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ABSTRACT
This paper presents a new Disaster Recovery (DR) system, called
Slogger, that differs from prior works in two principle ways: (i)
Slogger enables DR for a linearizable distributed data store, and
(ii) Slogger adopts the continuous backup approach that strives to
maintain a tiny lag on the backup site relative to the primary site,
thereby restricting the data loss window, due to disasters, to mil-
liseconds. These goals pose a significant set of challenges related
to consistency of the backup site’s state, failures, and scalability.
Slogger employs a combination of asynchronous log replication,
intra-data center synchronized clocks, pipelining, batching, and a
novel watermark service to address these challenges. Furthermore,
Slogger is designed to be deployable as an “add-on” module in an
existing distributed data store with few modifications to the origi-
nal code base. Our evaluation, conducted on Slogger extensions to
a 32-sharded version of LogCabin, an open source key-value store,
shows that Slogger maintains a very small data loss window of
14.2 milliseconds which is near the optimal value in our evalua-
tion setup. Moreover, Slogger reduces the length of the data loss
window by 50% compared to incremental snapshotting technique
without having any performance penalty on the primary data store.
Furthermore, our experiments demonstrate that Slogger achieves
our other goals of scalability, fault tolerance, and efficient failover
to the backup data store when a disaster is declared at the primary
data store.
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1. INTRODUCTION
The importance of distributed systems has dramatically grown

in the cloud era. They provide the highly desirable scale-out and
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Figure 1: Local vs. Geo replication performance (throughput vs.
latency) of LogCabin under 100% writes load, varying number of
concurrent clients (numbers on the curves). Full details of the setup
are provided in §7.

fault tolerance capabilities that are central to distributed infrastruc-
tures and services hosted by cloud vendors. This paper focuses
on disaster recovery (DR), a critical feature required in production
distributed systems, long before the cloud era, and certainly since
it started. DR enables tolerance of data center wide outages, where
the original data center is rendered inoperable for extended peri-
ods. DR of a distributed data store (databases, key-value stores,
file storage, etc.) is enabled by creating an additional copy of the
data store at a remote backup site (data center) while the primary
site’s data store is online [30]. The backup copy, which typically
lags behind the primary data store, serves as the new basis of the
data store to create and/or start a new primary data store. The latest
data updates at the old primary data store may be lost during dis-
asters. Nonetheless, concerns about data loss due to disasters have
forced key DR design decisions in production data center infras-
tructures and distributed data stores [2, 8, 45, 46].

Traditional means of DR is through snapshots [18,20,33,40,48]
– a data store snapshot is asynchronously created and replicated to
the backup site. While a sufficient solution for many use cases,
the key limitation of this approach is a potentially large window of
data loss (seconds, minutes, hours/days) between the time the last
snapshot was replicated, and the time the disaster occurred.

An alternate approach is to build synchronous geo-replicated
data stores [5, 8, 46], which can trivially tolerate data center wide
failures. The key benefit of geo-replicated data stores is that zero
data loss is guaranteed even in the presence of data center wide
outages. However, synchronous replication across data centers has
a significant performance cost in the data store’s critical path [17].
Our experiments on LogCabin [37], a highly available Key-Value
(K-V) store that uses the Raft consensus protocol [38] for repli-
cation, compared performance between synchronous 3-way intra
and inter data center replication. Figure 1 shows the experiment’s
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results. We found that the inter data center replicated LogCabin
cluster performs over an order of magnitude worse than the intra
data center cluster. The performance degradation simply reflects
the effects of geographic distance between machines interacting in
the replication protocol.

Clearly, intra data center replication is highly attractive from a
performance perspective. Disasters are naturally relevant to dis-
tributed data stores constrained within a single geographic location
(e.g. a single data center). As a result, our work’s scope is re-
stricted to such systems. The first question we want to answer is
whether one can engineer a DR scheme that asynchronously repli-
cates updates to a backup site with a near zero lag – in the event
of a disaster at the primary site, the DR scheme may lose updates
accepted at the primary site from just the last few milliseconds.

Another class of solutions to DR that form a reasonable start-
ing point for our work fall under a category we call continuous
backups. In these solutions, the primary data store is continu-
ously, asynchronously, and incrementally replicated to the backup
site [11, 21, 22, 30]. Unfortunately, none of these solutions work
correctly for linearizable [16] distributed data stores1. In particu-
lar, we show that the order in which updates are backed up, using
prior techniques, may lead to an update order at the backup site
that is inconsistent with the update order observed at the primary
site (§3).

In recent times, a growing number of commercially successful
data stores that support linearizability, exclusively or optionally,
have emerged [1,3,5,8,23,41]. The DR problem we discuss here is
relevant to intra data center deployments of these systems. Thus the
real question we want to address is, can a near-zero lag DR scheme
be designed for linearizable distributed data stores? To that end,
we propose a solution based on timestamps generated by a syn-
chronized distributed clocks (§4). Furthermore, from a pragmatic
view, can the solution be easily pluggable into existing distributed
data stores, where the changes needed in the original data store are
few and non-invasive?

We introduce Slogger, a new DR framework, to address
the above questions (§5). Slogger plugs into any linearizable
(even non-linearizable) distributed data store that uses write-ahead
logs [32] to apply changes to its state. Slogger asynchronously
replicates and applies the logs to a designated backup site. It
preserves linearizability by tracking temporal order between log
records using synchronized distributed clocks [8, 14, 28, 29, 31].
Specifically, Slogger assumes that the data store can tag each log
record with a timestamp derived from the distributed clock that is
synchronized across nodes in a data center. This timestamp is used
to identify a partial order between updates. Log records are applied
to the backup site in tagged timestamp order. To make our solution
work in practice, we needed to employ several techniques such as
concurrency, pipelining, and batching; we also employed a coarse-
grain synchronization technique based on a novel watermark ser-
vice on the backup site. All backup work happens continuously in
the background and off the primary data store’s critical path.

Slogger is the first backup system that guarantees prefix lineariz-
ability [49]: The backup system stores updates in the same lin-
earizable order as observed by the primary data center as long as
the latter is operational. If the primary data center fails, the sys-
tem guarantees backup of a prefix of the linearization order of up-
dates that happened at the primary data center. Prefix linearizabil-
ity, which may lead to some data loss during a disaster, is far more
preferable to inconsistencies in the backup site after a disaster at

1Linearizability is also referred to as external consistency in some
works [8].
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Figure 2: Example data store with 3 shards, each 3-way replicated.
The inner workings of our backup system are described in §5.
the primary site, particularly for mission critical applications such
as databases [4, 11, 35, 44] and enterprise storage systems [36].

We present extensive empirical evaluation (§7) of Slogger ex-
tensions to a 32-way sharded version of LogCabin, a highly avail-
able open source key-value store. Our experiments show that the
data loss window stays surprisingly low (as low as 14.2 millisec-
onds in our experiments) even though the backup happens asyn-
shronously in the background. This low data loss window comes at
virtually no performance penalty on LogCabin. Furthermore, our
experiments demonstrate that Slogger achieves our other goals of
scalability, fault tolerance, and efficient failover to the backup data
store when a disaster is declared at the primary data store.

2. DATA STORE ARCHITECTURE
The Primary Data Store. Slogger makes critical assumptions
about some properties of the distributed data store’s design. We be-
lieve these properties are commonly supported by most data stores
that provide high-availability guarantees using synchronous repli-
cation [2, 8, 23, 45, 46].

The data store is logically partitioned into a multitude of non-
overlapping shards. Multiple shards can co-habit the same physical
machine. Each shard is synchronously replicated for high availabil-
ity. We assume a shard’s replica set contains a collection of copies
of the shard, termed replicas, hosted on different machines. A
replica set typically contains a single leader replica that processes
all the updates directed to the shard and propagates them to the rest
of the replicas, called followers, in its replica set. Leaders can be
chosen statically or dynamically using a leader election algorithm.
The replication scheme itself may have a simple primary-secondary
form [12,19], or may rely on a more sophisticated consensus proto-
col such as Paxos [15,26] or Raft [38]. Figure 2 depicts an example
setup.

