in this graph with a Con-
stantNode that represents the receiver object
e replace the normal path of the Invoke with the starting
node of the new graph
e iterate the IR nodes and try to further simplify the
graph
Given that a generic F1 algorithm never knows, which meth-
ods it encounters during PE, the simplification algorithm is
a generic loop that dispatches between simplification logic
for different kinds of IR nodes. Listing 5 shows a simplified,
generic version of the F1 algorithm in Truffle. Given the
number of different node classes in the Graal IR and the
number of local transformations, F1 becomes a very compile
time task spending a tramendeous amount of time allocating
simplifiable nodes, doing typechecks and allocating temporal
memory.

1 graph = parse(method);
2 worklist = graph.start;
3
4 do {
5 node = worklist.pop();
6
7 if (node instanceof IfNode) {
8 if (node.condition instanceof ConstantNode) {
9 graph.remove (node. condition.value ?
node. falseSuccessor : node.trueSuccessor);
10 worklist.push(node.condition.value ?
node . trueSuccessor , node.falseSuccessor);
11 } else {
12 worklist.push(node.trueSuccessor);
13 worklist.push(node. falseSuccessor);
14 }
15 } else if (node instanceof LoadFieldNode) {
16 if (node.object instanceof ConstantNode &&
node . field . allowsFolding ()) {
17 graph.replace (node, readConstantField (node.object,
node. field));
18 }
19 worklist.push(node.successor);

IThe truffle framework allows to use receivers from annotated field loads
that can be constant folded, since we assume the AST is fixed; if they come
from other sources and can’t be constant folded, the invoke stays in the
graph, which is later reported as "language performance bug").

2Note that in Listing 4 also the array length is final given that the array
contents is considered final.
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Class CompGen {
void peNodeClassA(){...
void peNodeClassB(){...
void peNodeClassC(){...
void peNodeClassD(){...
void peNodeClassC(){...

Javac —|—

S
|
1

CompGen ‘.
A..E 4
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Node{}
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at
runtime

-
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After Partial
Evaluation

Truffle AST

Truffle

Graal Compiler

HotSpot JVM

reads foduces

While(graph.hasInvokes(){
inlineNodeChilds()
}
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Figure 2. CompGen System Structure.
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Figure 3. GraallR for ANode.execute.

20 } else if (...) {
21 e

22 }

23 } while (worklist not empty);

Listing 5. F1 algorithm.

CompGen CompGen generates PE code for specific exe-
cute methods that are parsed and created ahead-of-time. We
can leverage as much static information as possible to gener-
ate efficient PE code that produces as efficient code as F1 at
run time. In order to generate specific compilers for Truffle
IR nodes we have to take the original Graal IR of the execute
method of a node. Figure 3 shows the Graal IR of Listing 4.

Note that the IR for the execute method after parsing and
the IR generated during partial evaluation for such a method
are conceptually different. In that sense, F1 can be seen as
an "inlining-during-parsing" algorithm that eagerly explores
and inlines the complete search space. To generate a com-
piler for Listing 4 that produces the same Graal IR as F1 after
PE we have to identify, when values represented by IR nodes
are available and what static information about these nodes
can we leverage for generating efficient PE code. The gener-
ated compiler code can leverage constant information during
compiler generation already. While a regular F1 algorithm
runs compilation task at run time concurrently to the user
program executing, we can use constant information inside
final fields of AST nodes already during compiler generation
and shift the optimization time from run time to ahead of
time. Conceptually, there are 3 different compilation times
in a compiler generator setting

e Compiler Generation Time (GenTime): The compiler
produces compilers for user AST nodes.

e Partial Evaluation Time (PETime): The compiler pro-
duces partially evaluated code for user ASTs.

e Run Time: The generated code executes.

GenTime Values which are already available when we gen-
erate compiler code and which we can safely be re-used
in generated compiler code, e.g., primitive and string liter-
als. Here, we have to be careful, because we can’t re-use
object constants or static-final fields, because of multiple
reasons: 1) user-level code would reference objects from
the wrong object space 2) initializing classes ahead-of-time
could change program semantics®. When we see Truffle an-
notations (ExplodeLoop, CompilationFinal, Child/Children,
TruffleBoundary), we can generate more optimized PE code

3For example class constructors with calls to static final DateTime
time = DateTime.currentTime().
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which skips meta-information fetching (e.g. field descriptors)
and annotation checks that are performed by generic F1 PE.
Example: for @CompilationFinal annotated fields we can
generate optimized PE code which accesses necessary field
descriptors from specific global constants and constant folds
the field accesses by directly reading the specific fields. In
contrast, generic F1 during PE would first fetch necessary
field descriptors and check if the field is annotated with
@CompilationFinal, before it tries to constant fold the field
access. An example for a constant that can already be opti-
mized during GenTime in Listing 4 is the field THRESHOLD.
It is a constant primitive literal that can already be constant
folded during compiler generation, i.e., we can replace the
loadfield and constant pool lookup with a constant integer
node 10.

