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We describe a general framework for adding the values of two approximate counters to produce a new ap-
proximate counter value whose expected estimated value is equal to the sum of the expected estimated values
of the given approximate counters. (To the best of our knowledge, this is the first published description of any
algorithm for adding two approximate counters.) We then work out implementation details for five different
kinds of approximate counter and provide optimized pseudocode. For three of them, we present proofs that
the variance of a counter value produced by adding two counter values in this way is bounded, and in fact
is no worse, or not much worse, than the variance of the value of a single counter to which the same total
number of increment operations have been applied. Addition of approximate counters is useful in massively
parallel divide-and-conquer algorithms that use a distributed representation for large arrays of counters. We
describe two machine-learning algorithms for topic modeling that use millions of integer counters and con-
firm that replacing the integer counters with approximate counters is effective, speeding up a GPU-based
implementation by over 65% and a CPU-based implementation by nearly 50%, as well as reducing memory
requirements, without degrading their statistical effectiveness.
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1 INTRODUCTION, BACKGROUND, AND RELATED WORK

We will say that a counter is an integer-valued variable whose value is initially 0 and to which two
operations can be freely applied: increment, which replaces the current value k with k + 1, and
read, which returns the current value of the variable. We assume that in a concurrent environment
all the operations on a given counter are observed by all threads to have been performed as if in
some specific sequential order, and so each operation may be regarded as atomic. It is then easy
to see that the result of any read operation on a given counter will be the number of increment
operations performed on that counter prior to the read operation.
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5:2 G. L. Steele Jr. and J.-B. Tristan

Morris (1978) introduced the notion of a probabilistic counter. His idea was to be able to use w
bits to count more than 2% things by actually increasing the counter value in response to only
some increment operations rather than all of them; in one specific case, his algorithm increases
a counter value of k with probability 27%, and a read operation that observes a counter value k
returns 2F — 1 as a statistical estimate of the actual number of times the increment operation has
been performed.

Morris, furthermore, provided a generalization of this algorithm as well as a statistical analysis.
The probabilistic decision made by the increment operation can rely on the output of a random (or
pseudorandom) number generator, and as Morris observes, “The random number generator can
be of the simplest sort and no great demands are made on its properties.” Flajolet (1985) provides
a detailed statistical analysis of the Morris algorithms.

Cvetkovski (2007) describes Sampled-Log Approximate Counting, a variant that has better ac-
curacy over most of the counting range and a lower expected number of actual advances of the
counter. Cstirds (2010) provides a framework and analysis applicable to a more general class of
counter representations and algorithms than those of Morris. Mitchell and Day (2011) introduce
“flexible approximate counters,” in which the probability of increasing the counter value may be
controlled by a user-supplied table. Dice, Lev, and Moir (hereafter “DLM”) (2013) examine the use
of probabilistic counters in a concurrent environment and explore alternate representations for
the counter state.

Tristan et al. (2015) report that replacing standard counters with approximate counters allows
a machine-learning algorithm (topic modeling) using Latent Dirichlet Allocation with Gibbs sam-
pling (LDA Gibbs) on a GPU to make more efficient use of the limited memory on a GPU and
therefore process larger data sets. They also report that the statistical performance of the algo-
rithm remains essentially unchanged, and that, surprisingly, the version using approximate coun-
ters runs faster, despite the fact that incrementing an approximate counter requires generation of
a pseudorandom number as well as other calculations. (Their Figure 6 indicates an overall speed
improvement of approximately 9%.) They suggest two possible reasons for the increase in speed:
(1) probabilistic incrementation performs many fewer actual writes to memory, and (2) less mem-
ory bandwidth is needed when performing bulk reads of the counters.