We assume that all updates to a shard are first appended to a local
write-ahead log containing logical update records. The leader per-
forms replication by sending log records to its followers. Replica-
tion is synchronous. After replication completes, the updates may
propagate to the shard’s state machine layer [43]. We further as-
sume that the data store contains the mechanics to instantiate a new
follower copy of a shard from its existing replica set. The data store
can tolerate transient network problems such as unreliable delivery,
local outages, asynchrony, etc. Finally, we assume a fail-stop fail-
ure model for machines used by the data store, in which machines
may stop working, but will never send erroneous messages.
The Backup Site. We assume the backup and primary sites have
similar infrastructures. The backup site will host a logical mirror
copy of the primary site. This means the backup site will have log-
ically identical shards, and use identical algorithms and schemes to
control data it receives from the primary site, e.g., same replication,
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Figure 3: Two scenarios that can lead to observed inconsisten-
cies between primary and backup data stores: (a) Order implied
by causally related non-overlapping writes to distinct shards. (b)
Order implied by visibility of concurrent non-overlapping writes.
leader election, failure detection, etc. algorithms. However, the
backup site will likely have a different physical structure, e.g., rel-
ative locations (host machines) of replicas, replication factor, and
network topology will likely be different.

We assume that the network between the primary and backup
sites is unreliable and asynchronous, as there are no guarantees that
packets will be received in a timely manner or even delivered at
all, and there is no limit on the time a machine takes to process a
packet. Like the primary machines, the backup machines also have
a fail-stop failure model.
Disasters. We assume a disaster is declared manually by the data
center administrator, during an outage. The backup site will be
informed about the disaster by an out-of-band mechanism that will
trigger fail-over steps.

3. THE WRITE ORDERING PROBLEM
Our starting point is the aforementioned asynchronous log record

shipping technique for backing up a distributed data store [11, 21,
22, 30]. That technique enforces ordering between writes (log ap-
pends) on different shards by tracking explicit data dependencies
between them. For instance, King et al. [21,22] propose to track the
order between log records of distributed transactions by tracking
their write-write and write-read ordering dependencies, determined
via overlapping read and write sets of transactions using Lamport
clock style distributed counters [25]. The dependencies are used to
apply transactions in the correct order at the backup site.

While the above dependency tracking may be sufficient for seri-
alizable updates, it is insufficient for linearizable updates. The nub
of the problem is that ordering dependencies may not necessarily
be implied by writes and reads; they may be enforced by logic of
the application that uses the data store. Consider an application A
that uses a data store D. A issues a write to object OS1 that resides
in shard S1. After the write completes, A issues a write to object
OS2 that resides in another shard S2. Thus, A has enforced an exter-
nally visible happens-before relation between the two writes. This
relation is enforced by a linearizable data store since linearizability
guarantees that an operation takes effect in real-time between its
invocation and response [16].

Now consider the problem of backing up the two writes. The
above happens-before relation must be preserved by the backup
system. It however cannot be captured by simply tracking over-
lapping reads and writes, since there are no overlaps in the exam-
ple. The order is enforced by A’s program logic, which is opaque
to D. Thus the backup site cannot correctly determine the order in
which writes to OS1 and OS2 must be applied. In general the two
writes may be causally ordered in arbitrarily complex ways that

involve multiple threads of execution within A, and even multiple
applications that communicate with each other via an out-of-band
communication channel.

Interestingly, ordered reads can also enforce an order between
concurrent writes. Consider two threads of execution in applica-
tion A. Now consider a scenario where one thread writes to OS1
and the other thread concurrently writes to OS2. Since the writes
are concurrent, no specific order is imposed on them. However,
if a third thread of execution happens to read the two objects in a
specific order, say OS1 followed by OS2, the reads may imply an
order in which the two writes need to be backed up. For instance,
if the read of OS1 returns its new value, whereas the read of OS2 re-
turns its old value, backing up the two writes in the opposite order
– OS2 followed by OS1 – may lead to an inconsistent view in the
backup site if the primary site fails between the two backups. This
visibility-based order must be correctly preserved in the backup.

One can consider another solution that forces the application to
explicitly track ordering dependencies, and communicate them to
the data store. This however entails a prohibitively intrusive change
in the application, since the dependency tracking may be hard, even
infeasible, in sufficiently complex applications.

Figure 3 depicts both of our problem scenarios. Both the sce-
narios above created a specific order between writes to OS1 and
OS2. The first is a causal dependency explicitly enforced through
program logic, whereas the second is implicit through visibility of
the updates. In both these scenarios, the backup system needs to
preserve a happens-before relation between the writes that was es-
tablished at the primary site. But how do we do it?

4. A TIMESTAMP BASED SOLUTION
Recall our assumption from §2 that all writes, data as well as

metadata, in the data store are applied through write-ahead logs.
We expect that in most cases the data store will contain a unique
log per shard. Thus, in this model, the writes discussed in §3 are
first appended to the leader log and then to the follower logs. These
appended writes can be shipped to the backup asynchronously.

We observe that, at the backup, out-of-order reception of log
records for different shards is acceptable. It is the order in which
the log records are applied to the backup shard that is crucial to
preserve correct happens-before relation between data store writes.
For instance, in the examples shown in Figure 3, even if the backup
receives the write to OS2 before it receives the write to OS1, it must
guarantee that if OS2’s write is applied to the backup data store,
OS1’s write must also be available for application at the backup
data store. This requirement permits a relaxation in that OS2’s write
can be applied to the backup data store before OS1’s write is applied
to the backup data store. We assume that no application directly
reads from the backup data store, so ordering application of OS2
before OS1 is permitted.

A log record’s write can be applied to the backup data store only
after all log records’ writes it causally depends on have at least
been received at the backup in a reliable (replicated, if necessary)
way. This causal dependency cannot always be determined by just
observing the log records from the different logs, particularly in the
problematic cases described earlier (§3). However, the happens-
before links between log records can be indirectly embodied by
monotonically increasing timestamps.

Timestamps tagged on log records can help establish a happens-
before relation between log records generated in different logs. If
two writes are causally dependent, they will be tagged with differ-
ent timestamps correctly embodying the order of the writes. This
is a conservative approach since it creates unnecessary happens-
before relations between writes that are not causally related – ab-
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sent additional dependency information, any writes that happened
at time T are assumed to be causally dependent on all writes that
happened at all shards at time T −K, for any integer K > 0. How-
ever, so far it seems to be the only viable approach given that or-
dering relations established through application logic, or through
visibility of updates, are opaque to the data store (e.g., inspecting
just the log records on different logs does not reveal such ordering
relations). Furthermore, there are interesting optimizations, such as
pipelining, batching, and some key design decisions made in Slog-
ger that significantly mitigate performance overheads due to this
superfluous order enforced between unrelated log records. How-
ever, the fundamental question remains: how do we enable syn-
chronized timestamps in an asynchronous distributed infrastruc-
ture?

High Accuracy Distributed Clocks. Synchronizing clocks between
network-connected nodes is an old problem. The Network Time
Protocol (NTP) [31] is a standardized distributed clock protocol
used most widely in the industry for several decades. NTP achieves
accuracy (maximum deviation from the time, also called clock
drift) within 10s of microseconds to 10s of milliseconds [14] based
on the network topology and data center size. Events occurring at a
coarser granularity can be tagged with NTP timestamps to establish
a happens-before relation in terms of global time.

