
The Future(s) of Shared Data Structures

Alex Kogan
Oracle Labs

Burlington, MA, USA
alex.kogan@oracle.com

Maurice Herlihy
∗

Brown University and Oracle Labs
Providence, RI, USA

mph@cs.brown.edu

ABSTRACT
This paper considers how to use futures, a well-known mech-
anism to manage parallel computations, to improve the per-
formance of long-lived, mutable shared data structures in
large-scale multicore systems. We show that futures can en-
able type-specific optimizations such as combining and elimi-
nation, improve cache locality and reduce contention. To ex-
ploit these benefits in an effective way, however, it is impor-
tant to define clear notions of correctness. We propose new
extensions to linearizability appropriate for method calls
that return futures as results. To illustrate the utility and
trade-offs of these extensions, we describe implementations
of three common data structures: stacks, queues, and linked
lists, designed to exploit futures. Our experimental results
show that optimizations enabled by futures lead to substan-
tial performance improvements, in some cases up to two or-
ders of magnitude, compared to well-known lock-free alter-
natives.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—lists, stacks, and queues; D.1.3
[Software]: Programming Techniques—concurrent program-
ming

General Terms
Algorithms, Design, Theory

Keywords
Concurrent data structures; futures; elimination; combining;
linearizability

1. INTRODUCTION
Futures [5] are widely considered an attractive way to

manage parallel computations: they are simple to use, and

∗Supported by NSF 1301924.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’14, July 15–18, 2014, Paris, France.
Copyright 2014 ACM 978-1-4503-2944-6/14/07 ...$15.00.
http://dx.doi.org/10.1145/2611462.2611496.

they lend themselves well to efficient scheduling mechanisms
such as work-stealing. In this paper, we consider the use of
futures for different purposes: improving the performance of
long-lived concurrent data structures in large-scale multicore
systems.

We are interested in the design and implementation of
long-lived objects shared by many threads. Calling an op-
eration of such an object might take a long time, perhaps
because there is contention, or because the object resides on
a remote node in a non-uniform memory access (NUMA)
architecture. One way to alleviate these problems is to have
the object’s operations return futures as return values. By
using futures, threads can accumulate multiple pending op-
erations, that is, operations that were invoked, but not yet
applied to the object. These pending operations can be eval-
uated in a flexible way, perhaps exploiting type-specific op-
timizations such as combining and elimination intended to
reduce contention, improve cache locality and reduce com-
munication costs.

Our use of futures in this paper departs in important ways
from the original proposal, where futures were benign anno-
tations that did not affect a program’s meaning, and future
computations had no side-effects [5]. By contrast, our use of
futures centers on operations that exist for their side-effects
on shared, long-lived state, operations that can interact and
interfere with one another.

As a result, it is essential to define clear and useful notions
of correctness for objects whose operations return futures.
A major observation of this paper is that no single notion of
correctness is likely to cover all reasonable cases. Instead,
we propose three new extensions to linearizability [11], called
strong, medium, and weak futures linearizability. Each no-
tion makes a different trade-off between determinism, which
reduces the number of possible interleavings, and the flexi-
bility to apply various optimizations, which yields more effi-
cient programs. Like standard linearizability, however, these
notions require that any concurrent execution be equivalent,
in some sense, to a sequential computation.

To demonstrate the utility of these notions, we describe
strong, medium, and weak futures linearizable implementa-
tions of three common data structures: stacks, queues, and
linked lists, and compare their performance on a multicore
system to well-known lock-free algorithms. These experi-
ments illustrate in a quantitative way the trade-offs between
performance and determinism. In particular, we show that
implementations satisfying the weak and medium correct-
ness conditions typically significantly outperform lock-free
alternatives, in some cases by up to two orders of magnitude.

Future<T> f = submit(task); // start task
... // do something else
T x = f. eval (); // pick up task ’ s result

Figure 1: Use of futures

Even though the versions satisfying the strong correctness
condition typically perform worse than other future-based
versions, we show cases where they achieve better perfor-
mance than the lock-free alternatives.

The rest of the paper is organized as follows. We dis-
cuss the benefits of using futures with long-lived concurrent
data structures in Section 2. In Section 3 we informally de-
fine three extensions to linearizability that support opera-
tions returning futures. We exploit these extensions by con-
structing three common data structures in Section 4. These
constructions are evaluated and compared to lock-free alter-
natives in Section 5. The formal model and proofs appear in
Section 6. The related work is surveyed in Section 7. Finally,
we conclude the paper with discussion in Section 8.

2. FUTURES AND LONG-LIVED OBJECTS
A future [5] is a data object that represents a promise

to deliver the result of an asynchronous computation when
it is ready. Figure 1 shows a simple code fragment that
uses a future. In Line 1, a thread creates a future to hold
the result of an asynchronous computation. In Line 2, the
thread does something unrelated, and in Line 3, it calls the
future’s eval () method to retrieve the task’s result, blocking
if necessary until that result is ready. (Calling a future’s
eval () method is called evaluating or touching that future.)

While futures were originally proposed as a way of man-
aging short-lived functional computations, here we focus
on long-lived mutable objects, like maps, lists, queues, or
stacks, shared by multiple threads in a multicore architec-
ture. These objects return future values in response to
method calls. These method calls typically have side-effects
(such as binding a key to a value), and the results may re-
turn information about the object state (such as the result of
a map look-up) or confirmation that a side-effect has taken
place (such as confirming that map has finished binding a
key to a value).

The principal contribution of this paper is the observa-
tion that futures, properly redefined, can provide substan-
tial benefits to long-lived concurrent data structures. These
benefits include:

• Combining : multiple operations may be combined into
a single operation on the shared object, reducing com-
putation and communication latency.

• Elimination: some operations may “cancel” each other
out, eliminating the need to access the shared object
at all.

