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Abstract Recent observations regarding the structural simplicity of algorithm configuration landscapes 5

have spurred the development of new configurators that obtain provably and empirically bet- 6

ter performance. Inspired by these observations, we recently performed a similar analysis of 7

AutoML Loss Landscapes – that is, the relationship between hyper-parameter configurations 8

and machine learning model performance. In this study, we propose two new variations of 9

an existing, state-of-the-art hyper-parameter configuration procedure. We designed each 10

method to exploit a specific property that we observed common among most AutoML loss 11

landscapes; however, we demonstrate that neither are competitive with existing baselines. 12

In light of this result, we construct artificial algorithm configuration scenarios that allow 13

us to show when the two new methods can be expected to outperform their baselines and 14

when they cannot, thereby providing additional insights into AutoML loss landscapes. 15

1 Introduction 16

In recent years, a large variety of methods for automating machine learning have emerged to 17

automatically select a machine learning training algorithm and model, and then configure its hyper- 18

parameters (Bergstra et al., 2011; Bergstra and Bengio, 2012; Jamieson and Talwalkar, 2016; Klein 19

et al., 2017; Kandasamy et al., 2017; Li et al., 2017, 2020; Fusi et al., 2018; Falkner et al., 2018; Yang et al., 20

2019), thereby making machine learning faster and easier to use for data scientists and non-experts 21

alike. In parallel to this work, a growing amount of attention has been devoted to studying the 22

landscapes – that is, the relationship between algorithm parameter settings and performance – of a 23

related problem: The configuration of algorithms for solving NP-hard problems (Pedersen, 2010; 24

Yuan et al., 2010, 2012; Pushak and Hoos, 2018; Harrison et al., 2019, 2020, 2021; Asi and Duchi, 2019; 25

Treimun-Costa et al., 2020; Cleghorn and Ochoa, 2021). These insights, for example, the observation 26

that individual algorithm parameters tend to elicit uni-modal responses in performance (Pushak 27

and Hoos, 2018), have already successfully translated into new, state-of-the-art configurators with 28

provably (Hall et al., 2020) and empirically (Pushak and Hoos, 2020) better performance. 29

Comparatively little is known about AutoML loss landscapes (Garciarena et al., 2018; Pimenta 30

et al., 2020), which relate machine learning training algorithm’s hyper-parameters to the resulting 31

model’s validation loss. This gap inspired our own recent study of AutoML loss landscapes (Anony- 32

mous et al., 2022), in which we observed two common trends in the hyper-parameters of individual 33

machine learning models: First, they appear to induce landscapes that are uni-modal (or very close 34

to it); and second, they appear to have relatively benign hyper-parameter interactions. In particular, 35

we observed that a simplistic configuration procedure that optimizes each hyper-parameter a single 36

time, in a random order, can find hyper-parameter configurations tied with optimal with very high 37

probability. In light of these observations, existing hyper-parameter configuration procedures may 38

be spending larger-than-necessary amounts of their budgets evaluating configurations in regions 39

of the hyper-parameter configuration space that can be reasonably assumed to be of poor quality. 40

For this reason, using relatively simple surrogate models that incorporate our prior expectation 41

regarding the structure of the landscapes may help to improve the efficiency of configuration 42
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procedures by cutting down on unnecessary configuration evaluations. However, both of our 43

proposed surrogate models (see Section 2) proved to be too simple, resulting in similar or worse 44

performance compared to BOHB (Falkner et al., 2018) for most of the real-world AutoML scenarios 45

we studied (see Section 4). To investigate why, we evaluated the methods on four hand-crafted 46

benchmark scenarios (see Section 3), which provides additional insights into a) the structure of 47

AutoML loss landscapes, b) why these particular methods did not perform as well as expected, and 48

c) under which conditions they can be expected to perform well. 49

2 Experimental AutoML Procedures 50

We propose two modifications to BOHB (Falkner et al., 2018) (which uses Bayesian optimization), 51

which both involve replacing the tree-structured parzen estimator (TPE) (Bergstra et al., 2011) 52

model with simpler, more constrained surrogate models, which were chosen to reflect one of the 53

structural properties that we observed in AutoML loss landscapes (Anonymous et al., 2022): 54

• Convex quadratic approximation (CQA) surrogate models (Rosen and Marcia, 2004). In fact, the 55

results of our landscape analysis revealed that AutoML loss landscapes are not convex; however, 56

it may still be helpful to use a convex quadratic function as a surrogate model for the landscape, 57

as it is perhaps the simplest 𝑛-dimensional model that is constrained to be uni-modal. 58

• B-Spline basis surrogate models. Given that interactions between hyper-parameters in AutoML 59

loss landscapes are relatively benign, fitting a linear model to a B-spline basis function (Eilers 60

and Marx, 1996) is a natural choice. These models are known to provide high-quality and stable 61

approximations, and they force the fitted model to contain no hyper-parameter interactions. 62

Similar to BOHB’s TPE model, each of our surrogate models attempt to approximate the full 63