We have now extended this prior work by implementing distributed versions of the same
algorithm (using either normal integer counters or approximate counters), on eight GPU cards
with an Ethernet interconnect. The arrays of counters are replicated so each GPU has a complete
set of counters, but each GPU otherwise has just % of the total dataset to be analyzed. On each
iteration, each GPU clears its counters, processes its fraction of the dataset, and then uses a
standard (hypercubelike) message-exchange pattern to sum elementwise the eight arrays of
counter values, in such a way that every GPU receives all sums (as for the MPI operation
MPI_ALLREDUCE (Snir et al. (1998), Section 4.11.4)); the version that uses approximate counters
adds approximate counters by using the algorithms that we present in this article. The behavior
is quite similar to that of the single-GPU version reported by Tristan et al.: replacing integer
counters with approximate counters does not affect the statistical performance of the algorithm,
but allows the same hardware to process larger datasets. In one test, either 32-bit integer counters
were used or 8-bit approximate counters; using approximate counters improved the overall speed
of each iteration of the distributed application by over 65%. We have also tested a distributed
multiple-CPU implementation of another algorithm, organized as a stochastic cellular automaton,
that addresses the same topic-modeling problem. We believe that approximate counters will
be increasingly useful in future applications that perform statistical analysis of “Big Data”
(whether using “machine learning” techniques or otherwise) and that large-scale distributed
implementations of these applications will require the ability to add approximate counters.
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Novel contributions of this article (an expanded version of Steele and Tristan 2016):

(1) a notational framework that encompasses many kinds of approximate counter represen-
tation and reconciles some conflicting notation in the literature;

(2) the presentation, using this framework, of a general algorithm for adding approximate
counters so expected estimated value of the sum is equal to the sum of the expected esti-
mated values of the given approximate counters (we believe that this is the first published
algorithm for adding approximate counters);

(3) the derivation of optimized implementations of this general addition algorithm for five
specific kinds of approximate counter;

(4) the presentation of “cookbook” versions of the algorithms (highlighted by framing boxes)
that also check for overflow and therefore are suitable for transcription into actual pro-
grams;

(5) proofs for three kinds of counters that the variance remains bounded when counter values
are added;

(6) speed measurements of multiple algorithms for adding approximate counters; and

(7) speed and quality measurements of distributed implementations of two machine-learning
applications whose performance is greatly improved through the use of approximate
counters and the ability to add approximate counters.

2 A GENERAL FRAMEWORK

Following Cstirds (2010), but generalizing his framework slightly to accommodate the alternate
representations of DLM, we characterize a probabilistic counter that uses representation T, tran-
sition function 7 : T — T, and transition probability function Q : T — [0, 1] as a variable that can
contain values of type T whose value is initially S, (a specific value of type T). Two operations may
be freely applied to such a counter: increment, which with probability Q(s) replaces the current
value s with 7(s) (and with probability 1 — Q(s) does not change the value of the variable), and
read, which returns a value f(s) that may be regarded (i.e., modeled) as a random variable whose
expected value is the number of increment operations performed on that counter prior to the read
operation. The function f is called the unbiased estimator function; Cslirés shows that f may be
uniquely derived from Q.! We require the transition function 7 never to cycle; that is, it satisfies the
property that 7/(Sy) # /(So) if i # j.? As aresult, the possible states of a probabilistic counter pro-
duced by increment operations from the starting value Sy are in one-to-one correspondence with
the natural numbers, and the only reason to choose a representation T other than the natural num-
bers N is for “engineering purposes.” For notational convenience, we will define g = Q(t*(Sp));
this matches the meaning of “q;” as used by Cstirés. We will also define fi = f(r*(S,)), which
corresponds to “f(k)” as used by Cstirés.

If we assume that the pseudo-function random() chooses a real number uniformly randomly (or
uniformly pseudorandomly) from the half-open real interval [0, 1), then the increment and read
operations may be implemented as follows:

!Mitchell and Day (2011) take the opposite approach: their method represents the estimator function f (which they call
“¢”) as a monotonically increasing table and uses a solver to derive the transition probability function Q (which they call
“p”), also represented as a table.

2In practice, it may be acceptable for an implementation of 7 to signal an “overflow error” if it would otherwise be compelled
to repeat a counter state. Some of the pseudocode we present explicitly checks for and signals overflow errors. One way to
handle such a signal is to allow the counter to “saturate” once it reaches its highest possible value; our pseudocode shows
the appropriate assignment statement (if needed) for this purpose.
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1: procedure increment(var X: T)
2. if random() < Q(X) then X « 7(X)

1: procedure read(X: T)
2. return f(X)

That is the essence of it; all the rest is engineering and the statistical analysis behind it. We may
choose T and 7 and Q so 7 is easy to calculate, or Q is easy to calculate, or f is easy to calculate, or
all three. It may be desirable to choose Q to guarantee certain statistical properties, for example, so
the variance of values returned by f can be bounded (and this can be done in various ways), and
perhaps also to choose Q so the dynamic range of the counter will be appropriate for a specific
application.