• Delegation: one thread might be able to apply pending
operations on behalf of others. This thread may be
selected dynamically (as is done here) or it may be
designated statically.

• Contention reduction and cache efficiency : combining
and elimination may cause the shared data structure to
be accessed less frequently, alleviating synchronization
bottlenecks and incurring less cache coherence traffic.

Future<Nil> fx = queue.enq(x);
Future<Nil> fy = queue.enq(y);
Future<T> fz = queue.deq();
fx . eval (); // force enq(x) to happen?
fy . eval (); // force enq(x) to happen?
T z = fz. eval (); // value at the head of queue?

Figure 2: A FIFO queue example

• Scheduling : the implementation is free to choose whether
to apply pending method calls eagerly or lazily.

However, to apply these optimizations correctly, we need
a careful definition what it means when a method call to a
mutable object returns a future, and how a result retrieved
from the evaluated future is related to the state of that mu-
table object.

3. FUTURES AND LINEARIZABILITY
A future’s value is calculated sometime between when that

future is created and when it is evaluated. As originally
conceived, future computations were short-lived tasks with-
out side-effects, so it was impossible to observe when these
computations actually happened. Here, by contrast, we are
interested in futures returned by methods that do have side-
effects, such as adding or removing an item into or from a
container. It is important to define when a future-returning
method can “take effect”, and, indirectly, how such effects
might be interleaved.

In the absence of futures, it is common to define the be-
havior of concurrent method calls through properties such
as linearizability [11]. Each object is assumed to provide a
sequential specification, which describes its behavior in se-
quential executions where method calls do not overlap. To
describe an object’s concurrent behavior, each method call
is split into two instantaneous events: the invocation, when
control leaves the caller, and the response, when control (and
perhaps a result) returns to the caller. Informally, an exe-
cution is linearizable if each method call appears to take ef-
fect instantaneously between its invocation and its response
events.

To make effective use of futures, and to determine which
optimizations are permitted, we will need to define exten-
sions to linearizability. For ease of presentation, we define
these extensions informally here. The formal definitions are
postponed to Section 6.

There are several natural ways to extend linearizability to
futures, and each has its own advantages and disadvantages.
We will illustrate these choices using the code fragment in
Figure 2, where a FIFO queue, initially empty, provides
enq() and deq() methods that return futures. The thread
first calls enq(x), returning future fx, then enq(y), return-
ing future fy, and finally deq(), returning future fz. It then
evaluates first fx, then fy, and finally fz. What can we as-
sume about the value returned from fz? There are several
reasonable choices.

Strong Futures Linearizability (Strong-FL).
One natural correctness condition is to require that each

method call takes effect at some instant between its call
(creating the future), and its response (returning the future),
just as if it were a regular method call. In Figure 2, enq(x)

precedes enq(y), which precedes deq(), so (assuming no other
thread is accessing the queue) evaluating fz must yield x.

This property is easy to reason about, since it is essentially
the same as linearizability, treating futures as benign hints
for optimizations. Implementations are free to delay the ac-
tual computation until the future is evaluated, as long as no
thread can tell the difference. As we show in Section 5, this
separation of how operations are ordered from when they are
evaluated can be very beneficial in some cases. For many ap-
plications, however, strong futures linearizability rules out
certain attractive optimizations.

Weak Futures Linearizability (Weak-FL).
Another natural correctness condition is to require that

each method call takes effect at some instant between its
call (creating the future), and the return from that future’s
evaluation. In Figure 2, the calls to enq(x), enq(y), and deq()
are free to take effect in any order, so evaluating fz could
yield either Nil (if deq() takes effect first), x (enq(x) first),
or y (enq(y) first). This choice gives the run-time system
considerable freedom for optimization.

For some applications, however, this condition may be
too permissive. A thread that wants to enqueue x before
y would have to evaluate fx before calling enq(y), making
optimizations such as combining impossible. Furthermore,
if fx is not evaluated before calling enq(y), this condition
may seem counter-intuitive, as (probably, a different) thread
may see the effect of the second enqueue before the effect of
the first one.

Medium Futures Linearizability (Medium-FL).
Here is an intermediate proposal that balances the pro-

grammer’s guarantees with the flexibility for optimization.
We separate two issues: (1) when a future’s computation
takes effect, and (2) how a future’s computation is ordered
with respect to other futures’ computations. For question
(1), we require each method call to take effect at some in-
stant between that method’s future’s creation and its eval-
uation, just as in weak futures linearizability. For question
(2), we require two future method calls issued by the same
thread to the same object to take effect in the same order
as their future creation operations. In Figure 2, enq(x) pre-
cedes enq(y), which precedes deq(), so evaluating fz must
yield x. Notice that medium future linearizability does not
constrain the perceived order of operations issued to distinct
objects.

Informally, a correctness property is non-blocking if by
itself it never forces a thread T with a pending operation
to wait for another pending operation to complete before T
can evaluate its own operation’s future. In Section 6, we
show that strong, medium, and weak futures linearizability
are all non-blocking. Examples of correctness notions that
are not non-blocking include serializability [1].

A correctness property is compositional if any combina-
tion of two or more objects, each individually satisfying that
property, collectively also satisfies that same property. In
Section 6, we show that strong, medium, and weak futures
linearizability are all compositional.

Compositionality should not be taken for granted. For
example, consider the following natural generalization of
medium futures linearizability, which we call futures sequen-
tial consistency : (1) as before, each method call takes effect

1 Future<Nil> f1 = p.enq(x);
2 Future<Nil> f2 = q.enq(y);
3 Future<Nil> f3 = q.enq(x);
4 Future<Nil> f4 = p.enq(y);
5 f1 . eval (); f2 . eval ();
6 f3 . eval (); f4 . eval ();
7

8 Future<T> fp = p.deq();
9 fp . eval (); // returns y

10 Future<T> fq = q.deq();
11 fq . eval (); // returns x

Figure 3: Why futures sequential consistency is not compo-
sitional

at some instant between that method’s future’s creation and
its evaluation, but (2) two future method calls issued by the
same thread to any object (not just an individual object)
take effect in the same order as their future creation opera-
tions.