PETime Values which are constant during PE time. In prin-
ciple, everything could eventually become constant during
PE. For example, PE of a child’s execute method could give
a constant node. An if-condition depending on this value
could eventually be constant-folded. This is why we have
to generate PE code that, before creating a node, checks, if
the required inputs are constant, so we can create a more
simplified version of the node (which is where, e.g., our node
factories kick in). Examples for PETime constants are all the
Truffle API core primitive usages in Listing 4: @Children,
i.e., at PE time the length of the children array is constant as
well as teh content of each array cell.

Run Time Values which are not available during PE can
only become available at run time, i.e., we must emit the
instructions in the target code. When a constant-check yields
false, or we depend on a run-time parameter, we have to
emit the instruction in the target program, so the value is
computed by execution at run time. A standard example
would be an if-condition that did not constant fold, which
means the compiler has to emit the if-statement in the target
code so the condition is evaluated at run time.

3.1 Compiler Generation

In order to generate a specific compiler for a single AST node
we have to:

1. Parse the target execute method of the AST node (e.g.
Listing 4 the execute method).

2. Propagate GenTime constants into the IR and simplify
the graph based on these constants.

3. Schedule the IR so all nodes have a mapping to corre-
sponding basic blocks.

4. Tterate the basic blocks in reverse post order.

5. Output PE code that carries out simplification logic
specific to each visited IR node.

6. Use glue code to properly connect nodes and basic
blocks simplified during PE.
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Source code VS machine code generation Generating com-
pilers AOT for AST nodes gives substantial compile time
benefits over PE at run time. However, traditional compiler
generated machine code that is loaded and executed at run
time . In order for a better development experience and de-
buggability we propose to generate Java source code instead
of machine code. This source code uses the Graal compiler
IR’s directives to create the associated AST node’s execute
method programatically once being executed. The source
code itself can be compiled with javac to bytecode which
can be compiled to native executables/shared libraries with
GraalVMs native image if needed.

Code Generation Algorithm We present a pseudo-code
version of our proposed compiler generation algorithm in
Listing 6. The algorithm first parses the IR graph for the
given method, populates GenTime constants and optimizes
the graph accordingly. Then, it schedules the IR, i.e., each
IR node is mapped to a basic block in the control flow. Fi-
nally, the PE code is generated by visiting the basic blocks
in reverse post order and emitting PE code based on the en-
countered IR nodes. The reverse post-order iteration ensures
that generated PE code does not reference values or IR nodes
that have not been instantiated yet. The handleBeginNode
and handleEndNode methods emit the PE glue code which
properly connects the basic blocks and sets up the con-
tinuation points where nodes are appended to the control
flow of the IR graph. For example, when a MergeNode is
encountered, PE code is emitted which potentially merges
predecessor paths if they have been visited before. When
an IfNode is encountered, PE code is emitted which checks
if the condition was constant-folded or not, so only one
successor or both successors plus the IfNode itself must be
prepared/instantiated. Both methods also emit the glue code
that is necessary for Truffle’s loop explosion mechanism.
The handleIntermediateNodes method emits a snippet for
each remaining IR node of a basic block, which tries to create
a simplified version of the node during PE, e.g., through con-
stant folding. When, e.g., an AddNode that takes two inputs
is encountered, a snippet is emitted that tries to directly pro-
duce a ConstantNode of the sum during PE if both inputs
are constant, and instantiates an AddNode if not. A more
complex example would be an InvokeNode. Here, a snippet
is emitted that checks if the receiver is constant and whether
the invoke should be inlined. If both is true, the snippet dis-
patches to generated PE code that is capable of handling
the encountered target method. If not, the invoke is simply
instantiated in the IR graph.