In addition to the pseudofunction random() already described, which returns a real value (or
floating-point approximation) in the range [0, 1), we will also find it convenient to assume the
availability of two additional pseudofunctions. First, randomBits(j) takes a nonnegative integer j
and returns an integer value chosen uniformly randomly from the 2/ integers in the range [0, 2/)
(which is equivalent to independently and uniformly choosing j bits at random and using them as
binary digits to represent an integer value). Second, allZeroRandomBits(j) takes a nonnegative in-
teger j and returns true with probability 27/ and false with probability 1 — 27/ (which is equivalent
to independently and uniformly choosing j bits at random and testing whether they all happen
to be 0). Note that randomBits(0) always returns 0 and allZeroRandomBits(0) always returns
true.

3 ADDING APPROXIMATE COUNTERS

Generalizing the observation of Csiirés to our framework, f may be derived from Q as follows:

fo= kG = Y -3 =

0<i<k Q(r'(S0) SO) o<izk 1i

Note that fy = 0. Because each probability g; lies in the range [0, 1], we have i > 1, and therefore

the values fi = f(z¥(Sy)) are strictly monotonic in k, and then some: fx + 1 < fi4;. Therefore,
we can uniquely define a representation-finding function ¢ : [0, +c0) — T that given any non-
negative real number v returns 7X(S,), where K is the unique integer such that fx < v < fi41.
Because the function ¢ produces a “quantized” result, it is a left inverse to f but not a right inverse:
o(f(5(Sp))) = t8(Sp) for all k > 0, but in general it is not true that f(¢p(v)) = v; the best we can
say is that f(¢(v)) < v < f(r(p(v))). A general implementation of ¢ is as follows:

1: procedure ¢(v)

2 let S « S,

3 loop

4: let S « 7(S)
5 if v < f(S’) then return S
6 S« S

7. end loop

However, specific counter representations typically permit a much faster (non-iterative) imple-
mentation. Just as an implementation of 7 may in practice signal an overflow error, a specialized
implementation of ¢ may likewise signal an overflow error if its argument is too large.

Given an implementation of ¢ for a specific sort of counter, we can “add” two counter rep-
resentation values x and z so the expected estimated value of the sum x @ z equals the sum of
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their individual expected estimated values (provided that the processes that produced x and z are
statistically independent):

_ Jr(e(f(x) + f(2))) with probability A
XOZ=10(f(x) + f(z)  with probability (1 - A)’
(f(x) + (@) — fle(f(x) + f(2)))
fale(f(x) + f(2) = flo(f(x) + (=)
The expected value of f(x @ z) will then be
A=A fle(f(x) + f(2) + Af (z(o(f (x) + f(2))))
=f(p(f(x) + F@) + A(f((p(f(x) + F))) = flo(f(x) + £(2))))
=flo(f(x) + f(2)) + (f(x) + f(2)) = flo(f(x) + f(2)))
=f(x) + f(2),

where A =

as desired.

We can express this addition operation as an algorithm that modifies a counter X by adding into
it the estimated value of a statistically independent counter Z (we do this so it will be similar in
form to the increment operation):

1: procedure add(var X: T, Z: T)

let v « f(X)

letw « f(2)

letS—ov+w

let K « ¢(S)

let V « f(K)

let W « f(z(K))

let A « %

if random() < A then
X « 7(K)

else

12: X <K

_
—_ O

This algorithm is not terribly mysterious: it adds two counters X and Z by computing their
expected values v and w, adding those values to get a sum S, then mapping that sum back to one
of the two counter states whose expected values straddle S, in such a way that the expected value
of the result is S. The real point is that we will use this general algorithm as a template for addition
algorithms specialized to particular counter representations by inlining specific definitions of f
and 7 and ¢, and then optimizing. This strategy guarantees that appropriate expected values are
maintained. However, it is necessary to provide a separate proof for each kind of counter that the
variance is bounded.