Futures sequential consistency, like the classical notion of
sequential consistency [12], is not compositional. Figure 3
shows a simple counterexample. Each column represents
a thread, A and B, and the lines represent the interleav-
ing. There are two FIFO queues, p and q. In Lines 1–4,
A enqueues x on p, B enqueues y on q, A enqueues x on
q, and B enqueues y on p. All four resulting futures are
then evaluated (Lines 5–6). Futures sequential consistency
requires that each thread’s method calls take effect in the
order their futures were created: Line 1 takes effect before
Line 3, and Line 2 before Line 4. Since y is the first item
dequeued from p, Line 4 takes effect before Line 1, and sim-
ilarly, Line 3 takes effect before Line 2, resulting in a cyclic
order. It is easy to check, however, that this interleaving
is medium futures linearizable, because a thread’s enqueue
calls to different objects are unordered.

4. EXPLOITING FUTURES
This section describes how to use futures to encapsulate

type-specific optimizations for three basic data types: queues,
stacks, and linked lists (or more precisely, linked list-based
sets). For brevity and simplicity, we treat all return val-
ues as futures. (Non-future return values can be treated as
futures that are evaluated immediately.) We first describe
high-level designs common to all three data types. In the
following subsections, we provide additional details specific
to each considered data type.

Threads share an instance of the data structure (queue,
stack, or list, respectively). In weak and medium-FL im-
plementations, this shared instance is similar to a lock-free
version of the data structure1, except that it supports single-
operation insertion or removal of multiple nodes. For in-
stance, pushing multiple nodes (organized in a list) into a
stack is a straightforward extension of the single-node code,
where the last node of the list is connected to the first node
in the stack and the head of stack is updated with a sin-
gle compare-and-swap (CAS) instruction to point the first
node in the list. The strong-FL implementation employs a

1We use standard lock-free data structures from the lit-
erature: Michael and Scott’s lock-free queue [14], Harris’s
linked list [6], and Treiber’s stack [18].

sequential instance of the data structure, for reasons dis-
cussed below.

In our prototype implementations, futures are realized as
objects with opCode, value, result and resultReady fields.
The first two fields store the type of the corresponding oper-
ation (e.g., enq() or deq()) and an optional parameter. The
evaluation of a future is completed by writing the corre-
sponding result into the result field and setting the resul-

tReady flag. An operation is pending if its invocation has
occurred, but the operation itself has not yet been applied to
its object. A thread may check quickly if an operation is still
pending by reading the resultReady flag of that operation’s
corresponding future.

For the weak and medium-FL implementations, each thread
uses thread-local list(s) to store and evaluate its own pend-
ing operations. Each such list presents an opportunity to ap-
ply type-specific optimizations (such as combining or cancel-
ing compatible operations). The exact details on how these
local lists are maintained and used are given in the following
subsections.

For the strong-FL implementations, each operation ap-
pears to take effect before its future is returned. To achieve
that, all threads share a single queue of pending operations,
which allows adding new operations (more precisely, future
objects) in a lock-free manner. This queue is based on the
lock-free queue by Michael and Scott [14]. When a thread
invokes an operation, it allocates and enqueues a future ob-
ject describing that operation, and returns the future to the
caller. The evaluation of pending operations is protected by
a lock. When a thread T evaluates a future F , it tries to
acquire the lock. If it succeeds, and if F is still pending,
T records the current last pending operation that is in the
queue. (If T fails to acquire the lock, it waits until the lock
becomes available again, checking periodically that F is still
pending.) Then T evaluates all operations in the queue, in-
cluding F , starting from the head (or, more precisely, from
the operation next to the head, as the first operation is a
dummy [14]) and up to the last recorded operation. Note
that while T is holding the lock, other threads can keep
adding new operations to the queue, but those operations
might not be evaluated by T . However, the number of pend-
ing operations evaluated by T (and thus the time T possesses
the lock) is limited. While evaluating pending operations, T
is free to apply type-specific optimizations such as combin-
ing and eliminating multiple operations. Moreover, once T
has exclusive access to the shared data structure, the (pos-
sibly combined) operations can be applied directly to the
shared data structure instance, without any synchroniza-
tion. When T is done, it updates the head of the queue to
point the recorded last operation, effectively removing eval-
uated operations from the queue, and releases the lock.

The particular implementations described in this paper
were chosen for simplicity. There are many other ways one
could implement these objects while satisfying the correct-
ness conditions presented in Section 3. For example, we note
that our strong-FL implementations may have limited scala-
bility, because the shared queue of pending operations or the
lock protecting evaluations might become bottlenecks under
high contention. Such limitations may matter more for ob-
jects whose operations are lightweight, such as queues and
stacks. In particular, one might achieve better performance
by applying the elimination optimization in the strong-FL
stack before resorting to the shared queue of pending oper-

ations. In this paper, we opted to exploit futures by pre-
senting an approach, which is not necessarily optimal, yet
general enough to be applied for different data structures
with minimal efforts. As we will see in Section 5, by en-
abling a clean separation between how operations are or-
dered from how they are evaluated, this approach is most
beneficial for objects with heavyweight operations, such as
long linked lists.

4.1 Stack Algorithm
Since the weak-FL condition permits each operation to

take effect at any instant between its invocation and its fu-
ture’s evaluation, we can reorder pending push() and pop()
operations, increasing the potential for the elimination op-
timization. As a result, we will never have both pending
push() and pop() operations for the same thread at any given
time. Thus, each thread maintains only one local list to store
pending operations, each having the same type (that is, all
operations in the local list are either push() or pop()).