1 PECode compGen(Method m) {

// create and optimize original IR

Graph g = parse(m).optimize ().schedule();

PECode ¢ = new PECode();

for (Block b : g.blocksInRPO) {
handleBeginNode (g, c, b);
handlelntermediateNodes(g, ¢, b);
handleEndEnd (g, ¢, b);

}

© P NG W
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10 return c;

1}

12 void handleBeginNode (Graph g, PECode c, Block b) {
13 IRNode n = b.beginNode;

14 if (n instanceof MergeNode) {

15 // potentially create BB merge

16 c.maybeMergePredecessors(n);

17 // potentially create phi nodes

18 n.phis.forEach(p —> c.maybePhiValues(p));
19 } else if (n instanceof LoopBeginNode) {

20 // handle Truffle loop explosion

21 if (g.hasLoopExplosion()) {

22 c.enterNextLoopExplosionIteration(n);
23 c.maybeMergePredecessors(n);

24 n.phis.forEach(p —> c.maybePhiValues(p));
25 } else {

26 c.instantiate (n);

27 }

28 } else if (n instanceof LoopExitNode) {

29 // handle Truffle loop explosion

30 if (g.hasLoopExplosion()) {

31 c.exitLoopExplosionIteration(n);

32 c.maybeMergePredecessors(n);

33 n.proxies.forEach(p —> c¢.maybePhiValues(p));
34 } else {

35 c.instantiate (n);

36 }

37 }

38 // new nodes will be appended to this node

39 c.continueWith(n);

40 }

41 void handleIntermediateNodes (Graph g, PECode ¢, Block b) {
42 b.intermediateNodes.forEach(n —> c.trySimplify(n));
43}

44 void handleEndEnd (Graph g, PECode ¢, Block b) {

45 IRNode n = b.endNode;

46 if (n instanceof IfNode) {

47 c.simplifyIfConstant (n);

48 c.instantiateElse (n);

49 } else if (n instanceof LoopEndNode) {

50 if (g.hasLoopExplosion()) {

51 c.prepareNextLoopExplosionlIteration(n.loopBegin);
52 } else {

53 c.instantiate (n);

54 }

55 } else if (n instanceof EndNode) {

56 if (n.merge instanceof LoopBeginNode) {
57 if (g.hasLoopExplosion()) {

58 c.preparelnitialLoopExplosionlteration (n.merge);
59 } else {

60 c.instantiate (n);

61 }

62 }

63 } else if (n instanceof ReturnNode) {

64 c.propagateReturnValue (n);

65 } else if (n instanceof UnwindNode) {

66 c.propagateExceptionValue(n);

67}

68}

Listing 6. F2 Code Generation Algorithm.

Listing 7 presents the generated F2 Java compiler code for
ANode.execute without optimizations*®. Here, the generated
PE code simply replicates without any modification the IR
graph that has been parsed at GenTime. The decode method
prepares the starting anchor point and then calls all the gen
methods in reverse post order to emit the basic blocks. A
LoopScope class is generated which stores nodes and val-
ues created during a single loop iteration for a loop that is

4For simplicity we assume all values will only be available at run time, so
no loop explosion, no constant checks, no primitive literals.

5We only show the code for the loop body blocks, without exception han-
dling.

SPLASH Companion ’19, October 20-25, 2019, Athens, Greece

unrolled during PE - a LoopScope instance is passed to all
gen methods so they can reference nodes if necessary. Even
though we don’t explode/unroll any loop in this example,
one single LoopScope object is created. This is because we
treat the body of the execute method as a giant loop with a
single iteration, so we don’t have to treat code without loops
in a special way.

class LoopScope {

boolean genB1 ... genB5;
IRNode n0 ... nl18;
IRNode v0 ... v4;

1

2

3

4

5}

6 void decode(GraphBuilder b, MethodScope m) {

7 LoopScope 1 = new LoopScope();

8 1.n0 = b.current();

9

10 genBO(b, m, 1);

11 if (1.genB1) (b

12 if (1.genB2) (b

13 if (1.genB3) genB3(b, m,

14 if (1.genB4) (b

15 if (1.genB5) (b

16}

17 void genBO(GraphBuilder b, MethodScope m, LoopScope 1) {

18 b.continueWith(1.n0);

19 l1.n1 = b.append(new EndNode());

20 1.genB1 = true;

21}

22 void genB1(GraphBuilder b, MethodScope m, LoopScope 1) {

23 1.n2 = b.add(new LoopBeginNode());