AutoML loss landscapes. In the case of the convex quadratic surrogate model, this resulted in 64

substantially increased overhead for fitting each of the models. Therefore, in order to avoid slowing 65

down the configuration procedure unnecessarily, we fit the models asynchronously. However, this 66

means that we are required to suggest multiple configurations using the same surrogate model. As a 67

result, we employed a similar, but adapted version of BOHB’s method for suggesting configurations, 68

which does not completely optimize the surrogate model. For more details about each of these 69

design decisions as well as how we fit each model, see Appendix A. 70

3 Experimental Setup 71

The primary goal in this study is to answer the question: “Can AutoML loss landscape structure be 72

exploited to improve configurator performance?”. Therefore, the strategy used to allocate budget 73

between the evaluation of each candidate configuration is effectively an orthogonal design decision 74

that acts as a confounding factor. To isolate the impact of the search method, our preliminary 75

analysis contains only two baselines: BOHB (Falkner et al., 2018) and Hyperband (Li et al., 2017). To 76

further eliminate confounding factors, we used the implementation of Hyperband that is available 77

with the original implementation of BOHB, and used the same values for all of the shared parameters 78

for all four of the configurators. 79

We evaluated each configurator on five scenarios, spanning a range of different machine 80

learning methods and datasets, as well as on four hand-crafted benchmark scenarios. We present 81

a summary of the scenarios in Table 2 in Appendix B.
1
For each of the real-world scenarios, we 82

1
We were unable to reproduce qualitatively similar results for BOHB (Falkner et al., 2018) and Hyperband (Li et al.,

2017) on two of the benchmark scenarios we studied (see Appendix B). However, from personal communication with the

authors, we confirmed that we correctly set up the experiments and reproduced their method of analysis. To the best of

our knowledge, the only differences in our execution environments were the particular machines used and, perhaps, the

versions of some of the software packages.
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performed 25 independent runs of the configurators, and we report the median test loss with 83

95% bootstrap percentile confidence intervals. To obtain a stable estimate for the test loss, we 84

performed 5 independent training runs of the machine learning methods using each configuration 85

and recorded their mean test losses. For the hand-crafted benchmark scenarios, which require 86

substantially less running time to use, we performed 101 independent runs of the configurators 87

and we report the exact loss underlying the landscape. 88

We also evaluated the four configurators on four artificial scenarios that simulate a binary 89

classifier’s error rate, 𝑝 , such that 0 < 𝑝 < 1, thereby allowing us to control the precise shape of 90

the AutoML loss landscape optimized by the configuration procedures. This control allowed us to 91

test hypotheses about the relative behaviour of the methods under various circumstances, thereby 92

providing answers to questions that arose from our results on the real-world benchmark scenarios. 93

We motivate and define the precise landscapes that we used for the simulated classifier scenarios 94

in Chapter 4, based on the results of the real-world scenarios. 95

4 Results 96

We show the anytime configuration results for three configuration budgets for the five real-world 97

scenarios in Table 3 in Appendix C. Overall, none of the methods consistently perform substantially 98

better than any of the others; however, BOHB found the best or tied for the best on each scenario 99

for all configuration budgets. Unfortunately, while both of the new methods we proposed can find 100

high-quality configurations, neither of them appear to consistently work as well as BOHB. 101

Why does a CQA surrogate model not work better? Given that we observed that most 102

AutoML loss landscapes are uni-modal (Anonymous et al., 2022), it seems reasonable to assume 103

that a uni-modal surrogate function should be able to improve the performance of BOHB. However, 104

since the CQA surrogate model is a quadratic function, it implicitly assumes that the landscape is 105

symmetric around the globally optimal configuration – which was frequently not the case in our 106

previous study. Therefore, this could be at least partly responsible for the poor performance that 107

we observed with the CQA surrogate model. 108

To investigate this hypothesis, we compared the performance of the four configuration pro- 109

cedures on two artificial scenarios, where the machine learning algorithm’s loss is simulated as 110

described in Appendix B. In both cases, the simulated classifier had a single real-valued hyper- 111

parameter, 𝑥 , that was searched over the range of values [−1, 1]. For the first scenario, we set the 112

error rate to be 113

𝑝symmetric(𝑥) = |𝑥 |3 + 0.01 (1)

and for the second scenario we set it to 114

𝑝asymmetric(𝑥) =
{
|𝑥 |3 + 0.01 if 𝑥 < 0

1

5
· |𝑥 |3 + 0.01 otherwise.

(2)

In the asymmetric scenario, it should be easier for the configuration procedures to find better- 115

quality configurations, because 50% of the configurations obtain better error rates. However, we 116

observed that when using a CQA surrogate model, the anytime configuration performance on the 117

asymmetric scenario was actually worse than on the symmetric scenario (see Table 1). Furthermore, 118

we see that on the symmetric scenario, using the CQA surrogate model yields significantly better 119

performance than all of the other methods for most configuration budgets; however, on the 120

asymmetric scenario it instead ties with all of the other methods for all but the 10% configuration 121

budget, at which point it still has a small advantage. 122

This example clearly illustrates a rather large failure mode for using a CQAmodel as a surrogate 123

function; even though the asymmetric artificial classifier scenario aligns very closely with the types 124

of landscapes for which we had designed it to perform well, we see that it does not outperform any 125

of the other methods at all. 126
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Table 1: Results from applying the hyper-parameter configurators to the artificial, hand-crafted Au-

toML scenarios. At each configuration budget we show the median loss (percentage of errors)

over the independent configurator runs with 95% bootstrap percentile confidence intervals.