When a thread invokes a push(), it checks whether its local
list contains pending pop() operations. If so, the push() pro-
vides a result to one of the pending pop() operations. (That
is, the value of the future for the push() operation is copied
into the result field of the future for the pop() operation,
and resultReady flag is set for both futures). Otherwise, the
new push() is added to the list of pending push() operations.
The code for pop() operations is symmetric.

When a thread evaluates a future, it actually evaluates
all the futures stored in that thread’s local list, in order to
combine multiple operations and reduce traffic to the shared
stack instance. Specifically, for pop() operations, as many
items as there are pending pop() invocations are popped
from the shared stack using a single CAS instruction. If
the stack does not have enough items, all items are removed
and excess pop() operations are paired with a special “empty
stack” value. Symmetrically, the items associated with all
pending push() operations are pushed onto the stack with a
single CAS instruction.

The medium-FL stack cannot cancel complementary op-
erations quite as aggressively since it has to respect the or-
dering of thread’s operations. As a result, the local list may
contain pending operations of distinct types. The medium-
FL property implies that a push() operation cannot be com-
bined with a prior pending pop() operation, but a pop() op-
eration can be combined with the most recent prior push().
Multiple pending operations of the same thread and of the
same type are combined before modifying the shared stack,
allowing the thread to add or remove multiple items with a
single CAS.

The strong-FL implementation is straightforward. When
a thread attempts to evaluate a future, it tries to acquire the
lock associated with the shared queue of pending operations.
If it succeeds, it traverses that queue starting from its head.
When possible, it eliminates pending pop() operations with
preceding pending push() operations. At the end, it applies
the remaining pop() and push() operations to the shared
stack and releases the lock.

4.2 Queue Algorithm
Queue semantics does not allow operations to be elim-

inated as easily as stacks, yet it does allow for efficient
combining. For the weak-FL queue, each thread keeps two
thread-local lists of pending operations: one for pending

enq() operations, and another for pending deq() operations.
When a future returned by a method call is evaluated, so
are all futures of the same operation type. This is again
to combine a number of operations and reduce the num-
ber of accesses to the shared queue instance. The latter is
achieved by inserting (removing) multiple nodes into (from)
the shared queue, using just two (one, respectively) CAS
operations.

For the medium-FL queue, each thread maintains one lo-
cal list that contains all its pending operations in the order
they were invoked. A thread evaluates a future F by travers-
ing its local list, starting from the head (the oldest pending
operation). It removes a sequence of pending operations of
the same type (either enq() or deq()), combines operations
in the sequence and applies those combined operations to
the shared queue. This process is repeated until F is eval-
uated. Here, again, multiple nodes are inserted or removed
to/from the shared queue with one or two CAS operations.

Similarly to stacks, the strong-FL implementation of queues
is straightforward. A thread that acquires the lock, runs on
the queue of pending operations and applies them to the
shared queue.

4.3 Linked List Algorithm
The weak-FL linked list implementation keeps each thread’s

local list of pending operations sorted by key. A thread
evaluates a future by traversing the shared list (which also
maintains nodes in sorted order) and applying the pending
operations from its local list. Multiple pending operations
with the same key are combined, so that at most one modi-
fication per key is done to the global list. This implementa-
tion traverses the shared list just once to apply all pending
operations.

Due to ordering restrictions on thread’s operations, the
medium-FL linked list implementation keeps each thread’s
local list of pending operations sorted in temporal order,
not by key. A thread evaluates a future F by traversing the
local list, starting from the oldest operation, and applying
pending operations subject to the following optimization. In
the shared lock-free list [6], all operations on the list employ
an auxiliary search() function that accepts a key and tra-
verses the list, looking for the last node holding a value less
than or equal to the given key. When done applying a pend-
ing operation op(), if the next pending operation has a key
larger than or equal to the key of op(), the thread resumes
searching from the position in the list where op() was ap-
plied. Otherwise, and if F is not yet evaluated, it resumes
searching from the head of the list.

Finally, in the strong-FL linked list implementation, a
thread that evaluates a future acquires the shared lock. Next,
it runs through the shared queue of pending operations, and
sorts the operations by key. The sort is stable, meaning
that the temporal (linearization) order of operations with
the same key is preserved. Then it traverses the shared list
just once, to apply the pending operations. Finally, it re-
leases the lock.

5. EVALUATION
We evaluated the implementations described in Section 4

and compared them to well-known lock-free alternatives,
namely Michael and Scott’s lock-free queue [14], Harris’s
linked list [6], and Treiber’s stack [18]. The implementations
were done in C++. To avoid effects of memory management

on our results, the memory required by any implementation
was pre-allocated. We used a simple benchmark in which
each thread performs a preset number (100K) of operations
on a data structure, initialized as described below. No ex-
ternal work was performed by threads between operations
on a shared data structure. The operations were chosen
randomly from distributions described below.

A future-based implementation must choose how many
pending operations to permit, a quantity we refer to as slack.
We experimented with different choices of slack: after every
X (=slack) operations returning futures (where X is 1, 10,
20 or 100), the thread evaluates all those futures before pro-
ceeding with the next X operations. For X = 1, each fu-
ture is evaluated immediately, allowing a direct comparison
between the overheads of the future-based versus lock-free
implementations.

Our experiments were run on a 1-socket, 8-core SPARC T4
system featuring 64 hardware thread contexts and powered
by Solaris 11 operating system. The sources were compiled
by g++ 4.7.1 compiler with -O4 optimization level. We var-
ied the number of threads between 1 and 64, and measured
the time for all threads to complete their operations. The
results shown are the mean of 10 runs performed with ex-
actly the same parameters. The variance of the majority of
the results is negligible.