24 l.n2.addForwardEnd(1l.n1);

25 l1.vl = b.add(new PhiNode(1l.n2));

26 1.v1.addInput(ConstantNode.of (0));

27 b.continueWith(1.n2);
1
1

28 .v0 = AddNode.tryFold (b, 1.v1l, ConstantNode.of(1));

29 .n3 = LoadFieldNode.tryFold (b, "ANode#children",
m.args[0]);

30 1.v2 = ArrayLengthNode. tryFold (b, 1.n3);

31 1.v3 = LessThanNode. tryFold(b, 1.v1l, 1.v2);

32

33 if (1.v3.isTautology()) {

34 l1.n5 = b.current();

35 1.genB2 = true;

36 } else if (l.v3.isContradiction()) {
37 1.n16 = b.current();

38 1.genB3 = true;

39 } else {

40 1.n5 = b.add(new BeginNode());

41 1.genB2 = true;

42 1.n16 = b.add(new BeginNode());

43 1.genB3 = true;

44 1.n4 = b.append(new IfNode(l.v3, 1.n5, 1.n16));
45 }

46}

47 void genB2(GraphBuilder b, MethodScope m, LoopScope 1) {

43 .continueWith(1.n5);

49 1.n6 = LoadFieldNode.tryFold (b, "ANode#children",
m.args[0]);

50 1.n7 = ArrayReadNode.tryFold(b, 1.n6, 1.v1);

51 1.n8 = trySimplifyInvoke (b, "execute”, 1.n7, m.args[1]);

52

53 if (1.n8.isConstant()) {

o

54 if (1.n8.value() > 10) {

55 1.n11 = b.current();

56 1.genB4 = true;

57 } else {

58 1.n14 = b.current();

59 1.genB5 = true;

60 }

61 } else {

62 1.v4 = b.add(new GreaterThanNode(1l.n8,

ConstantNode . of (10)));

63 1.n11 = b.add(new BeginNode());
64 1.genB4 = true;
65 1.n14 = b.add(new BeginNode());
66 1.genB5 = true;
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67 1.n10 = b.append(new IfNode(l.v4, l.n11, 1.n14));

68 }

69 }

70 void genB3(GraphBuilder b, MethodScope m, LoopScope 1) {
71 b.continueWith(l.n16);

72 1.n17 = b.append(new LoopExit(1l.n2));

73 m.returnPaths.add(1.n17);

74 m.returnValues.add(ConstantNode.of (1));

75}

76 void genB4(GraphBuilder b, MethodScope m, LoopScope 1) {
77 b.continueWith(l.n11);

78 1.n12 = b.append(new LoopExit(l.n2));
79 m.returnPaths.add(l.n12);
80 m.returnValues.add(1.n8);

81 }

82 void genB5(GraphBuilder b, MethodScope m, LoopScope 1) {
83 b.continueWith(l.n14);

84 1.n15 = b.append(new LoopEnd(l.n2));

85 )

Listing 7. Generated F2 Code - without optimizations.

3.2 Hybrid Compiler Generation

CompGen is capable of generating compilers for arbitrary
Java source code. However, to improve partial evaluation
time of Truffle interpreters only those AST node methods
reachable during interpretation and thus subject to partial
evaluation account for PE time later during compilation.
Language implementations based on the GraalVM not only
consist of AST interpreter method but also runtime library
support, memory subsystem, parser etc. Less frequent lan-
guage features make up a significantly large portion code.
However, the number of methods subject to partial evalua-
tion at run time is commonly less than the entire language
support. Plainly using CompGen to generate compilers for
all methods ever subject to partial evaluation comes at a high
code size cost. GraalJS [23] for example roughly has 10 000
run-time compilable AST methods, i.e., the partial evaluator
may only see those during any execution of a JavaScript pro-
gram. Generating source code, which ultimately is compiled
to Java bytecode, for 10k methods still incurs a significant
code size overhead. For Graal]S, we measure about 40MB
of additional bytecodes in the VM if we generate compilers
for every method ever subject to PE. Thus, we propose a so
called hybrid execution mode for the existing F1-based PE
algorithm in Graal that only creates CompGen compilers for
important AST node functions. A hybrid F1 PE algorithm
proceeds as follows: if a compiler was generated by Comp-
Gen for a particular method, then the algorithm can use a
generated compiler for this particular node, resulting in sig-
nificant PE time reductions. If, however, no compiler was
generated, the algorithm falls back to the F1-based PE algo-
rithm, performing a regular "node interpretation” loop for
the AST method. On the other side, every AST root node
starts PE in the F1 algorithm, if a AST method is reached
for which a compiler was generated the F1 algorithm calles
into the CompGen generated code resulting in less compila-
tion time. Figure 4 outlines the major execution flow of the
hybrid approach: initially an AST’s root node’s partial eval-
uation starts in the regular (hybrid) F1-based PE algorithm.