Existing scalable distributed systems such as Google’s Spanner
database [8] use a combination of atomic clock appliances and GPS
devices to determine the clock drift, perceived by all the clock ap-
pliances and GPSes. This clock drift is embodied by a time interval
abstraction called TrueTime. Spanner’s transaction commit proto-
col is managed to ensure that a transaction’s beginning and end do
not fall in even partially overlapping TrueTime (time ranges). This
guarantee is used to establish a linearizable order of Spanner trans-
actions. Spanner’s TrueTime range was reported to be in the order
of single digit milliseconds [8]. This clock accuracy however spans
the multi-data center, geo-replicated system. We require clock syn-
chronization within a data center where the data store is hosted;
the backup site’s clock does not need to be synchronized with the
primary site’s clock.

Orthogonal to the Spanner work, the Precision Time Protocol
(PTP) [28], which was standardized about a decade earlier, uses
dedicated hardware resources on network routers, switches, and
end points to achieve much higher accuracy, in the order of sub-
microsecond ranges [29, 34, 47], within a data center. More recent
work [14, 29] has proposed schemes that achieve even greater ac-
curacy, close to single or double digit nanoseconds.

Using Synchronized Clocks. Slogger requires clock synchroniza-
tion between shard leaders at the primary data center only. No clock
synchronization is required across data centers. We assume that the
data center used to host our Slogger-augmented distributed data
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Figure 5: Write-ahead log and PSA state of a shard’s replica in the
data store. Slogger related changes in the log implementation in
bold font (all PSA state variables are in bold font).

store has PTP or other more recent clock synchronization infras-
tructure. This delivers in the order of sub-microsecond scale clock
drifts.

We also assume that replication of log appends is comparatively
a much coarser operation, taking tens to hundreds of microseconds,
or even milliseconds. Thus causally dependent updates of OS1 and
OS2, as depicted in Figure 3 (a), will be separated by timestamps
that are consistent with the order of the updates.

Note that if a log record is timestamped at the beginning of its ap-
pend operation, the ordering indirectly created by concurrent reads,
as depicted in Figure 3 (b), is correctly embodied by the times-
tamps. This is because the append itself is expected to take an
interval that is much greater than the clock’s drift due to the much
coarser replication latency. As a result, the read of OS1 will happen
at a time strictly greater than the write’s timestamp by more that the
clock drift window. Furthermore, the read of OS2 happens after the
read of OS1. Even if the two reads happen quickly, within the clock
accuracy window, if the read of OS2 returns its old value, it is guar-
anteed that the write of OS2 will have a timestamp that is greater
than the timestamp of OS1’s write: We assume that the data store’s
implementation guarantees that if the write of OS2 had a timestamp
less than the time at which its read happened, the read would be or-
dered after the write in shard S2, and thus return its new value. This
can be easily enforced by introducing synchronization between the
competing read and write of OS2.

If the PTP demon returns a synchronization error indicating that
the local clock could be out of sync, that shard will stop accepting
new updates. If the PTP implementation on a shard leader fails in a
byzantine way (i.e., returns random time), Slogger may not be able
to guarantee linearizability among operations that touch a set of
shards that includes the faulty shard. This failure semantics is sim-
ilar to the semantics of modern systems that rely on synchronized
clocks [8].

5. THE SLOGGER ARCHITECTURE
Synchronized timestamps are foundational to Slogger’s func-

tioning. However, there are several other key components of Slog-
ger that need to be architected carefully to deliver efficient and
scalable DR. In particular, we would like to answer the following
questions: How does Slogger ensure that the backing up process
does not affect performance of the primary data store? How does
Slogger absorb and apply a large number of logs from the primary
to the backup site correctly and in a scalable way? How does Slog-
ger tolerate local faults in the primary site as well as the backup
site? How does Slogger bootstrap a new backup data store from
an existing data store? How does failover work in Slogger when
a disaster occurs at the primary site? Does integration of Slogger
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in an existing distributed store entail significant changes to the data
store’s architecture and implementation? This section addresses all
these questions in detail.

Figure 4 depicts the high level architecture of Slogger. It
contains three principal components: (i) Primary Slogger Agent
(PSA), (ii) Backup Slogger Agent (BSA), and (iii) Watermark Ser-
vice. A PSA is embedded in each replica of every shard in the
data store on the primary site. PSA of a shard’s leader node asyn-
chronously sends newly committed log records to the correspond-
ing backup shard leader’s BSA (each backup replica has a BSA).
For scalability on the backup site, each shard’s log grows indepen-
dently of other shards’ logs. As a result, an out-of-band mechanism
is needed to construct the most recent consistent state of the backup
data store. The mechanism must ensure that the backup site con-
structs a version of the data store that is consistent with the current
(or a prior) version of the primary data store. Slogger uses the
watermark service to that end. Slogger also requires a few minor
modifications to the data store’s write-ahead log.

5.1 The Write-Ahead Log
Slogger’s functionality relies on existance of a write-ahead log

in the data store it augments. We assume commonly found at-
tributes in this log: The log is finite sized and circular. Appends
happen at the tail end of the log, marked by a tail index that is ad-
vanced by an append. The head end is marked by a head index. It
is advanced (also called log trimming in the literature [32,42]) after
a collection of log records at the head end are applied to the shard’s
state machine. The log also contains a commit index marking the
index up to which log records have been replicated to a threshold
number of replicas on the primary site (e.g. a majority of the repli-
cas in a consensus based replication scheme). In addition, the log
contains an applied index marking the log index up to which log
records have been applied to the shard’s state machine.

Figure 5 depicts a data store’s write-ahead log and the relevant
changes needed to support Slogger. For Slogger, we need to add a
new index to the log called b-commit, which represents the index
up to which the backup shard has received and committed (repli-
cated) the log. b-commit is never greater than commit, and is
never less than head. The difference between b-commit and com-
mit essentially represents the lag in the backup shard in comparison
with the primary shard. There is no correlation between b-commit
and applied other than both have to be between head and com-
mit. However, they do have an effect on the log trimming task in
that head can be advanced to the smallest of b-commit and ap-
plied. In Figure 5, since b-commit lags behind applied, a log trim
operation can advance head only up to b-commit (shown by the
dashed arrow). Since its value can be reconstructed by consulting
the backup shard, b-commit does not need to be a part of the per-
sistent metadata of the log at the primary site.

Slogger augments each log record with a timestamp field that
contains the time returned by the synchronized clock at the begin-
ning of the corresponding log append. Slogger needs each log
record’s index embedded in the log record itself. This p-log-indx
index is used by the backup shard to pass on to the primary shard
the log index of the latest log record that the backup shard has ap-
pended to its log. Since the backup data store is not necessarily a
physical mirror of the primary data store (e.g. replication factors
may be different on both sites), the configuration updates at the
backup shard may be different from the configuration updates in
the primary shard. As a result, the p-log-indx of a log record may
be different from its index in the corresponding backup shard’s log.
For instance, a log record appended at the primary shard’s log may
have an index of 10, which would become that log record’s p-log-
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indx. However the corresponding backup shard’s log may append
that same log record at index 8. The backup shard can use that log
record’s p-log-indx (10) to inform the primary shard that it has re-
ceived log records up to index 10. The primary shard then knows
that it needs to back up log records from index 11.

5.2 Primary Slogger Agent (PSA)
A PSA is hosted in each replica of each primary shard. It is

an independent thread of execution that continuously monitors the
shard’s log and forwards any newly committed log records to the
backup site. At any given time, only the primary shard’s leader’s
PSA (henceforth, just PSA for brevity) is actively engaged in repli-
cation to the backup site.

PSA sends log records to the backup site in the order they were
appended at the primary shard’s log. It needs to track the latest log
record that was successfully received (but not necessarily commit-
ted) at the backup site. It does so with the sent-acked index – after
replicating a log record, the backup shard sends back an acknowl-
edgment (ack) back to the primary leader’s PSA, which the latter
uses to update sent-acked.