4 GENERAL MORRIS COUNTERS
For the general probabilistic counter defined by Morris,

type T is N So=0 T(x) =x+1 Q(x)=q7*
(where g is a fixed constant equal to 1 + % where a is the parameter used by Morris); it follows

that

q -
qg-1

flo)=
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5:6 G. L. Steele Jr. and J.-B. Tristan

(which is equivalent to the formula a((1 + %)x — 1) given by Morris), and

p(v)=log,((g— Do +1)].

Then, increment and read operations for such probabilistic counters may be described in the fol-
lowing manner:

1: procedure increment(var X: N)
2. if random() < ¢ X then X « X + 1

1: procedure read(var X: N)
g*-1
{q-1)

2: return

We use angle brackets ( - - - ) to indicate a constant (g — 1 in this case) whose value can be computed
at compile time.

If instead we let the counter representation type T be the set of values Z,» = {0,1,2,. .., 2b —
1}, representable in a b-bit word as unsigned binary integers, then the increment operation may
perform overflow checking:

1: procedure increment(var X: Z,»)

2. if random() < ¢~X then

3: ifX #(2°-1)then X « X +1
4: else overflow error

In some implementation contexts, when b is relatively small, it may be worthwhile to tabulate the
functions Q and f—that is, to preconstruct two arrays Q" and f” containing the values of Q(X) and
f(X) for all 0 < X < 2%, but let Q’[2% — 1] = 0 to serve as a sentinel that will effectively enforce
saturation on overflow. Such use of tabulations is certainly worth considering when b = 8, and
perhaps even when b is as large as 16. Then, the increment and read operations are simply:

1: procedure increment(var X: Zys)
2:  if random() < Q’[X] then X « X + 1

1: procedure read(var X: Z,s)
return f’[X]

w»

Counter Z may be added into counter X as follows:

1: procedure add(var X: N, Z: N)
q*-1

2: let v « m

g1

{g-1)

4 letS—v+w

5. letK « Llogq((q -1)S+1)]
g1

6: letVHW

7. let W « @D
8: let A « %
9: if random() < Athen X < K + 1l else X « K

3 letw «

If the computation of the base-q logarithm is not entirely accurate in the computation of K, then it
may fall just under an integer value that it should have equaled or exceeded. If so, then K will be 1
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smaller than it should have been. But this error is benign in this context, because then A > 1, and
so K will be incremented. There will be no further chance to increment K again, but that would
have occurred only with probability commensurate with other floating-point errors.

However, in many practical situations, it is faster to avoid the computation of a logarithm en-
tirely. If the implementation pretabulates the values of f(x) in an array f’ (as already described
above for use by the read operation), then the array can be searched for the correct position. For
this purpose it is best to make f” have length 2° + 2, with f’[X] = f(X) for 0 < X < 2°, and place
a sentinel value—either +co or a very large finite value—in the last position at index 2° + 1. Also,
note that W — V can be simplified to ¢, so is it is helpful to pretabulate g% in a length-2° array
p- Then, for b-bit words with overflow checking, we have:

1: procedure add(var X: Zys, Z: Zyp)

2 letS < f'[X]+ f'[Z]

3. let K « max(X,Z)

4 whileS > f'[K+1]doK « K+1
5. if K < (2° — 1) then

6 let V « f’[K]

7 if random() < (p[K])(S — V) then
8 if K# (2 —1)then X « K +1
9 else overflow error: X « (27 — 1)
10: else X « K

11:  else overflow error: X « (2¢ — 1)

If g = 1.08, for example, then the while loop should iterate no more than 8 times, so this may be
much faster that the calculation of a logarithm in software. (In Section 13, we confirm this general
intuition by presenting a C implementation of this technique and measurements of its use within
one specific computational environment.)

Note that the explicit overflow checking only ensures that the value of K, once computed, will
fit in a b-bit word. It is assumed that the computation of S will use an arithmetic with sufficient
range to avoid overflow. This is typically not difficult in practice: if b = 8, and S is computed using
standard IEEE 754 double-precision floating-point operations, then the computation of S will never
suffer overflow.

Morris asserts (without proof) that the variance in the estimated value of a counter after n in-
crement operations have been performed is n(n — 1)/2a = q 211 (n - 1). In Section 11 of this article,
our Lemma 11.1 provides an explicit proof of a generahzatlon of this proposition, and Theorem 11.4
shows that when add operations are also used, the variance is bounded by ;ln(n —1) + p where
p= m Note that p lies in the range [6, 4) for 1 < g < 2, so this is a reasonably tight bound
on the variance even for small n.