The median losses are shown in boldface if they are within 0.01% of the best loss for a given

configuration budget. Smaller is better.

Symmetric Asymmetric No Interactions Interactions

Budget (10%) 13k (Examples) 13k (Examples) 13k (Examples) 13k (Examples)

CQA 1.01 [1.01, 1.02] 1.04 [1.03, 1.09] 3.56 [2.89, 4.88] 3.08 [2.73, 3.70]

Spline 1.06 [1.03, 1.10] 1.08 [1.04, 1.13] 5.19 [3.93, 6.24] 3.50 [2.99, 4.19]

Random (HB) 1.11 [1.05, 1.20] 1.08 [1.05, 1.12] 5.26 [3.75, 6.39] 4.12 [3.40, 4.43]

TPE (BOHB) 1.12 [1.07, 1.25] 1.08 [1.04, 1.14] 4.32 [3.36, 5.48] 3.68 [3.03, 4.32]

Budget (50%) 67k (Examples) 67k (Examples) 67k (Examples) 67k (Examples)

CQA 1.01 [1.00, 1.01] 1.02 [1.01, 1.03] 2.12 [1.86, 2.29] 1.27 [1.19, 1.37]

Spline 1.02 [1.01, 1.04] 1.02 [1.01, 1.03] 1.27 [1.20, 1.44] 1.60 [1.47, 1.74]

Random (HB) 1.04 [1.02, 1.05] 1.02 [1.01, 1.03] 2.06 [1.84, 2.40] 1.91 [1.77, 2.25]

TPE (BOHB) 1.04 [1.03, 1.10] 1.02 [1.01, 1.04] 2.40 [1.90, 2.83] 1.64 [1.38, 2.04]

Budget (100%) 135k (Examples) 135k (Examples) 135k (Examples) 135k (Examples)

CQA 1.00 [1.00, 1.00] 1.01 [1.00, 1.01] 1.32 [1.21, 1.47] 1.15 [1.12, 1.18]

Spline 1.01 [1.00, 1.02] 1.01 [1.00, 1.02] 1.11 [1.09, 1.13] 1.26 [1.19, 1.31]

Random (HB) 1.02 [1.01, 1.04] 1.01 [1.01, 1.02] 1.65 [1.54, 1.85] 1.59 [1.48, 1.73]

TPE (BOHB) 1.03 [1.01, 1.04] 1.01 [1.01, 1.02] 1.38 [1.23, 1.59] 1.27 [1.16, 1.32]

Why does the spline surrogate model not work better? Similar to the CQA model, we had 127

expected the spline surrogate model to yield better results, given that we observed that most 128

hyper-parameters could be safely configured independently in a random sequence (Anonymous et 129

al., 2022). However, note that this definition of simplicity among hyper-parameter interactions may 130

not actually indicate that a surrogate model can assume that the hyper-parameters are independent 131

of each other. Indeed, the function 𝑓 (𝑥,𝑦) = |𝑥 − 𝑦 | is trivial to minimize when considering either 132

𝑥 or 𝑦 independently – for any fixed value of one, the other can be adjusted to yield an optimal 133

solution. Despite this “simplicity”, a the spline surrogate model would be unable to accurately 134

model the function due to the strong interaction between the hyper-parameters 𝑥 and 𝑦. 135

To investigate, we again compared the performance of the four configuration procedures on 136

two artificial classifier scenarios. Each scenario contained two hyper-parameters, 𝑥 and 𝑦 in [−1, 1]. 137

In one case there were no interactions and the error rate was defined as 138

𝑝no interactions(𝑥,𝑦) =
1

2

· |𝑥 | + 0.01 (3)

(𝑦 was ignored). The second case used the same objective function after applying a 45 degree 139

rotation, that is, the error rate was set to 140

𝑝interactions(𝑥,𝑦) =
1

2 ·
√
2

· |𝑥 − 𝑦 | + 0.01. (4)

In this experiment, the scenario with hyper-parameter interactions should be easier for the 141

configurators, because the basin of optimal solutions lies along the diagonal 𝑥 = −𝑦 (which has 142

length 2 ·
√
2 for 𝑥,𝑦 ∈ [−1, 1]) instead of along the line 𝑥 = 0 (which has length 2 over the same 143

domain). However, we see that this simple rotation of the landscape causes the scenario to become 144

substantially more challenging for the spline model. For both of the larger two configuration 145

budgets, the spline model finds configurations with smaller error rates when there are no hyper- 146

parameter interactions (see Table 1). Similarly, for all three configuration budgets, we see that 147

the spline model finds the best solutions when there are no interactions, whereas when there are 148
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interactions, the CQA model performs best. (Note that both of the landscapes in these scenarios 149

are perfectly symmetric along two axes around the global optima, hence we would expect CQA to 150

do well in both cases – which it does.) 151

This example clearly illustrates an important failure mode for the spline model; even though it 152

may often be sufficient to configure each hyper-parameter independently in a random sequence, it 153

is not necessarily safe to build surrogate models that assume that they are independent. 154