We add another field to PSA’s metadata, the sent-spec index,
which indicates the log index up to which log records have been
sent to the backup site. This index enables PSA to send additional
(committed) log records while acks for previously sent log records
are pending. It is advanced by PSA immediately after new log
records are sent to the backup site. The number of pending acks
can be capped by a configurable threshold after which PSA blocks,
waiting for those acks. Log records are resent if their acks are not
received in a preconfigured timeout interval. sent-spec always
trails the log’s commit, and is in turn trailed by sent-acked. sent-
spec and sent-acked become equal when PSA receives acks for
all sent log records. Figure 5 depicts PSA’s sent-acked and sent-
spec pointing to different log records.

sent-acked is never behind the log’s b-commit. PSA also hosts
a local (cached) copy of the log’s b-commit for expedited lookup of
its value. Note that PSA’s state variables do not need to persist; they
can be reconstructed from the primary and backup shards’ states.

5.3 Backup Slogger Agent (BSA)
A BSA is hosted in each replica of each backup shard. Like the

PSA, the BSA is an independent thread of execution that performs
a sequence of operations that interact with the corresponding PSA,
the backup shard’s log, and the watermark service. Only the backup
shard’s leader’s BSA (henceforth, just BSA for brevity) performs
all these operations.

Figure 6 depicts BSA’s architectural details. BSA’s responsibil-
ities include receiving log records sent by PSA. Log records are
received in the order they were appended at the primary shard’s
log; log records received out-of-order are nacked. BSA sends the
received log records to its host replica – the append() call in Fig-
ure 6. It also stores p-log-indx for the last received log record in
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the local variable append-indx. While the host replica (leader of
the backup shard) replicates these log appends, BSA sends an ack
for those log records back to PSA. Both the ack/nack messages
contain the value of append-indx, which confirms BSA’s progress
with PSA. At PSA, the received append-indx value overwrites its
sent-acked.

Recall that only committed log records are sent by PSA to BSA.
We consider the backup shard’s log records committed only af-
ter they are successfully replicated to its replica set (based on the
replication criterion, e.g. majority, as dictated by the data store’s
implementation). The backup shard’s log maintains its own com-
mit that is independent of the primary shard’s log’s commit. The
backup shard’s commit is advanced as log records are successfully
replicated to the shard’s replicas. BSA monitors this commit and
copies the last committed log record’s p-log-indx into a local vari-
able called commit-indx. BSA adds the updated commit-indx in
the aforementioned ack/nack it sends back to PSA, which uses the
value to advance its b-commit.

Committed log records of the backup shard cannot be immedi-
ately applied to the shard’s state machine since simply applying
those log records can lead to inconsistencies in the backup site if
the primary happens to fail at an arbitrary time (§3). A committed
log record r becomes eligible for application only after all shards
on the backup site have committed all the log records with times-
tamps less than r’s timestamp. To accomplish that efficiently BSA
periodically performs two actions: (i) it queries the backup shard’s
log to determine timestamp of the latest committed log record, and
stores it in a local variable called lcommit-ts; and (ii) it thereafter
sends the lcommit-ts to the watermark service, which maintains a
repository of largest timestamps of committed log records observed
at each shard.

5.4 The Watermark Service
The watermark service determines what log records can be ap-

plied safely to the backup data store. Each BSA periodically sends
its lcommit-ts to the watermark service. The watermark service
maintains a vector of timestamps, called shard timestamp vector
(STV), each element of which represents the largest timestamp re-
ceived from each backup shard’s BSA. The minimum of these
timestamps, which we call the backup’s watermark, indicates the
time up to which all backup shards have committed log records.
After the watermark service receives lcommit-ts from a BSA, it
writes the received lcommit-ts to that backup shard’s slot in its
STV. It then computes a new minimum watermark available in
STV and sends it back to BSA. Figure 6 depicts the STV for N
shards, and shows receipt of a lcommit-ts in the STV slot labeled
ts2. The figure also shows computation of the new watermark us-
ing the MIN() function. The watermark service responds to BSA
with the newly computed watermark.

The new watermark received at BSA is used to update its wa-
termark, and is then forwarded, via the advance-apply-to() call
shown in Figure 6, to the shard to advance its log’s apply-to in-
dex. The backup shard updates apply-to based on the received
watermark. In the end, apply-to points to the shard’s latest com-
mitted log record that can be applied to the shard’s state machine.
Note that apply-to does not need to be a part of the persistent
metadata of the backup shard, and remains a simple counter in the
non-persistent DRAM-resident metadata of the backup shard’s log.
Each shard periodically exchanges timestamp messages with the
watermark service to stay up-to-date with the backup data store’s
progress.

Throughout its execution, the watermark service maintains the
invariant that its watermark is monotonically increasing. Note
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Figure 7: Detailed control flow of Slogger.
that the watermark service itself is an optimization to the more
straightforward solution where each BSA periodically broadcasts
its lcommit-ts values to all other BSAs on the backup data store.
In the end, the watermark’s ground truth, the lcommit-ts values in
log records of each shard’s log, remains persistently stored in shard
logs. Thus even if the watermark service fails, it can be easily reini-
tialized from all the backup shard logs’ lcommit-ts values.

5.5 Putting it all together
5.5.1 Replica Initialization

When a replica in a backup shard is created, it first performs
all the initialization work relevant to the data store’s implementa-
tion. It then launches its BSA. The launched BSA remains idle until
its host replica becomes the shard’s leader. When the BSA detects
that its host replica has become the leader, it performs the following
steps: First, it determines the shard’s lcommit-ts by reading the last
committed log record’s timestamp. Second, it establishes a con-
nection with the watermark service to determine the backup site’s
global watermark. Third, if it detects a change in the global wa-
termark, it advances the shard’s apply-to to inform the shard that
more log records may be applied to the its state machine. Finally,
the BSA listens for a request from the PSA in the corresponding
primary shard.

Similar to BSAs on the backup site, at the primary site, each
PSA is launched in its host replica and remains idle until it de-
tects that the host replica has become the leader of the primary
shard. A new leader’s PSA builds its state by querying the cor-
responding backup shard’s BSA. BSA responds with its append-
indx and commit-indx values to the newly identified PSA. If BSA
is not the backup leader, it responds with a NOT LEADER mes-
sage. PSA then queries all backup shard replicas to determine the
correct leader. The correct leader’s BSA responds with its append-
indx and commit-indx values. commit-indx serves as the initial
value of the primary shard’s b-commit, whereas append-indx is
used to initialize PSA’s sent-spec and sent-acked. Thereafter,
PSA can asynchronously start shipping its shard’s newly commit-
ted log records to BSA.

5.5.2 The Backup Process
Figure 7 shows the full flow for Slogger’s asynchronous backup

process for each update received at the primary shard’s leader. The
whole process takes 10 steps (labeled in the figure), some of which
happen concurrently.

1. The primary shard’s leader achieves consensus on its recently
received update request by replicating to a majority of its
followers, and advances its log’s commit. The leader times-
tamps the log record with the synchronized clock’s value as
a part of the append. Its PSA periodically checks commit
for changes and detects that a new log record is available for
asynchronous backup.
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2. PSA forwards the recently committed log record, in the form
of a BACKUP request, to its “peer” BSA (on the correspond-
ing backup shard’s leader). After sending the log record,
PSA advances its sent-spec.

3. On receiving PSA’s log record, BSA can send back one of
three responses: (i) A NOT LEADER message if its host
replica is not the backup shard’s leader. (ii) A nack indicat-
ing that the log record was received out-of-order. The nack
contains BSA’s append-indx, which indicates the last log
record it received in the correct order. PSA can use the re-
ceived append-indx to resend log records that were not re-
ceived by BSA in the correct order. (iii) An ack response
indicating to PSA that the log record will be appended at the
backup shard. Once PSA receives an ack it advances sent-
acked to the log record for which it just received the ack.
In both the nack and ack responses, BSA also embeds its
append-indx and commit-indx values to help PSA adjust
its sent-spec, sent-acked and b-commit indexes.

4. The newly received log record at BSA is then forwarded to
the host replica to append to its log. Note that at this stage
BSA assumes that its host replica is still the shard’s leader.
If that is not the case, BSA detects the change in the leader’s
state and goes back to a passive state where it no longer pro-
cesses log records received from its peer PSA.