5.1 Stacks
Figure 4 shows the stack benchmark performance with dif-

ferent values for the slack (in log scale for y-axis). The stack
is initially empty, and each thread executes 100K operations,
choosing between push() and pop() with equal probability.
As Figure 4(a) shows, with slack=1 and a single thread,
futures-based stacks perform worse than the lock-free stack
due to the additional overhead required for managing local
lists of pending operations (for the weak-FL and medium-
FL versions) or managing the shared queue and lock (for
the strong-FL version). When the number of threads in-
creases, this overhead is mitigated by the contention created
by threads accessing the stack. Thus, in multi-threaded ex-
periments with slack=1, futures-based stacks perform com-
petitively with the lock-free implementation.

As the slack increases, the weak-FL and medium-FL stacks
significantly outperform the lock-free stack, by up to two
orders of magnitude. It is interesting to note that the gap
between those two future-based stacks shrinks with the in-
crease in slack. This is because the medium-FL stack man-
ages to eliminate more operations, thus accessing the shared
stack less frequently. Interestingly, the strong-FL stack per-
forms competitively with the lock-free counterpart, and even
slightly outperforms it on high thread counts. We believe
that this is because the contention on the head of the stack
in the lock-free stack is more severe than on the access to
the shared queue of pending operations and on the lock pro-
tecting this queue in the strong-FL stack. We have seen the
effect of one bottleneck relieving the contention on another
bottleneck (and thus improving the overall performance) in
other contexts as well [2].

5.2 Queues
Figure 5 shows the queue benchmark performance for dif-

ferent levels of the slack. The queue is initially empty, and
each thread executes 100K operations, choosing between
enq() and deq() with equal probability. As with stacks, both

 1

 10

 100

 1000

 10000

1 8 16 24 32 40 48 56 64

ti
m

e
 (

m
s
)

threads

lock-free
weak-FL

medium-FL
strong-FL

(a) slack = 1

 1

 10

 100

 1000

 10000

1 8 16 24 32 40 48 56 64

ti
m

e
 (

m
s
)

threads

lock-free
weak-FL

medium-FL
strong-FL

(b) slack = 10

 1

 10

 100

 1000

 10000

1 8 16 24 32 40 48 56 64

ti
m

e
 (

m
s
)

threads

lock-free
weak-FL

medium-FL
strong-FL

(c) slack = 20

 1

 10

 100

 1000

 10000

1 8 16 24 32 40 48 56 64

ti
m

e
 (

m
s
)

threads

lock-free
weak-FL

medium-FL
strong-FL

(d) slack = 100
Figure 4: Stack benchmark performance

weak-FL and medium-FL queues perform similarly to the
lock-free queue when the slack is just 1. In contrast, the
strong-FL queue performs worse than the lock-free queue.
The gap remains the same even when increasing the slack.
The reasons are twofold. First, while in the strong-FL queue,
all threads insert new pending operations at the tail of the
queue of pending operations, the shared queue in the lock-
free version is accessed from both ends, resulting in less
contention. Second, queue semantics dictates that queue
operations cannot be eliminated as aggressively as stack op-
erations. Thus, the synchronization overhead of evaluating
pending operations is not compensated by elimination.

The remaining queue performance phenomena shown in
Figure 5 are also quite different from the stack results. First,
the performance of the medium-FL queue relative to the
lock-free queue stays the same for levels of slack larger than
1. This is because, in the medium-FL queue, future eval-
uation combines sequences of operations of the same type
(cf. Section 4.2). Increasing the bound on the number of
pending operations does not significantly increase the chance
for larger sequences.

The weak-FL queue, however, does benefit from increas-
ing the slack, as it can combine operations more aggressively.
As the number of threads increases, however, this version’s
running time spikes sharply. It is interesting to note that
the spike occurs at increasing thread counts as the slack in-
creases. This happens because, even with aggressive combin-
ing, this version encounters contention on the shared queue

with the increased number of threads. We validated this
claim by measuring the average number of CAS operations
issued by the weak-FL version per one high-level operation
on the shared queue. We found out that there was strong
correlation between the running time of the weak-FL version
and the average number of CAS operations.

5.3 Linked Lists
We evaluated the list benchmark performance in the fol-

lowing setting. The list is initialized with a number of ran-
domly chosen keys. The number of keys is equal to half
of the key range, which is set to 10K. Each thread exe-
cutes 100K operations: 20% insert (), 20% remove(), and
60% contains (), chosen randomly. Each operation returns a
Boolean flag indicating whether the list was changed or the
required key was found. The results for different slack levels
are shown in Figure 6.

Similarly to stacks and queues, the performance of the
weak-FL list improves relatively to that of the lock-free list
as the slack increases. This is because we combine more
operations and apply them all by traversing the shared list
just once. The medium-FL list achieves better performance
than the lock-free list for slack larger than 1, but the relative
gap stays constant. This is because, just as for queues, in-
creasing the slack does not significantly increase the chance
to apply more operations in one list traversal.

The strong-FL list shows some interesting behavior. As in
the previous case, its performance is significantly worse rela-

 1

 10

 100

 1000

 10000

1 8 16 24 32 40 48 56 64

ti
m

e
 (

m
s
)

threads

lock-free
weak-FL

medium-FL
strong-FL

(a) slack = 1

 1

 10

 100

 1000

 10000

1 8 16 24 32 40 48 56 64

ti
m

e
 (

m
s
)

threads

lock-free
weak-FL

medium-FL
strong-FL

(b) slack = 10

 1

 10

 100

 1000

 10000

1 8 16 24 32 40 48 56 64

ti
m

e
 (

m
s
)

threads

lock-free
weak-FL

medium-FL
strong-FL

(c) slack = 20

 1

 10

 100

 1000

 10000

1 8 16 24 32 40 48 56 64

ti
m

e
 (

m
s
)

threads

lock-free
weak-FL

medium-FL
strong-FL

(d) slack = 100
Figure 5: Queue benchmark performance

tive to all other versions when the slack is 1. However, once
the slack increases, it beats the lock-free alternative (and
the medium-FL list). This is because it enables one thread
to effectively combine multiple pending operations produced
by other threads, while those threads can continue to work
in parallel on producing new operations. Given that the
strong-FL property implies the medium-FL property, this
example shows that, at least in our prototype implementa-
tions, the stronger correctness condition does not necessarily
imply worse performance.