Florian Latifi, David Leopoldseder, Christian Wimmer, and Hanspeter Mossenbdck

PE happens iteratively until an AST node is reached (A &
B in this example) for which CompGen generated compil-
ers have been registered in a map data structure in the PE
algorithm. Execution will then resume in the generated com-
piler for A & B nodes respectively, after which the compiled
compiler calls again back into the hybrid F1 PE to evaluate
nodes C,D and E. We experimented with various different
policies for a proper selection of suitable CompGen methods,
we present the best performing ones in Section 4. To the
best of our knowledge, combining F1 PE with pre-compiled
compilers is a novel contribution in the domain of PE and
shows that compiler generation can be used to effectively
improve partial evaluation time a production system.

CompGen ’
A&B

uses

CompGen Evaluator
x
.

WF1: parse()

After Partial
Evaluation

Figure 4. Hybrid Partial Evaluation Approach.

3.3 PE Optimized CompGen Compilers

Listing 8 shows the generated F2 code for the hybrid PE
model of ANode.execute with optimizations®. We generate
the LoopScope class for handling the single loop iteration
of the execute method as before, but this time, we explode
the loop in the execute method. So we additionally store
fields in LoopScope for handling the start and end of the
loop explosion, like the initial LoopScope2 object, lists of
exit paths that must be merged and which are populated
when a single loop explosion iteration hits an exit, and cor-
responding values for ProxyNodes that must be phied. A
second LoopScope? class handles values produced within a
single loop explosion iteration.

In the decode method, we start with a LoopScope object
and call the gen method of the first basic block B0. Because
the next block starts with a LoopBegin node, the gen method
of B0 creates the first instance of LoopScope2, sets its an-
chorB1 to the current anchorB0, and initializes the IR field
for variable i with ConstantNode(0). Then, a while loop pro-
cesses a worklist of LoopScope? instances, and calls the gen
methods of the basic blocks scheduled inside the loop in
reverse post order. These gen methods take both LoopScope
and LoopScope? instances, so the gen methods can refer-
ence both values scheduled inside and outside of the loop.
The most important fact in this version is that we don’t use
®We assume values may eventually constant fold during PE time, with loop

explosion. Additionally, we only show the code for the interesting basic
blocks, without exception handling
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constructors to replicate the IR nodes as parsed ahead of
time, but we use static factory methods that try to constant
fold based on the given inputs. This can be seen in the genB2
method, where we try to constant fold the field and array ac-
cess of the AST node’s children array, so we can simplify the
invoke of the children’s execute methods. Another impor-
tant usage of constant-folding is in genB5, where the next
loop explosion iteration is prepared by creating the next
LoopScope2 object. Here, the usage of AddNode.tryFold en-
sures that i+1 is constant folded and that the next value for
iis propagated to the next loop scope. Note that in general
Truffle loop explosion is not guaranteed to terminate, API
mis-use can cause non-constant PE primitives. To circum-
vent this, we check before the next loop explosion iteration if
the current iteration count has reached a defined maximum,
and bailout from PE if necessary.

class LoopScope {
/* generate flags, node & anchor fields =*/

LoopScope2 initialL2;

/* exit paths *x/
List <Node> exitPathsN12;
10 List <Node> exitPathsN17;

1
2
3
4
5 /* initial L2 scope *x/
6
7
8
9

12 /* proxy values */
13 List <Node> var5Values;
14}

15 class LoopScope2 {
16 /* generate flags, node & anchor fields */

17

18

19 /% iteration count x/

20 int iteration;

21

22 /* next loop iteration scope */
23 LoopScope2 nextlteration;

24}

25 void decode(GraphBuilder b, MethodScope m) {
26 LoopScopel 1 = new LoopScope();

27 l.anchorB0 = b.current();

28 genBO(b, m, 1);