Furthermore, similar to the parameters of the meta-heuristics studied by Yuan et al. (2012), we 155

expect there to be some hyper-parameters with this type of compensatory interaction in AutoML 156

scenarios. For example, consider the learning rate (l_rate) and the momentum decay rate (mdecay) 157

hyper-parameters for the Bayesian neural network scenarios. The learning rate corresponds 158

to the step size taken in each iteration of the optimization process, and the momentum decay 159

rate corresponds to how quickly old gradient information is lost. Specifically, a large value for 160

momentum corresponds to making heavy use of the previous gradients, whereas a small value 161

corresponds to heavily trusting the most recently observed gradient. 162

In cases where gradient measurements are noisy, it is helpful to use large values of momentum to 163

take an average over a larger number of previous gradient observations, thereby smoothing the path 164

taken by the optimizer. This should be particularly important for large step sizes, since otherwise 165

the optimizer will be taking large steps in nearly-random directions, effectively placing too much 166

trust in each gradient observation. Indeed, we empirically observed precisely this relationship 167

between these two hyper-parameters. For example, the best 5% of the 1 234 anytime configurations 168

suggested by any of the configuration procedures have a correlation coefficient of 0.83 for the 169

l_rate and mdecay hyper-parameters on the protein structure dataset. These observations likely 170

explain why the spline model did not produce better results on the real-world scenarios. 171

5 Conclusions and Future Work 172

We introduced two experimental modifications to a state-of-the-art AutoML hyper-parameter con- 173

figuration procedure, BOHB (Falkner et al., 2018). Both of the modifications we made were inspired 174

by the simplicity of the structure we observed in most AutoML loss landscapes (Anonymous et al., 175

2022). However, in both cases, the models were too simple to be effective on real-world problems, 176

which has lead to a deeper understanding of the structure of AutoML loss landscapes. 177

In our first attempt, we replaced the TPEmodel in BOHBwith a convex quadratic approximation 178

(CQA) surrogate model. We assumed that because the CQA model is uni-modal (like most AutoML 179

loss landcapes), it should help guide the search process away from regions of the configuration 180

space that we can reasonably assume contain poor configurations. However, the CQA model 181

implicitly assumes that the landscape is symmetric around the global optimum, which proved to be 182

too strong of an assumption. 183

Our second attempt used a B-spline model, which are known to provide high-quality approxi- 184

mations of functions with no interactions between the variables. This choice was motivated by our 185

observation that configuring each hyper-parameter independently, a single time and in a random 186

order, yields configurations tied with optimal with very high probability (Anonymous et al., 2022). 187

However, this can still occur in the presence of strong compensatory hyper-parameter interactions – 188

that is, when the basin of optimal solutions is diagonally oriented within the landscape. In practice, 189

we expect this type of interaction to occur between some hyper-parameters. For example, we 190

showed that the high-quality configurations for the Bayesian neural network scenarios have a 191

correlation coefficient of 0.83 between the values of their momentum decay rate and learning rate 192

hyper-parameters. 193

Our results suggest a natural next question: What surrogate model can be used to encode our 194

priors, without being too simple, thereby making assumptions that are too strong? 195
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6 Reproducibility Checklist 196

1. For all authors. . . 197

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 198

contributions and scope? [Yes] See Section 4. 199

(b) Did you describe the limitations of your work? [Yes] Yes, in fact that was, arguably, the 200

main contribution of our study. See Section 4. 201

(c) Did you discuss any potential negative societal impacts of your work? [No] We’re not aware 202

of any. Our new methods yielded negative results, and so should have no immediate societal 203

impact. The main impact of our work is a scientific one, which will hopefully contribute to 204

the development of better AutoML methods. 205

(d) Have you read the ethics author’s and review guidelines and ensured that your paper 206

conforms to them? https://automl.cc/ethics-accessibility/ [Yes] 207

2. If you are including theoretical results. . . 208

(a) Did you state the full set of assumptions of all theoretical results? [N/A] 209

(b) Did you include complete proofs of all theoretical results? [N/A] 210

3. If you ran experiments. . . 211

(a) Did you include the code, data, and instructions needed to reproduce the main experimen- 212

tal results, including all requirements (e.g., requirements.txt with explicit version), an 213

instructive README with installation, and execution commands (either in the supplemental 214

material or as a url)? [No] But the code will be made available prior to publication of the 215

paper. 216

(b) Did you include the raw results of running the given instructions on the given code and 217

data? [No] But they will be made available prior to publication of the paper. 218

(c) Did you include scripts and commands that can be used to generate the figures and tables 219

in your paper based on the raw results of the code, data, and instructions given? [No] But 220

they will be made available prior to publication of the paper. 221

(d) Did you ensure sufficient code quality such that your code can be safely executed and the 222

code is properly documented? [Yes] 223

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed 224

hyperparameter settings, and how they were chosen)? [Yes] Yes, see Appendices A and B. 225

(f) Did you ensure that you compared different methods (including your own) exactly on 226

the same benchmarks, including the same datasets, search space, code for training and 227

hyperparameters for that code? [Yes] 228

(g) Did you run ablation studies to assess the impact of different components of your approach? 229

[No] 230

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] See 231

Section 3. 232

(i) Did you compare performance over time? [Yes] 233

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] 234
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(k) Did you report error bars (e.g., with respect to the random seed after running experiments 235

multiple times)? [Yes] 236

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] 237

(m) Did you include the total amount of compute and the type of resources used (e.g., type of 238

gpus, internal cluster, or cloud provider)? [No] 239

(n) Did you report how you tuned hyperparameters, and what time and resources this required 240