6. FORMAL MODEL
The formal definitions of the three kinds of futures lin-

earizability are straightforward generalizations of the stan-
dard linearizability definition [10]. For simplicity and brevity,
we assume that each future is evaluated at most once, and
only by the thread that created it.

6.1 Model
We first describe the standard linearizability model, and

then discuss extensions to encompass the different degrees
of futures linearizability.

Threads are sequential : they perform one method call at
a time. (Later, we will relax this condition for method calls
that return futures, allowing method calls issued by a sin-
gle thread to overlap in constrained ways.) A method call
is split into two events: an invocation event and a later re-
sponse event. An execution of a concurrent system is mod-

eled by a history, a finite sequence of method invocation
and response events. A subhistory of a history H is a sub-
sequence of the events of H. We write a method invocation
as 〈x m A〉, where x is an object, m is a method (and argu-
ments) and A is a thread. We write a method response as
〈x t A〉 where t is a value (possibly void) or an exception.
Sometimes we refer to an event labeled with thread A as a
step of A.

A response matches an invocation if they have the same
object and thread. A method call in a history H is a pair con-
sisting of an invocation and the next matching response. For
a method call m, its delimiting events are denoted inv(m)
and res(m). An invocation is pending in H if no matching
response follows the invocation. An extension of H is a his-
tory constructed by appending responses to some (possibly
zero) pending invocations of H. The history complete(H) is
the subsequence of H consisting of all matching invocations
and responses.

For a thread A, the thread subhistory, H|A is the sub-
sequence of events in H whose thread names are A. For
an object x, the object subhistory H|x is similarly defined.
Histories H and H ′ are equivalent if for every thread A,
H|A = H ′|A. A thread or object history is well-formed if
every response has an earlier matching invocation.

A method call m0 precedes a method call m1 in history
H if m0 finished before m1 started: that is, m0’s response
event occurs before m1’s invocation event in H. Precedence
defines a partial order on the method calls of H: m0 ≺H m1.

 1

 10

 100

 1000

 10000

 100000

1 8 16 24 32 40 48 56 64

ti
m

e
 (

m
s
)

threads

lock-free
weak-FL

medium-FL
strong-FL

(a) slack = 1

 1

 10

 100

 1000

 10000

1 8 16 24 32 40 48 56 64

ti
m

e
 (

m
s
)

threads

lock-free
weak-FL

medium-FL
strong-FL

(b) slack = 10

 1

 10

 100

 1000

 10000

1 8 16 24 32 40 48 56 64

ti
m

e
 (

m
s
)

threads

lock-free
weak-FL

medium-FL
strong-FL

(c) slack = 20

 1

 10

 100

 1000

 10000

1 8 16 24 32 40 48 56 64

ti
m

e
 (

m
s
)

threads

lock-free
weak-FL

medium-FL
strong-FL

(d) slack = 100
Figure 6: Linked list benchmark performance

A history H is sequential if the first event of H is an
invocation, and each invocation, except possibly the last,
is immediately followed by a matching response. If S is a
sequential history, then ≺S is a total order. A sequential
specification for an object x is a prefix-closed set of sequen-
tial histories called the legal histories for x. A sequential
history H is legal if each object subhistory H|x is legal for
x.

For a history H, a partial order ≺ extends ≺H if for
method calls m0,m1 of H, m0 ≺H m1 implies m0 ≺ m1,
but not necessarily vice-versa. (Informally, different choices
for ≺ will correspond to strong, medium, and weak futures
linearizability.)

Definition 6.1. For history H, and partial order ≺ ex-
tending ≺H , H is ≺-linearizable if it has an extension H ′

and there is a legal sequential history S, with no pending
invocations, such that

L1 complete(H ′) is equivalent to S, and

L2 if method call m0 ≺H′ m1, then m0 ≺S m1 in S.

We refer to S as a ≺-linearization of H.
Definition 6.1 generalizes the usual notion of linearizabil-

ity in two ways: first, we do not require thread histories to
be sequential, and second, we require that ≺S extends ≺ as
well as ≺H , a stronger requirement than the linearizability
condition that ≺S extends ≺H . We will use the partial order

≺ to capture the additional constraints on method ordering
imposed by the various futures linearizability conditions.

6.2 Properties
A method is total if it is defined for every object state:

for example, a deq() method that throws an exception on an
empty queue. We now show that ≺-linearizability by itself
never forces a thread with a pending invocation of a total
method to block.

Theorem 6.2. Let inv(m) be an invocation of a total
method. If 〈x inv P 〉 is a pending invocation in a ≺-linearizable
history H, then there exists a response 〈x res P 〉 such that
H · 〈x res P 〉 is also ≺-linearizable.

Proof. Let S be any≺-linearization of H. If S includes a
response 〈x res P 〉 to 〈x inv P 〉, we are done, since S is also
a ≺-linearization of H ·〈x res P 〉. Otherwise, 〈x inv P 〉 does
not appear in S either, since ≺-linearizations, by definition,
include no pending invocations. Because the method is total,
there exists a response 〈x res P 〉 such that

S′ = S · 〈x inv P 〉 · 〈x res P 〉

is legal. S′, however, is a ≺-linearization of H · 〈x res P 〉,
and hence is also a ≺-linearization of H.