5. The backup shard’s leader attempts to achieve consensus on
the newly appended log record, advancing its commit if it
succeeds. The details of this step are data store specific.

6. BSA periodically determines if new log records were com-
mitted at the backup shard. If so, it updates commit-indx,
which is forwarded to PSA in response to a subsequent log
append message it sends (see step 3). BSA also updates its
lcommit-ts with the last committed log record’s timestamp.

7. If lcommit-ts changed (increased), BSA sends its new value
to the watermark service.

8. On receiving a new lcommit-ts of a shard from its BSA, the
watermark service updates the shard’s slot in its STV with the
lcommit-ts, and then computes the new global watermark.

9. The watermark service responds to BSA with a new global
watermark.

10. On receiving the new watermark value from the watermark
service, BSA updates its local watermark and uses it to
update the replica’s apply-to to the latest log record with
timestamp less than or equal to the watermark. The replica
is then enabled to apply all its log records up to the updated
apply-to.

Note that the above described algorithm leads to an interesting
backup model: an ever-evolving prefix of the history of the data
store’s state. It does so by creating a consistent cut across all
shard logs, delineated by the monotonically increasing global wa-
termark’s value. In a sense, each advance in the global watermark
represents a consistent snapshot of the entire data store. However,
the snapshot’s lifetime exists only briefly until the global water-
mark advances to a higher value. This makes Slogger’s approach
quite distinct from traditional snapshot-based backups that identify
(and embody) the consistent state of the data store at a specific point
in time. In the traditional snapshot approach, a user can refer to the
specific snapshot generated in the past even though the primary data
store may have changed substantially since the snapshot was taken.
Slogger creates a continuously evolving backup, where retrieving
the state of the data store at a distinct point in the past is not pos-
sible. Nonetheless, Slogger achieves DR in its unique way. Prior
works supporting continuous backups like Slogger [11, 21, 22, 30]
do not use timestamps and watermarks to advance the backup data

store’s state evolution. Furthermore, they do not achieve DR for
linearizable distributed data stores.

5.5.3 Keeping up with the Primary
As stated earlier, in Slogger’s replication algorithm, all backup

shards indefinitely receive (and replicate) log records indepen-
dently of each other. However, backup shard logs are finite in size
and hence must be applied to shard state machines to make space
available for future log records.

As long as the watermark service keeps receiving monotonically
increasing lcommit-ts values from all shards in the backup site,
Slogger’s replication algorithm ensures that the global watermark
remains monotonically increasing, thus guaranteeing liveness. We
require a foundational assumption for liveness though – each pri-
mary shard keeps sending log records with monotonically increas-
ing timestamps at regular intervals. To that end, we require each
primary shard to generate log records at regular intervals, even
when the shard does not receive any update requests from the data
store’s client applications. This can be achieved by making the pri-
mary shard’s leader append NOP log records at regular intervals in
their logs. This capability is available in most, if not all, produc-
tion quality distributed data stores. Thus, even if a shard does not
receive update requests for prolonged intervals, it will keep produc-
ing timestamped NOP log records that help continuously increase
the global watermark, thus guaranteeing liveness.

For Slogger to work, the whole backup process must be able to
keep up with the primary site’s update rate. This implies that the
log at each primary shard has enough capacity to receive new log
records while older log records get replicated and applied to the
backup site.

Another crucial aspect of Slogger that helps the backup site keep
up with the primary is its ability to do batching at various stages in
the entire backup lifecycle: First, PSA can send a collection of con-
tiguous log records batched in a single request to its peer BSA. Sec-
ond, the log records forwarded by BSA to its host replica can also
leverage any batching capabilities supported by the data store itself.
Third, determination of the lcommit-ts by BSA is amenable to cov-
ering a large batch of recently committed log records in one shot –
BSA needs to simply determine the timestamp of the last commit-
ted log record. Lastly, traffic to the watermark service can also be
modulated by controlling how often BSA sends its lcommit-ts to
the watermark service.

5.5.4 Fault Tolerance
We assume that the original data store tolerates non-byzantine

fail-stop failures. We leverage this capability of the data store to
achieve fault tolerance in Slogger. The obvious points of failure
are PSA, BSA, and the watermark service. Under the fail-stop fail-
ure model that we assume, failure of the PSA implies failure of its
host replica. If it is a follower replica that fails, nothing needs to
be done since its PSA (or BSA) is passive. However, if the leader
replica fails, the data store initiates its leader election protocol to
elect a new leader, after which the leader’s PSA (or BSA) becomes
active.

When a new PSA begins execution, it needs to first initialize its
variables (b-commit, sent-spec, and sent-acked). It does so by
sending a BACKUP request to its peer BSA. BSA’s response to the
message, whether an ack or a nack, contains its current append-
indx and commit-indx values that are used to initialize PSA’s vari-
ables. Even if the primary shard contains multiple active PSAs at
the same time, Slogger works correctly since PSAs replicate only
committed log records, and BSAs ignore redundantly received log
records.
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BSA’s failure is similarly tied to the failure of its host replica. Ini-
tialization of BSA’s variables is done by consulting its host replica’s
log. In addition, BSA needs to communicate with the watermark
service to take over the responsibility of forwarding lcommit-ts
values for the shard. It also initializes its watermark variable by
querying the watermark service.

The backup algorithm for a shard may experience some delays if
the leader of the primary or backup shard fails. However, we expect
this delay to be largely related to the leader election process that is
triggered after a leader fails. In most leader failure scenarios, we
expect this delay to be insufficient to stall the backup process to the
extent that the backup shard cannot keep up with the primary shard.

As stated earlier, the watermark service is itself an optimization.
If it fails, a new instance for the service is spun up and its STV is
initialized by communicating with all the backup shards.

In principle, there exists a pathological scenario where one or
more primary shards fail or cannot communicate with their backup
counterparts. In such circumstances, the failed shard’s lcommit-
ts will not advance, thus stalling the global watermark. If other
shards continue to serve client requests, their logs may fill up on
the backup site. This would create a “back pressure” on the corre-
sponding primary shards, which may need to be stalled, thus esca-
lating a single shard “outage” to multiple shards in the data store.
Such a pathological scenario can be handled pragmatically by dy-
namically allotting greater space for logs and, at the same time,
informing the data store administrator of such circumstances.

5.5.5 Bootstrapping Backup Shards
We assume the distributed data store has capabilities to boot-

strap a new replica from an existing replica set of a shard. Slogger
leverages these same capabilities to spin up the backup shard (and
its replicas) on the backup site.

5.6 Handling Disasters
While highly available data stores can tolerate failures of a sig-

nificant number of resources, it is not possible to do so beyond a
particular threshold (e.g. partial or full destruction of a data center
due to an earthquake that makes some or all shards unavailable).
We call such a scenario a disaster, and leave it up to the data store
administrator to make that determination. Thus a disaster is desig-
nated, and recovery from it is triggered manually by the administra-
tor. Designating a disaster at the primary site eventually leads to its
shutdown. This can be done by leveraging metadata servers that
are typically present in production quality distributed data stores.
The data store administrator can flag a disaster by switching any
live metadata servers to the disaster mode. Each primary replica
periodically pings the metadata servers to determine its health. If
it is still available, a metadata server responds with a DISASTER
flag that signals the primary replica that it needs to shut down. If
the metadata servers are unavailable the ping times out. In both
cases, the primary replica must assume a disaster and shut down.
Thus eventually all replicas in the primary site will shut down.