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and 241

also hyperparameters of your own method)? [Yes] See Appendix A. 242

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . . 243

(a) If your work uses existing assets, did you cite the creators? [Yes] 244

(b) Did you mention the license of the assets? [Yes] See Appendix A. 245

(c) Did you include any new assets either in the supplemental material or as a url? [No] 246

(d) Did you discuss whether and how consent was obtained from people whose data you’re 247

using/curating? [No] All datasets used are open-sourced. 248

(e) Did you discuss whether the data you are using/curating contains personally identifiable 249

information or offensive content? [No] As far as we are aware, it does not. 250

5. If you used crowdsourcing or conducted research with human subjects. . . 251

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 252

cable? [N/A] 253

(b) Did you describe any potential participant risks, with links to Institutional Review Board 254

(irb) approvals, if applicable? [N/A] 255

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 256

on participant compensation? [N/A] 257
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A Extended Methods 374

In this section, we include additional details about our two experimental hyper-parameter con- 375

figuration methods. Each method was implemented as a modification to the open-source ver- 376

sion of BOHB (Falkner et al., 2018), which was released with a BSD 3-clause license at https: 377

//github.com/automl/HpBandSter. 378

A.1 Convex Quadratic Surrogate Models 379

To fit convex quadratic models, we use the methods proposed by Rosen and Marcia (2004). One 380

advantage of their methods compared to others is that the models are fitted using the 𝐿1 norm, 381

which is more robust than the 𝐿2 norm in the presence of noise and outliers. They further impose 382

the constraint that the fitted models must under-estimate all of the available training data. While 383

it is unclear whether or not this will be beneficial for our application, we do not expect it to 384

harm the performance of the method. Adding such a constraint will increase the residuals of an 385

optimally-fitted model and thus will decrease the accuracy of the model’s predictions. However, a 386

model need not have high predictive accuracy in order to be an effective surrogate model; indeed, 387

an ideal surrogate model only needs two properties: it should be easy to optimize and its global 388

optimum should be in a similar location to the global optimum of the original landscape. 389

To fit the convex quadratic under-estimator models, Rosen and Marcia (2004) proposed two 390

methods, both of which formulate the problem as a two-step procedure. In the first step of each, the 391

problem is simplified by imposing additional constraints on the quadratic model, thereby allowing 392

the problem to be efficiently solved using linear programming. They then proposed to use the 393

incumbent solution from the linear program to initialize the parameters of the non-linear program 394

that is used to fit the general convex quadratic approximation model. This initial guess for the 395

solution to the non-linear program can then be iteratively refined using an interior-point method. 396

In the first method, they force the Hessian to be a diagonal matrix, and in the second, they 397

force it to be a diagonally-dominant matrix. Rosen and Marcia (2004) found that the second method 398
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yielded higher-quality final solutions, therefore, we chose to use it when possible. We fit a general 399

convex quadratic surrogate model using their second method whenever there was enough data 400

to do so (when the number of points evaluated𝑚, was at least (𝑛 + 1) · (𝑛 + 2)/2, where 𝑛 is the 401

number of parameters) and we fit a separable convex quadratic surrogate model otherwise (when 402

2 · 𝑛 + 1 < 𝑚 < (𝑛 + 1) · (𝑛 + 2)/2). 403

The methods proposed by Rosen and Marcia (2004) also require a parameter 𝜖 , which is used 404

to constrain the minimum eigenvalue of the Hessian, thereby improving the conditioning of the 405

surrogate-fitting optimization problems and ensuring that the optimum of the surrogate is unique. 406

In our experiments, we set 𝜖 = 10
−3
, since it is well-known that some hyper-parameters may have 407

relatively little impact on the solution quality (see for example, Hutter et al. (2014) or Chapter ??). 408

Furthermore, we optimized the linear programs using the default linear-programming solver 409

available in python’s SciPy package (Virtanen et al., 2020). To optimize the non-linear programs, 410

we used SciPy’s sequential least squares quadratic programming solver (SLSQP). 411

A.2 B-Spline Basis Surrogate Models 412

Gaussian processes are a more commonly used model in AutoML methods that would likely provide 413

similar-quality results to spline models. Guassian processes are typically chosen, because they 414

can provide a confidence interval around their predictions, which is necessary for most Bayesian 415

optimization methods. However, in our application, where we wish to focus on exploitation rather 416

than trading off between exploration and exploitation, we do not require this confidence interval. 417

Instead, we prefer splines for their lower computational complexity. 418

Another advantage of using splines is that they support various methods for extrapolation. 419