We have just shown that like linearizability, ≺-linearizability
is non-blocking : a pending invocation of a total method is
never required to wait for another pending invocation to
complete.

Also like linearizability, ≺-linearizability is compositional :

Theorem 6.3. H is ≺-linearizable if, and only if, for
each object x, H|x is ≺-linearizable.

Proof. The “only if” part is immediate from the defini-
tions.

For each object x, pick a ≺-linearization Hx of H|x. Let
Rx be the set of responses appended to H|x to construct
that ≺-linearization, and let ≺x be the resulting total order
on method calls of x. Let H ′ be the history constructed by
appending to H each response in Rx, for all objects x, in
any order.

To show that H is ≺-linearizable, we argue by induction
on the number of method calls in H ′. For the base case, if
H ′ contains only one method call, then it is sequential, thus
trivially ≺-linearizable. Otherwise, assume the claim for ev-
ery H ′ containing fewer than k > 1 method calls. For some
object x, the last method call m in H ′|x must be maximal
with respect to ≺: that is, there is no m′ such that m ≺ m′.
Let G′ be the history defined by removing m from H ′. Be-
cause m is maximal with respect to ≺, H ′ is equivalent to
G′ ·m. By the induction hypothesis, G′ is ≺-linearizable to a
sequential history S′, and both H ′ and H are ≺-linearizable
to S′ ·m.

A compositional property is sometimes called local [11].

6.3 Extension to Futures
For simplicity, we assume each future is evaluated at most

once by the thread that created it. For each method m that
returns a Future<T> object, we assume there is a corre-
sponding method m̃ that returns a T object, and that the
meaning of m is given by the object’s sequential specifica-
tion.

We model futures through simple re-writing rules. Let H
be a history. Each Future<T> object in H is associated with
two method calls: a first call m that creates the future, and
a second call that evaluates it, both executed by a thread A.
We will rewrite each such pair as a single call m̃ that returns
a value of type T, yielding a new history H̃. While the
method call precedence order ≺H is assumed to be total on
H|A, the rewritten precedence order ≺H̃ is not necessarily

total on H̃|A. We then specify a partial order ≺F extending

≺H̃ , and require that H̃ be ≺F -linearizable.
The exact rewriting rule depends on whether we are con-

sidering strong, medium, or weak futures linearizability.

Strong Futures Linearizability.
Construct H̃ by replacing m with m̃, treating the future

object as a regular variable, and the future evaluation step
as a simple assignment.

Definition 6.4. H is strong futures linearizable if H̃ is
≺H̃-linearizable.

Weak Futures Linearizability.
Construct Ĥ by replacing the invocation step of m with

the invocation step of m̃, deleting the response step of m,
deleting the future evaluation’s invocation step, and replac-
ing the future evaluation’s response step with the response
step of m̃.

Definition 6.5. H is weak futures linearizable if Ĥ is
≺Ĥ-linearizable.

Medium Futures Linearizability.
Construct Ĥ just as for weak futures linearizability. If m0

and m1 are future creation calls in H, by the same thread
on the same object, such that m̃0 and m̃1 are overlapping in
Ĥ, then they are unordered by weak futures linearizability,
but should be ordered by medium futures linearizability. We
define ≺m by strengthening ≺Ĥ to order such calls.

m̃0 ≺m m̃1 if

{
m̃0 ≺H̃ m̃1, or

m̃0, m̃1 ∈ H̃|A ∩ H̃|x and m0 ≺H m1.

Definition 6.6. H is medium futures linearizable if Ĥ
is ≺m-linearizable.

Corollary 6.7. Strong, medium, and weak futures lin-
earizability are all non-blocking.

Corollary 6.8. Strong, medium, and weak futures lin-
earizability are all compositional.

7. RELATED WORK
Halstead [5] originally proposed futures as benign annota-

tions for side-effect-free computations. These futures were
untyped and implicit: any object reference could be a fu-
ture, and a run-time check was needed on each dereference.
Modern futures are usually typed, and future creation and
evaluation are explicit.

Liskov and Shrira [13] propose the notions of call-streams
and promises. A call-stream allows one thread to make a se-
quence of remote procedure calls to another. Each such call
returns immediately with a promise object, a kind of typed
future that can be evaluated later to get the call’s results. In
our terminology, call-streams and promises satisfy medium
futures linearizability, except with respect to streams instead
of objects. Call-streams are intended for remote procedure
calls, and make use of batching to reduce communication
costs. Our treatment here is intended for shared objects in
multicore systems, and utilizes type-specific optimizations,
e.g., combining and elimination.

As noted, futures were originally proposed for side-effect-
free computations. Welc et al. [19] consider the question
of how futures should behave in languages like Java, where
side-effects are common. They propose that futures should
satisfy strong futures linearizability, and describe how to
extend a JVM to support a speculative implementation of
futures satisfying this property. Their futures implementa-
tion is general-purpose, and does not consider type-specific
optimizations such as combining and elimination.

Scherer and Scott [16] propose dual data structures, ob-
jects whose methods are split into a request method, that
registers the invocation and returns a ticket, and a follow-up
method that takes the ticket as an argument, and returns
either the request’s response or a “not ready” indicator (for
example, if trying to dequeue from an empty queue). If we
interpret the ticket returned by a request as a kind of future,
and the matching successful follow-up as that future’s evalu-
ation, then dual data structures satisfy weak futures lineariz-
ability. Note that the motivation for dual data structures is

to provide a new way to implement linearizable partial meth-
ods, which is distinct from our motivation of using futures as
a means of deploying highly-concurrent, type-specific tech-
niques for scalable shared-memory data structures.