29 LoopScope2 12 = 1.initialL2;

30 while (12 != null) {

31 if (l2.iteration > MAX_ITERATION) bailout();
32 if (12.genB1) genB1(b, m, 1, 12);

33 if (12.genB2) genB2(b, m, 1, 12);

34 if (12.genB5) genB5(b, m, 1, 12);

35 12 = 12 . nextlteration;

36

37 if (1.genB3) genB3(b, m, 1);

38 if (1.genB4) genB4(b, m, 1);

39}

40 void genBO(GraphBuilder b, MethodScope m, LoopScope 1) {
41 b.continueWith(1.n0);

42 I.initialL2 = new LoopScope2();

43 l.initialL2.n2 = b.current();

44 l.initialL2.v1l = ConstantNode.of(0);

45 I.initialL2.v0 = AddNode.tryFold (b, ConstantNode.of(1),
12.v1);

46 l.initialL2.genB1 = true;

47 '}

48 void genB1(GraphBuilder b, MethodScope m, LoopScope 1,
LoopScope2 12) {

49 // see unoptimized listing

50 }

51 Node hybridPE(String name, ValueNode[] args){

52 if (hasCompGenCompiler (name, args [0]) {

53 return compileCompGen (name, args) ;

54}
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55 return FIPE.partialEval (name, args);

56}

57 void genB2(GraphBuilder b, MethodScope m, LoopScope 1,
LoopScope2 12) {

58 b.continueWith (12 .anchorB2);

59 12.n6 =
ConstantFoldUtil.readConstantField ( "ANode#children ",
m.args[0]);

60 if (12.n6 == null) 12.n6 = b.append(new

LoadFieldNode ( "ANode#children ", m.args [0]));

61 12.n7 = ArrayAccessNode.tryFold(b, 12.n6, 12.v1 /x value
for variable i x/);

62 12.n8 = hybridPE("execute”, new ValueNode[] { 12.n7,
m.args[1] /* a ValueNode for the VirtualFrame object
*/ )

63 12.v4 = GreaterThanNode.tryFold(b, 12.n8, 1.c10 /x const
int node */);

64 12 .anchorB2 = b.current();

65

66 if (12.v4.isTautology()) {

67 1.exitPathsN12.add(12.anchorB2);

68 1.v5Values.add(12.n8);

69 1.generateB4 = true;

70 } else if (l2.v4.isContradiction()) {

71 12 .anchorB5 = 12.anchorB2;

72 12 . generateB5 = true;

73 } else {

74 12.n10 = b.append(new IfNode(12.v4, new BeginNode(), new
BeginNode ()));

75 1.exitPathsN12.add(12.n10.trueSuccessor);

76 1.v5Values.add(12.n8);

77 12 .anchorB5 = 12.n10. falseSuccessor;

78 l.generateB4 = true;

79 12 . generateB5 = true;

80}

81 }

82 void genB5(GraphBuilder b, MethodScope m, LoopScope 1,
LoopScope2 12) {

83 b.continueWith (12 .anchorB5);

84 12 .nextlteration = new LoopScope2();

85 12 . nextlteration.iteration = 12.iteration + 1;

86 12 . nextlteration.genBl = true;

87 12 . nextlteration.anchorBl = 12.anchorB5; /* propagate
anchor */

88 12 . nextlteration.vl = 12.v0; /x propagate i *x/
89}

Listing 8. Generated CompGen Hybrid Compiler - with PE
optimizations.

4 FEvaluation

We evaluated our CompGen approach on top of the GraalVM
by running and analyzing a industry-standard benchmark
suite by using GraalJS, a high-performance JavaScript imple-
mentation based on Truffle.

4.1 Hypothesis

We want to show that the CompGen approach allows a run-
time system performing partial evaluation to significantly
reduce compilation time at a medium static code size increase.
We tested this hypothesis by running a set of industry stan-
dard benchmarks in a JavaScript runtime and replaced thed
partial evaluation algorithm with parts of our generated
compilers.

Benchmarks We used the JavaScript Octane [6]. JavaScript
Octane is a widely used JavaScript benchmark suite contain-
ing workloads ranging from 500 LOC to 300 000 LOC. Which
is a good proxy for non-trivial JavaScript applications. The
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Figure 5. Octane Benchmarks Performance.

suite addresses JIT compilation, garbage collection, code
loading and parsing of the executing JS VM. We measured
Octane performance using Graal JS [28], the JavaScript im-
plementation on top of Truffle, which is competitive in per-
formance to Google’s V8 [9]. Graal JS is on average 17%
slower compared to the V8 JavaScript VM [34].