For our application, we chose to extrapolate using a constant function, as this will ensure that 420

unpromising directions for exploration remain unexplored, whereas promising directions for 421

exploration will continue to be explored. 422

To compute the spline basis function, we used the implementation available in scikit-learn’s 423

latest development branch,
2
with the default settings of its parameters: five knots per feature with 424

a third-degree basis. For hyper-parameters that are searched on a linear scale, we used a uniform 425

spacing for the knots, whereas we spaced the knots geometrically for hyper-parameters that are 426

searched on a logarithmic scale. Because we anticipated that the models would frequently be under- 427

constrained, particularly early in the configuration process when relatively little configuration 428

performance data is available, we used LASSO regression with five-fold cross-validation to choose 429

the value of the regularization parameter. 430

A.3 Asynchronous Model Fitting and Selection 431

Since fitting these surrogate models typically requires substantially more time than fitting a TPE 432

model, we fit the models asynchronously. In BOHB, new models are fitted when worker processes 433

report new configuration results to the main process. In our methods, we initiate and check for 434

completed model-fitting processes in this function as well (see Algorithm 1). We limit the number 435

of models being fitted at any given time to one, to ensure that it does not overburden the machine 436

and slow down the evaluation of the configurations. 437

Similarly, BOHB also evaluates each candidate configuration asynchronously. Each time a 438

worker process for BOHB is done evlauating a configuration, the worker process reports its results 439

to the main process. When the main process receives this data, it checks to see if there is sufficient 440

data available to fit a model and if there are no models that are currently being fitted. If both of 441

these conditions are met, the main process will initiate an asynchronous model-fitting process. 442

Once the model-fitting process is complete, it reports its results back to the main process. 443

Similar to BOHB, we fit separate CQA or spline models for each level of fidelity of the perfor- 444

mance estimates. In some early prototypes, we experimented with using a weighted combination 445

2
As of 2021-06-24.
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Algorithm 1 The report function for our experimental AutoML configurators.

1: input
2: 𝑚𝐼 (𝑐), the performance of a newly evaluated configuration

3: 𝑓 , the level of fidelity at which the configuration was evaluated

4: 𝑅, a dictionary mapping fidelities to configuration evaluation results

5: 𝑚𝑜𝑑𝑒𝑙 , a dictionary mapping fidelities to previously-fit surrogate models (or 𝑁𝑜𝑛𝑒)

6: output
7: None

8: procedure report
9: # Save the configuration results and check for model-fitting results

10: 𝑅 [𝑓 ] [𝑐] :=𝑚𝐼 (𝑐)
11: Check if a model-fitting process has completed

12: # Save the new model, if applicable

13: if a model-fitting process reported𝑚𝑜𝑑𝑒𝑙𝑛𝑒𝑤 at fidelity level 𝑓 ′, then
14: if 𝑚𝑜𝑑𝑒𝑙 [𝑓 ′] is 𝑁𝑜𝑛𝑒 or𝑚𝑜𝑑𝑒𝑙𝑛𝑒𝑤 better approximates 𝑅 [𝑓 ′] than𝑚𝑜𝑑𝑒𝑙 [𝑓 ′], then
15: 𝑚𝑜𝑑𝑒𝑙 [𝑓 ′] :=𝑚𝑜𝑑𝑒𝑙𝑛𝑒𝑤
16: # Start a new model-fitting process, if applicable

17: if no model-fitting processes are running, then
18: for each fidelity 𝑓 ∈ 𝑅 in descending order, do
19: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅 [𝑓 ]) ≥ 2 · |𝑃 | + 1, then
20: Initiate a model-fitting process with 𝑅 [𝑓 ]
21: break
22: return

of some or all of the available performance estimates, regardless of their level of fidelity. However, 446

we observed that because some measures of fidelity not only decrease the variability in the perfor- 447

mance estimates, but also substantially change the performance values for a given configuration, 448

doing so typically caused the model-fitting procedure to diverge, thereby producing unreliable 449

surrogate models. Therefore, as soon as sufficient data to fit a model is available for a higher-fidelity 450

performance estimate, the methods switch to fitting models using the higher level of fidelity instead. 451

In some rare cases the addition of new configuration performance data, or the switch from a 452

large training set with low-fidelity performance estimates to a small training set with higher-fidelity 453

performance estimates, can de-stabilize the model-fitting procedure, thereby causing it to diverge. 454

To protect against this, we only accept a new surrogate model if the mean absolute error of a 455

newly-fitted model is not worse than the current accepted model, if one exists. 456

A.4 Suggesting a Configuration 457

The simplest way to use a surrogate model to guide an optimization process is to find the globally 458

optimal solution to the surrogate model and then to evaluate that solution using the original 459

objective function. When the surrogate model is a convex quadratic model, this would be both easy 460

and inexpensive to do. However, surrogate models that are fitted to previous performance data 461

are typically only good approximations of the original landscape near to the previously-evaluated 462

solutions. Therefore, it is common practice to employ, for example, a trust region, which limits how 463

far away from the current incumbent the surrogate model should be trusted. The next configuration 464

to evaluate is then the configuration predicted to have the optimal performance by the surrogate 465

model that is contained within the trust region. 466

However, in our application, the surrogate models are fitted asynchronously, so it is also 467

sometimes necessary for multiple new configurations to be suggested using the same surrogate 468

model. Therefore, rather than using a trust region, we employ a somewhat similar trick to BOHB, 469

whereby we randomly sample new configurations from a mixture of three Gaussian models, where 470

each of the three Gaussian models are parameterized to be centered around the three best known 471
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configurations. To determine which configurations are best, we simply used the largest available 472

fidelity budget evaluation for each of the configurations (see Algorithm 2). 473

Algorithm 2 The suggest function for our experimental AutoML configurators.