Futures provide a systematic and clean way to encapsu-
late a variety of optimization techniques, including elimina-
tion [8, 15, 17], where operations cancel one another without
synchronizing at the object, combining [3, 4, 9] and flat com-
bining [7], where a single thread executes method calls on
behalf of multiple concurrent threads.

8. DISCUSSION
We have considered the use of futures in a novel con-

text of long-lived shared data structures. We have shown
that, in this context, futures enable multiple efficient op-
timizations, such as combining, elimination, flexible evalua-
tion scheduling, contention reduction, etc. To make effective
use of futures and to define which optimizations are permit-
ted, we have proposed several correctness conditions, each
extending linearizability. We have constructed three stan-
dard data structures – queues, stacks and linked lists – sat-
isfying different correctness conditions and compared their
performance with well-known lock-free alternatives. Our ex-
perience shows that in most cases the versions of the data
structures satisfying the weakest correctness condition pro-
vide significantly better performance, up to two orders of
magnitude. Furthermore, even the versions satisfying the
strongest correctness condition substantially outperform the
lock-free alternatives in certain cases.

Finally, a word about future work. We have not exhausted
the optimizations permitted by futures. For example, our
implementation of the linked list under medium futures lin-
earizability does not allow a thread that issues operations
such as inserting 3 and then inserting 2 to reorder those op-
erations, because if it did, another thread might observe 2
but not 3 in the list. This danger could be averted, and the
operations reordered, if the thread were to lock the shared
list and apply multiple operations in a kind of atomic trans-
action. A promising area of future work is to determine
whether such transaction-based approaches are scalable.

9. ACKNOWLEDGMENTS
We are grateful to Tim Harris, Yossi Lev, Mark Moir and

anonymous reviewers for valuable feedback.

10. REFERENCES
[1] Bernstein, P., Hadzilacos, V., and Goodman, N.

Concurrency Control and Recovery in Database
Systems. Addison Wesley Publishing Company, 1987.

[2] Calciu, I., Dice, D., Harris, T., Herlihy, M.,
Kogan, A., Marathe, V. J., and Moir, M.
Message passing or shared memory: Evaluating the
delegation abstraction for multicores. In Proceedings of
OPODIS (2013), pp. 83–97.

[3] Goodman, J. R., Vernon, M. K., and Woest,
P. J. Efficient synchronization primitives for
large-scale cache-coherent multiprocessors. In
Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (1989), pp. 64–75.

[4] Gottlieb, A., Lubachevsky, B. D., and Rudolph,
L. Basic techniques for the efficient coordination of

very large numbers of cooperating sequential
processors. ACM Trans. Program. Lang. Syst. 5, 2
(Apr. 1983), 164–189.

[5] Halstead, R. H. Multilisp: A Language for
Concurrent Symbolic Computation. ACM Trans.
Program. Lang. Syst. 7, 4 (Oct. 1985), 501–538.

[6] Harris, T. L. A pragmatic implementation of
non-blocking linked-lists. In Proceedings of the
International Conference on Distributed Computing
(DISC) (2001), pp. 300–314.

[7] Hendler, D., Incze, I., Shavit, N., and Tzafrir,
M. Flat combining and the
synchronization-parallelism tradeoff. In Proceedings of
ACM SPAA (2010), pp. 355–364.

[8] Hendler, D., Shavit, N., and Yerushalmi, L. A
scalable lock-free stack algorithm. J. Parallel Distrib.
Comput. 70, 1 (2010), 1–12.

[9] Herlihy, M., Lim, B.-H., and Shavit, N. Scalable
concurrent counting. ACM Trans. Comput. Syst. 13, 4
(Nov. 1995), 343–364.

[10] Herlihy, M., and Shavit, N. The Art of
Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

[11] Herlihy, M. P., and Wing, J. M. Linearizability: a
correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst. 12, 3 (July 1990),
463–492.

[12] Lamport, L. How to Make a Multiprocessor
Computer That Correctly Executes Multiprocess
Programs. IEEE Transactions on Computers C-28, 9
(Aug. 1979), 690–691.

[13] Liskov, B., and Shrira, L. Promises: Linguistic
support for efficient asynchronous procedure calls in
distributed systems. In Proceedings of the ACM
Conference on Programming Language Design and
Implementation (PLDI) (1988), pp. 260–267.

[14] Michael, M. M., and Scott, M. L. Simple, fast,
and practical non-blocking and blocking concurrent
queue algorithms. In Proceedings of the ACM
Symposium on Principles of Distributed Computing
(PODC) (1996), pp. 267–275.

[15] Moir, M., Nussbaum, D., Shalev, O., and Shavit,
N. Using elimination to implement scalable and
lock-free fifo queues. In Proceedings of ACM SPAA
(2005), pp. 253–262.

[16] Scherer, W. N., and Scott, M. L. Nonblocking
concurrent data structures with condition
synchronization. In Proceedings of DISC (2004),
pp. 174–187.

[17] Shavit, N., and Touitou, D. Elimination trees and
the construction of pools and stacks: Preliminary
version. In Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures (SPAA) (1995),
pp. 54–63.

[18] Treiber, R. Systems Programming: Coping with
Parallelism. Technical Report RJ 5118. IBM Almaden
Research Center, 1986.

[19] Welc, A., Jagannathan, S., and Hosking, A. Safe
futures for java. In Proceedings of the ACM Conference
on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA) (2005), pp. 439–453.

	Introduction
	Futures and Long-Lived Objects
	Futures and Linearizability
	Exploiting Futures
	Stack Algorithm
	Queue Algorithm
	Linked List Algorithm

	Evaluation
	Stacks
	Queues
	Linked Lists

	Formal Model
	Model
	Properties
	Extension to Futures

	Related Work
	Discussion
	Acknowledgments
	References