5 BINARY MORRIS COUNTERS

For the simplest sort of probabilistic counter defined by Morris, we choose g = 2 (which corre-
sponds to a = 1 as used by Morris):

type T is N So=0 T(x) =x+1 Q(x) =27*.
It follows that

f(X) =2" - 1,
@(v) = [log,(v+1)].
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5:8 G. L. Steele Jr. and J.-B. Tristan
This makes the increment and read operations especially simple:

1: procedure increment(var X: N)
2. if allZeroRandomBits(X) then X « X + 1

1: procedure read(var X: N)
22 return 2X —1

Skilled programmers know various clever ways to compute 2% — 1, depending on whether the
result is to be represented as an integer (perhaps by using a left-shift operation) or as a floating-
point value (using a scaling operation to adjust the exponent field). For an integer result, the read
operation might be simply:

1: procedure read(var X: N)
2:  return (1<<X) -1

Note that in C, C++, the Java programming language, or other languages that have similar rules
for the shift operator <<, it may be important to write the literal 1 in the expression 1 << X as, say,
1L or Tull to ensure that the result has a specific (sufficiently large) type, such as (respectively)
long or unsigned long long; alternatively, it may be appropriate to use an explicit cast, as in this
example:

uint64_t read(uint8_t x) {
return (((uint64_t) 1) << x) - 1;
}

It is especially easy to add counter Z into counter X: because f(k + 1) = 2k*1 —1 > 2(2%k —1) =
2 f(k), it follows that V is always equal to f(max(X,Z)), so S —V = f(min(X, Z)), and there-

fore A = 2‘;“[;5?—;)2_)1 This leads to a very simple procedure that does not need to implement the ¢

function explicitly:

1: procedure add(var X: N, Z: N)

2:  let K « max(X,Z)

32 let L « min(X,Z2)

4. if allZeroRandomBits(K — L) then

5 if —allZeroRandomBits(L) then X « K + 1
6 else X « K
7. else X « K

With overflow checking, increment and add look like this:

1: procedure increment(var X: Zys)

2. if allZeroRandomBits(X) then

3: if X # (20 —1)then X « X +1
4 else overflow error
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1: procedure add(var X: Zyv, Z: Zyp)

2. let K « max(X, Z)

3. let L « min(X, Z)

4. if allZeroRandomBits(K — L) then

5: if —allZeroRandomBits(L) then

6 ifK#(2"-1)then X « K +1
7 else overflow error: X « K

8 else X « K

9: elseX « K

While the binary Morris approximate counter is in principle a special case of the general Morris
approximate counter with g = 2, our addition algorithm is rather different from the one presented
for the general case. Therefore, in Section 11, we also present Theorem 11.6, a separate proof of
bounded variance for binary Morris approximate counters when add operations are used, showing

that the variance is bounded by @ (no additive constant p is needed).

6 CSUROS FLOATING-POINT COUNTERS

For the general (ie., scaled) floating-point counters defined by Cstirds (2010), which are
parametrized not only by a base g (1 < g < 2) but also by M = 2° for some integer s > 0, we have

type T is N So=0 T(x) =x+1 Q(x) = g~ x/MJ,

For convenience, let p1 = %; it follows that

f(x) = (g + (x mod M))qLX/MJ —

p(v)y=d-M+ r)ti‘u —yJ where d = {logq uJ
q H

In effect, all bits of an integer x except the s lower order bits are treated as a binary® exponent
e = [x/M], and the s low-order bits of x (i.e., x mod M) are treated as a floating-point significand
with an implicit leading 1-bit (that’s why you have to add y before multiplying by g~ 1*/M); finally,
 is subtracted so the integer counter representation 0 will map to the estimated value 0 (and, most
pleasantly, every integer representation x less than M maps to the estimated value x). Again the
increment operation is very simple, and read is reasonably simple:

1: procedure increment(var X: N)
2. if random() < ¢ X/M) then X « X + 1

1: procedure read(var X: N)
2. return (y + (X mod M))gX/MI —

3Cstirés (2010) primarily assumes binary counters (g = 2), but also briefly discusses “scaled floating-point counters,” relat-
ing them to earlier work by Stanojevi¢ (2007). These bear the same relationship to binary Csirds floating-point counters
that general Morris counters have to binary Morris counters. We wish to add the observation that the primary motivation
for requiring M to be a power of 2 is to make it easy to compute |x/M | and x mod M using bit shifting and masking
operations. For some applications, using base-2 Cstirds floating-point counters with M an integer that is not a power of
2 may well be preferable to limiting M to be some power of 2 and then choosing a value of g other than 2. For other
applications, it may be convenient to choose some g < 2 but then choose M so 1 is an integer. Our pseudocode assumes
only that M is an integer unless otherwise indicated, and the proofs in Section 11 assume only that M is an integer.
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5:10 G. L. Steele Jr. and J.-B. Tristan

And again, in some implementation contexts, if the range of values for X is relatively small,
it may be worthwhile to tabulate the functions Q and f as arrays Q” and f” (but letting the last
element of Q’ be 0) so the increment and read operations are simply:

1: procedure increment(var X: Z,»)

2. if random() < Q’[X] then X « X + 1
1: procedure read(var X: Z,)

2. return f'[X]

But for g = 2 and M = 2%, shifting and bitwise operations can be useful (we show a version of
increment with overflow checking):

1: procedure increment(var X: Z,»)

2. if allZeroRandomBits(X >> s) then

3: if X # (2° — 1) then X « X + 1 else overflow error
1: procedure read(var X: N)

2. return (M + (X & (M — 1))) < (X >5s)) —

In general (for any q and M), addition goes like this:

1: procedure add(var X: N, Z: N)

2 letv « (u+ (X mod M))gX/M —

3. letw « (u+ (Z mod M))qt?/™M —
4 letS—v+w
5

letd — |log, = |
6: letK<—d-M+[Sqﬂ—yJ

7. let V « (u+ (K mod M))gqK/M) —

K+1
g letW « (u+ ((K + 1) mod M))qL ] —-u
9: let A « XI/SV‘(/

10:  if random() < Athen X « K + 1 else X «— K

Note that d > 0; indeed, d > max(|X/M], [ Z/M]).

Now, 1 < g < 2 and 0 < r < 1 together imply q" < 2; therefore I_SZ# -l = LL’;W -l =
LIS;J; —pl=1q"p—pl <q'p—p=(q —1p < p<M. Therefore, K mod M = LS“‘ Hl,
qu 7 r

and so | K/M] = d and we have

(u+ (K mod M))qt¥/M — 1)

-

o 2] e
|
(

S
(-
=5 = (((S+p) = (S + p) mod ¢%)) ~ pr)
=(S + p) mod ¢“.

Next, it’s worth simplifying W — V by case analysis as follows:
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(a) If (K mod M) < M — 1, then | (K + 1)/M] = |[K/M], and

W =V = ((u+ (K + 1) mod M))g DM — 1) — ((u+ (K mod M))q&/M — )
=+ (U + 1) mod ))g /M) — (4 + (K mod A g /!
= (((K + 1) mod M) — (K mod M))qLK/Au
Z(((K+ 1) — K) mod M)qLK/MJ = LK/,

(b) If (K mod M) = M — 1, then | (K + 1)/M]| = |[K/M] + 1:

W = V=((u+ (K + 1) mod M))g-® DM — ) — (g + (K mod M))q*/M) — )
= (1 + (K + 1) mod M) )qt¥/MI* — (11 + (K mod M))qLK/M]
= (qu + g((K + 1) mod M))g"X /M) — (4 + (K mod M))qt</M)
= (qy +q-0—pu— (M- 1))qLK/MJ = glk/MI,

Therefore, in all cases, W — V = qLK/MJ = qd.
So, after some simplification, we have:

1: procedure add(var X: N, Z: N)
22 letS « (u+ (X mod M))gX/MJ 4
(1 + (Z mod M))gt#/™M) — (2p1)
S+p
3 letd « [logq TJ
4 1etK<—doM+lSq%—,uJ
5. if random() < Sq% mod 1 then X « K+ 1else X « K

However, in practice it may be faster to search an array f”’ as described in Section 4.