Triggering recovery at the backup site leads to a number of
steps that helps the backup bring up a new primary site. First,
the backup site’s metadata servers are flagged by the administrator
for a RECOVERY mode. Each backup replica periodically pings
the backup metadata servers to determine its health. If a metadata
server responds with a RECOVERY flag, the replica goes in a re-
covery mode. If the replica is the leader of a shard, it computes
its final lcommit-ts value, and sends it to the watermark service.
The leader also marks its message as the final message. The water-
mark service thus receives final messages from all backup shards,
and broadcasts the final global watermark to all backup shards.
Then, the leader of each shard applies all log records based on the

received watermark and sends a recovery completion message to
the watermark service. Once the watermark service receives recov-
ery completion messages from all shards, the backup is designated
to have recovered. It can thereafter act as the new primary site for
the data store or can be used to bootstrap a new backup site.

6. IMPLEMENTATION
To verify the safety property of Slogger, we wrote a complete

system specification and used TLA+ model checker [24, 27] to
check it. Our specification verified the safety property under a
range of failure scenarios including primary leader failure, backup
leader failure, and failure of the watermark service.

To evaluate Slogger’s effectiveness, we integrated it with Log-
Cabin [37], a linearizable key-value (K-V) store that uses the Raft
consensus protocol [38] for synchronous replication. LogCabin is
a single shard K-V store. To build a prototype distributed K-V
store, we added a key-space sharding layer that hosts each shard
in a 3-way replicated LogCabin instance. The key-space sharding
map, which is static in our implementation, is directly available to
client’s through a thin client-side stub library. The replica set for
each shard is also statically defined in a configuration file accessible
to all replicas. This configuration file was augmented with details
of the backup shard replica sets as well as the watermark server.
The static primary-backup configuration setting helped us simplify
our prototyping effort for expedited experimentation. We assume
that the machine local clocks are synchronized with a synchronized
clock.

We implemented Slogger using C++, which was also used to
implement LogCabin. We implemented Slogger as a module in
LogCabin. Slogger’s code implements all its components – PSA,
BSA, and watermark service. LogCabin uses an operation log to
replicate its leader’s updates to the follower nodes. We modified
this log implementation to incorporate all the fields and processing
relevant to Slogger. These modifications amounted to 130 lines of
code, which attests to our assertion of little disruption in a data store
to integrate Slogger with it. To support failover after a disaster
(§5.6), we added the metadata server functionality to the watermark
service.

7. EVALUATION
We now evaluate several aspects of Slogger’s design. First, we

compare the performance overhead of Slogger and incremental
snapshotting (§7.1). Second, we measure the lag between primary
and backup sites (§7.2). Third, we evaluate scalability of our wa-
termark service (§7.3). Fourth, we measure how the backup lag
is affected by different failure scenarios; i.e. SPA, SBA, and Wa-
termark Service (§7.4). Fifth, we evaluate how our design details
pertaining to pipelining, batching and selection of the right log size,
contribute to the viability of Slogger (§7.5). Finally, we show how
quickly can Slogger support failover to the backup site once a dis-
aster has occurred at the primary site (§7.6).

Testbed. We used machines from two CloudLab [13] data cen-
ters – Wisconsin and Clemson – to run our experiments. We ran the
primary site on a 16-machine cluster in the Clemson data center,
and the backup site on a 16-machine cluster in the Wisconsin data
center. We used five Clemson data center machines to run clients
and generate the workload. Hence, clients communicate with the
primary site machines over the local network. Each machine in
Clemson data center has a dual socket Intel E5-2660 CPU with 10-
cores per socket, 256GB of DRAM, a 10Gbps NIC for local net-
work traffic, and a 1Gbps NIC for non-local network traffic. Each
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Figure 8: Throughput vs. latency for different systems for various read (R) to write (W) ratios when varying the number of clients between
1 and 750.
machine in Wisconsin data center has a dual-socket Intel Xeon Sil-
ver CPU with 10-cores per socket, 192GB of RAM, a 10Gbps NIC
for local network traffic, and a 1Gbps NIC for non-local network
traffic. The network round trip time (RTT) between Clemson data
center and Wisconsin data center is 25.5 milliseconds. The net-
work RTT time within Clemson and Wisconsin data centers are
0.068 milliseconds and 0.033 milliseconds, respectively. In all ex-
periments, unless explicitly stated otherwise, we used a cluster of
32 shards and each shard is 3-way replicated.

Alternatives. We compare the following alternatives for design-
ing a disaster recovery system:

• Baseline. We used LogCabin original implementation as a
performance baseline. This option only serves client requests
at the primary data center, i.e., the data is not georeplicated.
This alternative presents the upper bound for system perfor-
mance.

• Incremental Snapshotting. LogCabin supports snapshotting,
but it generates a complete system snapshot on every snap-
shot interval. We modified LogCabin to perform incremental
snapshotting [4]; a new snapshot will only include the set
of objects that have been updated since the previous snap-
shot. The write-ahead log is used to identify the set of up-
dated objects since previous snapshot. Then, these objects
are sent to the backup site and used to update the state ma-
chine of the backup shards. In our implementation, a new
snapshot is taken when the snapshot size exceeds a config-
urable threshold, or when the duration since the last snapshot
exceeds a configurable threshold. To simplify our implemen-
tation, each shard snapshots its state machine independently
without coordinating with other shards. We note that, while
the individual snapshots may not preserve causality across
shards, the performance of our prototype presents an upper
bound of incremental snapshotting using LogCabin as adding
a synchronization phase between shards will add additional
delay. In all our experiments we set the snapshotting interval
to 500ms.

• Slogger. A modified version of LogCabin that integrates
Slogger to provide DR.

Our evaluation of the synchronous geo-replication (Figure 1) ap-
proach indicates that it reduces the system throughput by more than
an order of magnitude compared to intra date center replication. We
omit this alternative for clarity of presentation.

Workload. We used the standard YCSB benchmark [7] to evalu-
ate Slogger. We used a uniform workload, as Slogger reads com-
mitted log records from the replicated log which is agnostic to the
workload distribution; we also experimented with a Zipf distribu-
tion and got similar results. We experimented with a pre-populated
data store containing 50 million key-value pairs, each with key-size
of 24 bytes and value-size of 512 bytes. In all our experiments, the
clients issue blocking requests in a closed loop, i.e. they do not

issue a new request until the old request is successfully acknowl-
edged by the system. Consequently, this workload has a long chain
of happens-before relation as each new operation causally depends
on all previous operations issued by the same client. Before send-
ing a request, the client hashes the key to determine the destination
shard.

7.1 Performance Evaluation
In this section, we compare throughput and latency of Slogger

with its baseline and incremental snapshotting. As the throughput
of incremental snapshotting is directly affected by the snapshot size
(we evaluate the effect of snapshot size in the next section), we use
two snapshot sizes: small snapshots of 32KB, and large snapshots
of 2MB.

Figure 8 shows the throughput and latency for various sys-
tems for different read-write ratios when varying the number of
clients. LogCabin presents the baseline performance without geo-
replication. Slogger does not lead to noticeable overheads com-
pared to LogCabin for any of the workloads as it has been archi-
tected to do continuous backup of a distributed data store off the
client-facing critical path. On the other hand, incremental snap-
shotting has a significant overhead on the performance of the sys-
tem; for write-only workload, using small snapshots reduces the
throughput of LogCabin by up to 50% and increases the latency by
up to 75%. Large 2MB snapshots reduces the overhead on the sys-
tem throughput, yet achieving considerably lower throughput than
both LogCabin and Slogger. At the same time, larger snapshots sig-
nificantly increase the lag of the backup site (§7.2.3). For read-only
workload (Figure8 (d)), all systems have the same performance as
no objects are being updated.

7.2 Data Loss Window
Slogger is a continuous backup system that has the promise of

delivering a distributed data store backup that is closely behind the
primary data store. The immediate consequence is a backup sys-
tem with a tiny (millisecond scale) data loss window. To assess
this data loss window we conducted an experiment that measures
a metric called the backup site’s lag. Intuitively, the lag measures
how far behind, in terms of time, is the backup site’s state from the
primary site’s state. For example, a lag of 100 milliseconds implies
that the backup site did not receive at least some log records that
were committed at the primary site during the last 100 millisec-
onds. If the primary site shuts down at that point, the backup will
lose updates that happened over the last 100 milliseconds.