1: input
2: 𝑅, A dictionary mapping fidelities to configuration evaluation results

3: 𝑚𝑜𝑑𝑒𝑙 , A dictionary mapping fidelities to previously-fit surrogate models (or 𝑁𝑜𝑛𝑒)

4: 𝐶 , the parameter configuration space

5: output
6: 𝑐𝑛𝑒𝑥𝑡 , a configuration to evaluate

7: procedure suggest
8: # Find the largest-fidelity model, if any

9: Initialize𝑚𝑜𝑑𝑒𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 := 𝑁𝑜𝑛𝑒

10: for each fidelity 𝑓 ∈ 𝑅 in descending order, do
11: if 𝑚𝑜𝑑𝑒𝑙 [𝑓 ] is not 𝑁𝑜𝑛𝑒 , then
12: 𝑚𝑜𝑑𝑒𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 :=𝑚𝑜𝑑𝑒𝑙 [𝑓 ]
13: break
14: # Sample a new configuration using the model, if possible

15: if 𝑚𝑜𝑑𝑒𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is 𝑁𝑜𝑛𝑒 , then
16: Pick 𝑐𝑛𝑒𝑥𝑡 by sampling a random configuration from 𝐶

17: else
18: # Find the best configuration at any fidelity level

19: Initialize an empty dictionary, 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 := {}
20: for each fidelity 𝑓 ∈ 𝑅, in ascending order, do
21: for each configuration 𝑐 ∈ 𝑅 [𝑓 ], do
22: 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 [𝑐] := 𝑅 [𝑓 ] [𝑐]
23: # Sample from a mixture of 3 Gaussian models (see text for details)

24: Sample 9 configurations from around the best 3 configurations in 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒

25: Pick 𝑐𝑛𝑒𝑥𝑡 as the best of the 9 configurations according to𝑚𝑜𝑑𝑒𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡
26: return 𝑐𝑛𝑒𝑥𝑡

We chose to use a mixture of three Gaussian models instead of a single Gaussian model, in case 474

any of the low-fidelity budgets yield high-variance performance estimates that could cause the 475

procedure to select the wrong configuration as the incumbent. We heuristically set the covariance of 476

each of the Gaussian models to be a diagonal matrix parameterized such that the standard deviation 477

of each hyper-parameter is equal to 5% of the total range of values for the hyper-parameter. Finally, 478

each time a configuration needs to be suggested we sample a total of nine candidate configurations 479

from the mixture of Gaussian models and suggest the one predicted to have the best performance 480

by the surrogate model. The number of Gaussians, their standard deviations, and the number 481

of samples drawn were each chosen based on some preliminary experiments on hand-crafted 482

benchmarks. 483

For spline surrogate models, this procedure has the added benefit that we do not need to be 484

able to locate the optimal configuration according the spline model, which may be non-trivial to 485

do, as the model is not guaranteed to be uni-modal. 486

B Benchmark Scenarios 487

The first three scenarios we studied were also used in the original evaluation of BOHB (Falkner 488

et al., 2018). The first two are for a Bayesian neural network trained using stochastic gradient 489

Hamiltonian Monte-Carlo sampling (Chen et al., 2014) with scale adaption (Springenberg et al., 490

2016) on two UCI datsets (Dua and Graff, 2017), Boston housing and protein structure. We were 491

unable to reproduce qualitatively similar results compared to those reported in Falkner et al. (2018) 492

for either of these two scenarios. In each case, we observed that the gap between the performance 493

for BOHB and Hyperband was much smaller than reported in their original study. From personal 494
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Table 2: The five real-world and four hand-crafted scenarios used to compare the four different hyper-

parameter configurators.

Model/Algorithm Dataset/Task Fidelity Type Fidelity Range # HP

Bayesian Neural Network Boston Housing MCMC Steps [500, 10 000] 7

Protein Structure MCMC Steps [500, 10 000] 7

Proximal Policy Optimization Cart Pole Swing-Up # Training Runs [1, 9] 5

Xgboost King-Rook vs King-Pawn # Estimators [2, 128] 6

Histogram Gradient Boosting Covertype Dataset Fraction [1%, 100%] 7

Simulated Binary Classifier Symmetric Dataset Size [500, 5 000] 1

Asymmetric Dataset Size [500, 5 000] 1

No Interactions Dataset Size [500, 5 000] 2

Interactions Dataset Size [500, 5 000] 2

communication with the authors, we confirmed that we correctly set up the experiments and 495

reproduced their method of analysis. To the best of our knowledge, the only differences in our 496

execution environments were the particular machines used and, perhaps, the versions of some of 497

the software packages. 498

The third scenario we used from their study configures the hyper-parameters of proximal policy 499

optimization (Schulman et al., 2017) on the cart pole swing-up reinforcement learning task. In 500

this case, even though the final performance gap between BOHB and Hyperband was also slightly 501

smaller than originally reported, the results were still qualitatively similar. The results that we 502

present for these scenarios in Figure ?? further differ from the original results on the scenarios 503

because we present the median test losses (obtained via a held-out test set) as opposed to the mean 504

validation losses (estimated by the configuration procedures themselves) as was done by Falkner 505

et al. (2015). 506

For the next two scenarios, we configured the hyper-parameters of Xgboost (Chen and Guestrin, 507