Environment All benchmarks were executed on a mobile
dell workstation, equipped with an Intel 17-6820HQ cpu run-
ning at a clock speed of 2.7GHZ. The cpu features 4 hardware
cores, hyperthreading was enabled and CPU throttling was
disabled. The entire machine is equipped with 32 GB DDR-4
memory (running at 2133 MHz). GraalJS on GraalVM CE
performs compilation in background threads concurrently
to the interpreter executing the program.

Metrics For each benchmark we measured three distinct
metrics:

e Partial Evaluation Time: We measured partial eval-
uation time of Graal when compiling the individual
JS functions. PE time in Graal is the time needed to
start partial evaluation on the function AST root node
until the set of compilation final methods are inlined
an simplified. To ensure stability of these benchmarks
we ported them into a jmh [22] harness and extracted
partial evaluation operations per second.

10

e Runtime Performance: In order to ensure that our
generated compilers create the same IR as the regular
(F1 based) partial evaluator, we measured runtime per-
formance of regular benchmark executions with the
different F2 configurations.

e Bytecode Size Increase: Generating compiler code
increases the static bytecode footprint of the entire
application. We measured bytecode size after source
code generation and compilation with javac.

(Hybrid) CompGen Configurations For evaluating the
performance of different hybrid (see Section 3) configura-
tions we took the number of maximum runtime compiled
methods from Graal]S 7 and derived buckets of the hottest
n AST interpreter methods during partial evaluation when
executing the Octane benchmark suite. For this we once ran
the entire Octane suite, for each partial evaluation counted
which AST node methods have been partially evaluated and
sorted them by highest (hottest) to lowest. Then we took the
n first methods of the resulting profiles resulting in several
buckets where CompGen — 0 is pure F1 PE.

"https://github.com/oracle/graaljs/blob/master/graal-js/mx.graal-
js/native-image.properties
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4.2 Synthesis

The results of our experiments can be seen in Figure 5 and
Table 1. We report static bytecode size of the CompGen
generated compilers as well as partial evaluation time for
each hybrid configuration and the runtime performance of
the generated machine code. The octane benchmarks report
a throughput value upon execution end. Generally we are
interested in a hybrid configuration that improves PE perfor-
mance significantly without sacrificing too much code size.
Generating CompGen compilers for all 1000 js runtime com-
pilable methods results in more than 40MB of bytecode size
inrease. However, the "profiled" hot hybid configurations we
tested with bucket sizes of 50-2500 already outperform the
baseline F1 based PE significantly.

Not that the size ranges from 0 to 12MB while we have
not yet optimized code size of the generated code, bytecode
minification however may be still able to significantly reduce
this.

The most notable hybrid configuration appears to be the
CompGen — 750 which generates compilers for the hottest
750 Graal]S AST interpreter methods (out of 10 000). It out-
performs F1 PE at every single benchmark in compilation
time while never creating a worse peak performance result
than CompGen-0 (F1). This configuration comes at a moder-
ate bytecode size of 3.1 MB which is acceptable for up to 2x
of average PE time improvements.

Note that in the peak performance numbers in Figure 5
different CompGen configurations sometimes cause peak
improvements or regressions, this is due to the fact that
compilation heuristics in the Graal compiler, which is run
after PE, can make different decisions based on the time of
compilation, i.e., earlier or later compilation can impact per-
formance. While those are interesting findings, we consider
them out of scope of our contribution of improving PE time.

Configuration | Bytecode Size (B)

CompGen-0 0

CompGen-50 109937
CompGen-100 282670
CompGen-250 802705
CompGen-500 1884316
CompGen-750 3116428
CompGen-1000 4143801
CompGen-1500 6601132
CompGen-2000 9196842
CompGen-2500 12061368