Understandably, the lag varies over time. Capturing the precise
lag in a non-intrusive way over the duration of the distributed data
store’s lifetime is perhaps an infeasible undertaking. However, we
can get an approximation of a typical lag by finding its bounds
using some lightweight instrumentation. We now define the up-
per and lower bounds of the lag, detail the experiments we used to
measure them, and show the results of these experiments.
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Figure 9: Lower and upper bounds of the typically observed lag at
the backup site. This is a write-only workload

7.2.1 Lower Bound of The Lag
The lower bound (lb) of the lag is the minimum lag that can be

achieved between the primary and the backup sites. It is the min-
imum time needed to send a log record from the primary site (i.e.
PSA) to the backup site (i.e. BSA). Clearly lb cannot be lower than
half the round-trip time (RTT) between the primary and backup
sites. In Slogger, the lower bound is the time needed to perform
step 2 of the backup process (Figure 7).

We measured the lower bound of the lag on a cluster of 32 shards
with a ping-pong experiment. In this experiment, each shard’s PSA
sends a BACKUP request that has only one log record to the corre-
sponding BSA. When BSA receives the request, it replies immedi-
ately with an ack. When PSA receives the ack, it immediately sends
another BACKUP request. We measured the lag’s lower bound
from the BSA side by taking the time difference between consec-
utively received BACKUP requests and dividing it by 2 to get an
estimate of the one-way latency (we assume symmetric latencies
between the PSA and BSA). Figure 9 shows the output of running
this experiment for 60 seconds. In the figure, we present the out-
put of one shard as it is representative of other shards’ output. The
average value of lag’s lower bound is 13.01 milliseconds.

7.2.2 Upper Bound of The Lag
The upper bound (ub) of the lag is the time difference between

the commit time of a log record at the primary site and the time at
which the output of the watermark service, the global watermark,
becomes greater than or equal to the timestamp of the log record
(Figure 7 - step 8).

Figure 10 shows all events that occur until a log record is backed
up. Note that a log record that has committed on the backup
site cannot be applied until the global watermark advances to the
timestamp of that log record. So ideally, what we would like to
measure is t5 − t2. However, computing this value is not trivial as
timestamps t2 and t5 are captured by different entities – PSA and
watermark service respectively, which are running on different ma-
chines in different data centers. To tackle this issue, we measure
the upper bound using only PSA’s clock by computing t7 − t2 at
the PSA, where t7 is the time when PSA receives the notification
from the corresponding BSA. However, this period includes the
time needed to send the notification from BSA to PSA, lb, which
should not be included in the upper bound. As a result, we com-
pute the final value of the upper bound as t7 − t2 − lb. Note that
what we are effectively computing is t6 − t2. This is a conservative
approximation of the precise ub, which would be the time when the
watermark is advanced to a time tw, where tw ≥ t1.

Figure 9 shows the upper bound of the lag of Slogger when
measured using a cluster of 32 shards over a period of 60 seconds.
Reported results were taken from a representative shard. The aver-
age value of the lag of Slogger remains at a somewhat steady 14.2
milliseconds with the maximum value at 16.05 milliseconds. The
measured lag varies over time due to several factors: First, PSA of

Figure 10: Sequence of events until PSA learns that a log record is
backed up.

Figure 11: The throughput and the lag for different snapshot sizes
with write-only workload. In this experiment, all snapshots are
taken due to exceeding the size threshold. Labels next to points
represent the lag.
each shard ships newly committed log records at the end of every 1
millisecond window. This introduces a noise of up to 1 millisecond
for any log record. Second, at the backup shard, up to lower single
digit millisecond noise is introduced by the Raft consensus proto-
col and batching used by LogCabin. Finally, synchronization with
the watermark service leads to sub-millisecond noise.

The above results are largely dominated by network latencies be-
tween the data centers hosting the primary and backup stores (half
of the RTT is 12.5 milliseconds). We expect the lag to ordinarily
fall between the upper and lower bounds in common cases. We
note that those numbers do not reflect the worst case scenarios for
the lag, which can be triggered by certain rare failures (§7.4).

7.2.3 Incremental Snapshotting Lag
In this section we evaluate the lag of the incremental snapshot-

ting approach. This lag is directly affected by the frequency with
which a snapshot is created, which, in turn, is affected by the snap-
shot size. Figure 11 shows the throughput and the lag observed for
different snapshot sizes. We define the lag for incremental snap-
shotting as the difference in receive time of consecutive snapshots
at the backup site. As shown in Figure 11, increasing the snap-
shot size improves the throughput, however, it increases the lag of
the backup site significantly. For instance, the lag observed with a
snapshot size of 8MB is at least 2 orders of magnitude higher than
that of 32KB snapshot size. The minimum lag that can be achieved
using snapshots is 29 milliseconds with 32KB snapshot size.

We note that Slogger’s lag of 14.2 milliseconds is lower than
the lag of best incremental snapshotting (i.e., 32KB) by 50%, and
it does not lead to any performance degradation. Slogger outper-
forms incremental snapshotting for multiple reasons; first, Slog-
ger is designed to perform the backup process off the client-facing
critical path of the date store. As a result, it does not lead to any
performance degradation. In incremental snapshotting, LogCabin
is paused for a short duration to take a snapshot of the in-memory
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(a) PSA failure (b) BSA failure (c) Watermark service failure
Figure 12: Slogger backup lag measured during failures of PSA, BSA, and watermark service.

Figure 13: Watermark service scalability under write-only work-
load.
keys. Second, Slogger reduces the backup site lag by continuously
shipping log records once they are committed. In contrast, in incre-
mental snapshotting, updated objects are shipped all at once when
the snapshot is taken which increases the lag of the backup site.

7.3 Watermark Service Scalability
The watermark service is, in a way, a central point of synchro-

nization between all backup shards. Its scalability is paramount to
the viability of Slogger. Figure 13 shows the lag’s upper bound for
different number of shards. We observe slight performance degra-
dation as the watermark service gets increasing load; The upper lag
of 32 shards is 4.6% higher than that of two shards. This indicates
that watermark service can scale for large number of shards and it
only imposes a moderate overhead.

However, in Figure 13 we observe a significant increase in the
lag’s upper bound for two shards compared to that of one shard.
The reason for this degradation is that each shard’s PSA sends
committed log records to its BSA counterpart every 1 millisecond.
Since PSAs of different shards are unsynchronized, this may result
in increasing the lag by up to 1 millisecond. To better evaluate this
synchronization cost, we present another performance curve in Fig-
ure 13 (Without Watermark Service). This curve depicts the lag in
a variant of Slogger where BSAs do not coordinate with the water-
mark service. Instead, log records committed on the backup shard
are immediately applied to it. The comparison is somewhat unfair
since this variant does not guarantee correctness in the face of pri-
mary site disasters at arbitrary times. Nonetheless, it helps us get
a better insight into understanding the cost of synchronizing mul-
tiple shards. Clearly, performance degradation of the lag’s upper
bound is largely dominated by the 1 millisecond delay that every
PSA introduces before sending newly committed log records.

7.4 Fault Tolerance
As discussed in §5.5.4, when a shard leader for a primary (or

backup) shard or the watermark service fails, the log backup pro-
cess for the affected shard stalls immediately. This invariably
stalls the global watermark’s progress, which in turn stalls backup
progress on other shards. Once failure is resolved, backup for the
temporarily stalled shard continues, and Slogger quickly returns to
a steady state.