2016) on the UCI (Dua andGraff, 2017) king-rook vs king-pawn (Shapiro, 1987) dataset and histogram 508

gradient boosting (scikit-learn’s (Pedregosa et al., 2011) implementation of a machine learning 509

method inspired by LightGBM (Ke et al., 2017)) on the covertype dataset (Blackard and Dean, 1999). 510

For the simulated classifier scenarios, the classifier was constructed such that the variability in 511

the measurements of the landscape mimic the behaviour of a binary classifier with a given error 512

rate on a validation set of a given size. In particular, for each scenario, we defined functions that 513

describe the landscape by mapping configurations to error rates, 𝑝 , such that 0 < 𝑝 < 1. Then, 514

given the error rate, 𝑝 , of a particular configuration and a validation dataset size of 𝑛 (the level 515

of fidelity), we simulated an evaluation of a configuration by randomly drawing 𝑛 trials from a 516

binomial distribution with a success rate of 𝑝 , and we recorded the loss as the number of successful 517

trials divided by the total number of trials, 𝑛. We simulated short training times for the procedure 518

by sleeping for one second per 1 000 instances in the dataset. This simulation ignores the variability 519

in performance due to the random seed used when training a machine learning model; however, it 520

still provides a cheap-to-evaluate and approximately realistic method for generating landscapes 521

with exactly known structure that can be used to evaluate the configurators. 522

C Extended Results 523

In Table 3, we show the results from applying the four hyper-parameter configuration procedures 524

to the real-world AutoML scenarios. As can be seen, neither of the two new experimental methods 525

provide results competitive with the two baselines: BOHB (Falkner et al., 2018) and Hyperband (Li 526

et al., 2017). A similar analysis of other configuration budgets (not shown) yields qualitatively 527

similar results. 528
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Table 3: Results from applying the hyper-parameter configurators to the real-world AutoML scenarios.

At each configuration budget we show the median test loss over the independent configurator

runs with 95% bootstrap percentile confidence intervals. The median losses are shown in

boldface if they are not worse than the best loss for a given configuration budget, according

to a one-sided Welch t-test with a 5% significance level. All losses are scaled by dividing by

the loss of the single best known configuration for each scenario. Smaller is better.

BNN-BH BNN-PS PPO-CP XGB-KR HGB-CT

Budget (10%) 1 580 (Seconds) 2 420 (Seconds) 4 667 (Seconds) 148 (Seconds) 888 (Seconds)

CQA 1.91 [1.46, 2.42] 2.14 [1.63, 4.30] 10.49 [7.67, 13.74] 1.72 [1.44, 2.28] 1.28 [1.18, 1.35]

Spline 1.52 [1.40, 1.79] 1.77 [1.63, 1.87] 13.74 [9.42, 13.74] 1.72 [1.41, 2.41] 1.30 [1.21, 1.42]

Random (HB) 3.10 [1.60, 4.00] 2.13 [1.77, 4.74] 7.73 [6.21, 10.13] 1.91 [1.50, 2.00] 1.22 [1.13, 1.42]

TPE (BOHB) 1.76 [1.45, 2.05] 1.87 [1.56, 3.09] 7.70 [4.57, 9.84] 1.69 [1.47, 2.00] 1.23 [1.14, 1.48]

Budget (50%) 7 899 (Seconds) 12 102 (Seconds) 23 337 (Seconds) 742 (Seconds) 4 442 (Seconds)

CQA 1.44 [1.31, 1.67] 1.97 [1.72, 2.60] 5.73 [3.06, 6.47] 1.91 [1.44, 2.12] 1.17 [1.12, 1.24]

Spline 1.50 [1.42, 1.70] 1.85 [1.55, 2.24] 5.31 [4.10, 8.43] 1.56 [1.41, 1.94] 1.11 [1.10, 1.14]

Random (HB) 1.39 [1.36, 1.57] 1.50 [1.31, 1.83] 4.97 [3.25, 6.86] 1.78 [1.53, 1.97] 1.08 [1.07, 1.10]

TPE (BOHB) 1.38 [1.27, 1.68] 1.24 [1.10, 1.40] 3.59 [2.31, 5.37] 1.37 [1.28, 1.53] 1.09 [1.07, 1.14]

Budget (100%) 15 798 (Seconds) 24 204 (Seconds) 46 674 (Seconds) 1 484 (Seconds) 8 884 (Seconds)

CQA 1.44 [1.31, 1.67] 1.97 [1.62, 2.32] 4.45 [2.92, 6.11] 1.72 [1.41, 2.00] 1.12 [1.12, 1.17]

Spline 1.50 [1.43, 1.77] 1.85 [1.35, 2.24] 4.44 [3.53, 6.51] 1.56 [1.41, 1.94] 1.09 [1.06, 1.13]

Random (HB) 1.39 [1.36, 1.57] 1.50 [1.31, 1.83] 4.67 [2.69, 6.66] 1.72 [1.53, 1.97] 1.08 [1.06, 1.09]

TPE (BOHB) 1.38 [1.27, 1.68] 1.25 [1.10, 1.43] 2.22 [1.76, 3.21] 1.38 [1.31, 1.59] 1.05 [1.03, 1.08]
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