Table 1. CompGen Configuration Bytecode Size

5 Related Work

In this section we compare our CompGen compiler gener-
ation system to several other approaches in the domain of
PE [8] and code generation.
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Partial Evaluation In 1952 Kleene [14] proved via the
smn-theorem the mathematical foundation and feasibility
of partial evaluation. In 1964 the term "partial evaluation"
was probably first used in the context of incomplete Lisp
data structures [18]. Futamura [7] was 1971 one of the first
to consider self-applying partial evaluation to generate com-
pilers. Beckman et al. [1] proposed 1975 a partial evaluator
for a subset of Lisp, which probably was the first descrip-
tion of a using partial evaluation on a partial evaluator itself
(Second futamura projection) to perform compiler genera-
tion. Work by Jones et al. [13] followed that proposed the
first self-applicable partial evaluator for a subset of Lisp.
This approach was the first to generate small compilers and
compiler generators. In the next two decades many partial
evaluators have been developed for variaous languages like
C, Lisp, Scheme, Prolog etc. [12]. However, all of the above
approaches including a full self application according to Fu-
matura (F2) suffer from the same short comings:

o Self Application: If the approaches support F1 they
typically lack support for F2

e Polyglot PE: They do not support multiple program-
ming languages.

e Compilation Time: Compilation time is exhaustive.

e Code Size: The generated code for a self applicable
approach explodes as inlining boundaries are missing

Partial Evaluation in Truffle The foundation for our
work was done by Wiirthinger et al. [29] why they first
proposed the Truffle framework. Later they presented, after
many years of polyglot F1 based language implementation
an approach for practical F1 Wiirthinger et al. [28].

Today our approach can be most notably compared to
other virtual machines that employ any form of automated
code generation most and for all our main competitor is
GraalVMs default partial evaluator Wiirthinger et al. [28]
that is based on the first futamura projection. In the other
sections of the paper we outlined how our CompGen ap-
proach can, for the cost of AOT cmopilation time and code
size, outperform regular partial evaluation by up to 3x. Given
that there is no F2 based or automated compiler generation
approach for polyglot VMs we cannot compare our compiler
generation approach directly to other approaches. However,
we can compare to other approaches that generate compiled
machine code from interpeters like: meta-tracing employed
by the PyPy Bolz et al. [3, 4], Bolz and Rigo [5, 5]. Meta-
tracing Marr and Ducasse [19] functions at runtime and
observes interpreter execution traces to derived compiled
code. Tracing compilation without runtime feedback is im-
possible. Our ComGen approach can create compilers for
arbitrary Java code (Graal IR graphs) and thus does not need
any dynamic data to speed up the compilation process. Trac-
ing compilation would need to create traces during execution
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as templates for AOT compiler generation. At runtime a par-
ticular trace can be matched against a trace and if they are
the same the compiler could be applied.

Source Code Generation Finally, we want to relate to the
domain of source code generation. CompGen generates com-
piler source code for language AST nodes so there is a large
domain of related work in the domain of code generation.
Especially parser generators Johnson and Sethi [11] are most
notably here: a prominent parser generator is ANTLR Parr
and Fisher [25], Parr and Quong [26] that also generates Java
source code. CocoR Mdossenbock et al. [20] is a recursive de-
scendant LL(1) parser generator for Java.

Transpilers and Source-to-Source Compilers Transpila-
tion, i.e., the process of transforming one source language to
another is also challenged with the task of source code gen-
eration. The most used transpiler for C++ to Javascript em-
scripten Zakai [30] also faces similar problems as CompGen:
irreducible control flow as well as unstructured ones pose
challenges on the code generation algorithm. Emscripten
solves this by the relooper algorithm and recently added sup-
port for the stackifier. However, for CompGen the challenge
for unstructured Graal IR is less critical given that we can
create one method per basic block and thus can have early
returns/exits.

Graal aotjs [15, 16] is a Java bytecode to JavaScript tran-
spiler that uses a different control flow reconstruction algo-
rithm than emscripten. Conceptually CompGen could re-use
AOT]S source code generation logic but create AST nodes
instead, however aotjs was optimized for efficient source
code and thus contains hard-coded code generation patterns
we could not re-use.

6 Conclusion

In this paper we presented CompGen, a practical second Fu-
tamura projection based compiler generator for fast partial
evaluation of guest language interpreters. We proposed a
novel algorithm to generate compilers for guest language
ASTs allowing the usage of F1 compiler intrinsics to generate
fast automatic compilers for guest languages. CompGen is
a versatile approach allowing debuggability of the gener-
ated code as well as an integration with existing PE based
compilation systems.

We implemented our CompGen approach in the GraalVM
and showed that the approach can increase partial evaluation
time by up to 3x at moderate static bytecode size increases
of up to 3MB.
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