Figure 12 depicts the behavior of Slogger when failures hap-
pen in a shard leader (PSA or BSA) or the watermark service.
LogCabin is configured to detect replica failure at 200 millisecond
granularity, after which it triggers a leader election cycle. Leader
election takes about 1 millisecond, after which the leader spins up a
PSA instance that establishes a connection with the corresponding
BSA in 2 network round trips. After that, PSA resumes shipping
log records to BSA. The overall recovery takes less than 300 mil-
liseconds. In case of watermark service failure, we fail the water-
mark service for 500 milliseconds, after which a new watermark
service instance is created, which quickly communicates with all
backup shards and refreshes the global watermark.

As expected, in all cases, after a failure the observed lag at the
backup shards grows steadily as time elapses. While the lag con-
tinues to grow, all the healthy primary shards continue to back up
their log records to their healthy backup counterparts. In case of a
primary shard’s leader failure, the affected shard eventually gains a
new leader that starts communicating with its backup counterpart.
As a consequence, the lagging shard’s timestamp is quickly up-
dated to the latest time that is bigger than timestamps of almost all
log records received in the interim by all other backup shards. This
results in a quick and significant “bump” in the global watermark
because of which the lag rapidly drops to the steady state observed
before the failure. In case of a backup shard’s leader failure, the
log records committed at the corresponding primary shard’s leader
are all shipped by its PSA to the new backup leader’s BSA en mass,
which also results in a quick bump in the global watermark. Similar
reasoning holds for watermark service failures.

7.5 Pipelining, Batching, and Log Size
A combination of pipelining and batching appears to be abso-

lutely necessary for a backup shard to keep up with its primary
counterpart – if the primary shard produces log records at a rate
greater than the rate at which the backup shard receives and ab-
sorbs them, the primary shards will have to stall and stop process-
ing client requests. Clearly, owing to the much longer communi-
cation latency between primary and backup shards, shipping one
log record at a time and waiting for its ack before shipping the next
one is insufficient for the backup shard to keep up with the pri-
mary shard. What we need is the right combination of pipelining
and batching that yields a shard backup rate that matches with the
maximum rate at which the primary shard can create log records.

Assuming a maximum sustained rate at a primary shard of N op-
s/millisecond, with 1KB of space per log record, we need to find the
right mix of pipelining and batching that can help the backup shard
keep up with its primary counterpart. (We assume similar hardware
resources available at the backup and primary site – CPUs, mem-
ory, network bandwidth.) Clearly, sending a batch of N requests ev-
ery millisecond will match the production rate at the primary shard.

Note however, that the primary shard must hold on to a shipped
log record until it receives an ack from the backup shard confirm-
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Figure 14: Pipelining, batching, and log size interplay.

ing that the log record has been replicated and committed. In our
experimental setup, the upper bound for the typical lag (t6 − t2
from Figure 10) averages to under 15 milliseconds (§7.2). We need
to approximately double that time to get a conservative estimate of
the round-trip time – 30 milliseconds. Thus, to keep a sustained rate
of N ops/millisecond, we need a pipeline depth that matches this
round-trip delay. A pipeline with a depth of 30 slots, where each
slot contains a batch of N log records or more is sufficient to help
a backup shard keep up with its primary counterpart. Some over-
provisioning is obviously needed to counter any jitters and spikes
in the log record production rate at the primary shard.

In our experiments, each LogCabin shard processed client up-
date requests at an approximate maximum rate of 13K ops/sec (13
ops/millisecond). A pipeline of 30 slots, with dynamic batching
– grouping together all the newly committed log records in the
shard’s log – turned out to be sufficient. Dynamic batching typi-
cally yielded a batch size of 12−14 log records in our experiments.

The next question to address is: what is the minimum log ca-
pacity required to sustain the above log backup rate? In our experi-
ments, the above constraints lead to a stream of around 400 in-flight
log records in the pipeline between the primary and backup shards.
This amounts to 400KB of sustained bandwidth consumption in the
30 millisecond window. Thus, in the absence of jitters, a log of size
of 400KB should be sufficient to help the backup keep up with the
primary. In practice however, occasional network and other jitters
cause unexpected delays. We can compensate those delays by pro-
viding 10X the minimum required log capacity – 4MB.

Figure 14 demonstrates the interplay between pipelining, batch-
ing, and the log size. In particular, it validates our above analysis by
testing with different log sizes – a sufficiently big log (4 MB) will
be able to tolerate intermittent failures and delays, but a smaller log
(200 KB) will lead to significant interference. A log size of 200 KB
can tolerate a RTT of at most 15 milliseconds, however, the RTT in
our setup is around 27 milliseconds. Hence, the primary shard’s log
is filled up after 15 milliseconds. Consequently, it stalls and stops
processing client requests until an ack is received from the backup
shard after 27 milliseconds resulting in freeing the primary shard’s
log. Thereafter, the primary shard starts processing client requests
again. This behavior repeats every 27 milliseconds (RTT).

7.6 Disaster Recovery
Slogger has been designed to enable rapid failover to the backup

site after a disaster is declared at a distributed data store’s primary
site. We measured the latency of this failover mechanism. More
specifically, we measured the interval between the event when the
backup site (watermark service, in our implementation) receives a
RECOVERY message from the data store administrator, and the
event when the watermark service receives recovery completion
messages from all the backup shards. The backup site does not
accept new client connections during this interval, which is ob-
served as down-time by all clients. This ”failover readiness” pro-

cess happened in less than 7 milliseconds. This happens primarily
because the backup site is continuously applying log records it re-
ceives from the primary site during normal execution. Thus the
amount of log records needed to be applied in the backup shards
remain relatively small (at most 45 KB in our experiments).

8. RELATED WORK
Snapshots. Several projects [18, 20, 33, 40, 48] use snapshots to
maintain a mirror replica in a remote data center. In these solutions,
a snapshot of the primary data store is asynchronously generated
and then transferred to the remote replica. SnapMirror [40] exploits
the active block maps in WAFL file system to identify modified
blocks and avoid sending deleted ones, which reduces the amount
of data transferred to the remote replica. The main disadvantage of
snapshoting, as our evaluation demonstrates, is the large data loss
window, which might range from seconds to hours or days.
Remote Mirroring. Numerous commercial products provide DR to
disk volumes such as IBM Extended Remote Copy [10], HP XP ar-
rays [6], and EMC SRDF [9]. In remote mirroring, a backup copy
of the primary volume is maintained in a remote location. Typi-
cally, these solutions supports multiple replication protocols with
various reliability guarantees. For instance, HP XP arrays can op-
erate in both synchronous and asynchronous mode. These solutions
do not preserve causality between writes to different volumes as the
mirroring of different volumes is not coordinated.
Continuous Backups. Another class of solutions to DR is contin-
uous backups, where the primary data store is continuously, asyn-
chronously, and incrementally replicated to the backup site. Inad-
vertantly, these prior works asynchronously ship log records gener-
ated by the primary data store to the backup site [4, 11, 21, 22, 30,
35, 36, 44]. While this approach can be used to drastically reduce
the data loss window for a data store, we note that all existing so-
lutions apply to data stores that either support serializability [39]
or more relaxed consistency models. None of these solutions work
correctly for linearizable [16] distributed data stores [8]. In partic-
ular, we show that the order in which updates are backed up, using
prior techniques, may lead to an update order at the backup site that
is inconsistent with the update order observed at the primary.

9. CONCLUSION
We presented Slogger, the first asynchronous DR system that

provides correct continuous backup of a linearizable distributed
data store with a tiny, millisecond scale, data loss window. Slog-
ger backs up the data store continuously by asynchronously ship-
ping log records of individual shards to the backup site. Slogger
leverages synchronized distributed clocks to enable the backup site
to apply distributed log records in the correct order. It strategically
employs techniques such as concurrency, pipelining, batching and a
novel watermark service based coarse synchronization mechanism
to create a viable backup system for distributed data stores. Empir-
ical evaluation done using LogCabin demonstrates Slogger’s ca-
pability to deliver a millisecond range backup site lag (14.20 in
our experiments), along with several other desirable characteris-
tics such as high scalability, fault tolerance, and efficient ”failover
readiness” (less than 7 milliseconds in our experiments).
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