If we restrict our attention to ¢ = 2 and M = 2°, and assume the use of a machine word B bits
wide for representing estimated values (in contrast to words b bits wide that may be used for
counter representation values) and an instruction to count the number of leading zeros in a B-bit
word, then we can recast the algorithm (with overflow checking) as follows (letting S’ = S + 2 > 0):

1: procedure add(var X: Zyv, Z: Zyp)
2 letS  ((Zos)(M+ (X &(M - 1)) < (X >>5)) +
((Zop) (M + (Z & (M = 1)) < (Z>>5)) - M
let d < (B — (s + 1)) — countLeadingZeros(S")
letK « (d<<s)+(§'>d)-M
if K < (2 — 1) then
if randomBits(d) < (S’ & ((1 << d) — 1)) then
ifK# (@2 -1)thenX « K+1
else overflow error: X « (20 — 1)
else X « K
10:  else overflow error: X « (2¢ — 1)

h A A T
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Section 11 presents Theorem 11.10, a proof of bounded variance for scaled Cs{irds approximate
counters when add operations are used.

7 DLM PROBABILITY COUNTERS

For the probabilistic counter defined by DLM (2013), where the value in a counter is not approx-
imately the logarithm of the number of increment operations but rather the probability that the
next increment operation should change the counter:

type T is the closed real interval [0, 1] So=1.0 7(x) = g QO(x) = x.
If, as before, we let g = 1 + % (thus a = #), then it follows that
a
fx)= x a

(which is equivalent to the formula a(% — 1) given by DLM but has one fewer operation). Then,
the increment and read operations may be implemented as follows:

1: procedure increment(var X: [0, 1])
2 if random() < X then X « (g"1)X
1: procedure read(var X: [0, 1])

. a _
2: returnX a

The counter representation is not quantized to integers, only to floating-point approximations*

of real numbers, so it may not be necessary in practice when implementing the ¢ function to
choose randomly between two possible values, though for complete accuracy one would indeed
perform the floating-point calculations to “infinite precision” and then do the final floating-point
rounding in an appropriately probabilistic manner, as described by Forsythe (1959) and later by
Callahan (1976) and Parker (1997, Section 6.4, 2000). Assuming no need to be that finicky, we
pretend that ¢ is an exact inverse of f:

a

(p(v)=v+a,

and so counter Z may be added into counter X as follows:

1: procedure add(var X: [0,1], Z: [0, 1])
22 letS« (5 —-a)+(Z-a)
3 letK « &

4: X« K

After simplification, this becomes:

1: procedure add(var X: [0,1], Z: [0,1])

1
2: X «

+1-1

|-
N|=

4 Although we cannot resist pointing out that fixed-point fractions may be a practical alternate representation for proba-
bilities, with the advantage of allowing the use of a random number generator that generates random b-bit integers, which
may be faster than generating random floating-point values.
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The remarkable thing about this representation is that the parameter a is not required for comput-
ing the sum of two counters, provided, of course, that the two counters do use the same parameter
a.

While DLM probability counters may not require fewer bits for their representation than ordi-
nary integer counters, they do share with other kinds of approximate counters the property that
the increment operation does not always perform a write to memory.

8 DLM FLOATING-POINT COUNTERS

For the floating-point counters defined by DLM (2013), which are parametrized by a constant
M = 2° for some integer s > 0 and by a second constant © (which DLM calls MantissaThreshold)
that is a positive even integer not greater than M, we have

type T is N So=0 Q(x) = 27 Lx/M1]

7(x)=if (k mod M) +1 < © then k + 1
elsek—(kmodM)+M+%

and it follows that
f(x)=(k mod M)2Lk/M},

In effect, all bits of an integer k except the s lower order bits are treated as a binary exponent
e = | k/M], and the s low-order bits of k (i.e., k mod M) are treated as a floating-point significand
that does not have an implicit leading 1-bit and whose leading bit may or may not be 1 (i.e., the
representation is not necessarily in normalized form). As a result, there is some redundancy in the
representation: two or more counter representation values may map to the same estimated value,
and ¢ is not a function but rather a relation. One similarity to the floating-point representation
used by Cstirds is that every integer representation k less than M maps to the estimated value k.
Again the increment operation is very simple, and read is reasonably simple:

1: procedure increment(var X: N)

2. if allZeroRandomBits ( [%J) then

3: if ( Xmod M) +1<0©thenX « X +1
4: elseX<—X—(Xm0dM)+(M+%)

1: procedure read(var X: N)
2. return (X mod M)2X/MI

Again, we cleverly use shifting and bitwise operations:

1: procedure increment(var X: N)

2. if allZeroRandomBits (X >> s) then

3 if(X&M-1) <(®@—-1)thenX « X +1
4 else X — (X & (~(M-1))) + (M + 2)

1: procedure read(var X: N)
2. return (X & (M — 1)) < (X >>5s)

DLM (2013) points out that the purpose of using a redundant representation and allowing ©
to be smaller than M is to allow a choice of representations that are equivalent in value but dif-
fer in their probability of changing the counter during an increment operation; this flexibility is
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used to address situations in which there appears to be high contention among multiple threads
for a shared counter. We will assume that this flexibility is not needed when performing an add
operation, and therefore we are free to choose an implementation for ¢ that does not take © into
account:

1: procedure add(var X: N, Z: N)

2 letS « (X mod M)2X/Ml 4 (7 mod M)2L4/M]
3 ifS<MthenX « S

4 else

5 letd « [log,(S+1)] —(s+ 1)

6 letK —d-2° + ||

7: let V « (K mod M)2LK/M]

8: let W « ((K + 1) mod M)2L(K+1)/M]
9: let A « %

10: if random() < A then

11: if (K mod M) = (M — 1) then

12: X — (@d+1)25 + (&)

13: else X —«K+1

14: else X « K

After simplification and introduction of bitwise operations this is:

1: procedure add(var X: N, Z: N)
2 letS — (X &{M-1)) K (X>s))+
((Z & (M — 1)) < (Z >>5))

3 ifS<MthenX « S

4: else

5: let d < (B — s) — countLeadingZeros(S")

6: let K « (d <<s) + (S>>d)

7: if randomBits(d) < (S & ((1<<d) — 1)) then
8 if (K mod M) = (M — 1) then

9: X—K+(&+1)

10: else X —« K+1

11: else X « K

With overflow checking, the increment and add operations look like this (we assume that one may
disobey the © threshold if doing so will postpone an overflow error):

1: procedure increment(var X: N)

2. if allZeroRandomBits (X >> s) then

3 if (X&(M-1)) <(®@—-1)then X « X +1
4 else if (X >>s) = (26=5 — 1) then

5 if X #(2 —1)thenX « X +1

6 else overflow error

7 else X « X & (=(M — 1)))+(M + %)
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1: procedure add(var X: N, Z: N)
22 letS — (X &(M-1)) <K (X>5s))+
(Z &M -1)) < (Z>5))
33 ifS<MthenX « S
4 else
5: let d < (B — s) — countLeadingZeros(S”)
6: let K « (d <<s) + (S>>d)
7: if K < (2 — 1) then
8: if randomBits(d) < (S & ((1 << d) — 1)) then
9: if K # (2Y — 1) then
10: if (K mod M) = (M — 1) then
11: Xe—K+(&+1)
12: else X —« K+1
13: else overflow error: X « (27 — 1)
14: else X « K
15: else overflow error: X « (27 — 1)

9 ADDING COUNTERS OF DIFFERENT TYPES

If counter X is of type T; (with transition function 71, estimation function f;, and representation-
finding function ¢;), and we wish to add into it a counter Z of type T, (with estimation function
f2), then our general algorithm for the add operation accommodates this easily:

1: procedure add(var X: Ty, Z: T5)
let v « f1(X)

let w < f2(2)

letS—v+w

let K « ¢1(S)

let V « fi(K)

let W « fi(1(K))

let A « vf/_‘{,

if random() < A then X « 7;(K) else X «— K

Whether a specific optimized version is worthwhile will depend on the two specific choices of
counter representation.

It is even possible to add two counters of different types to produce a result in a third represen-
tation T3 (with transition function 73, estimation function f3, and representation-finding function

@3):

1: procedure add(X: Ty, Z: Ty): T5

let v « f1(X)

let w <« f2(2)

letS—v+w

let K « ¢3(S)

let V « f3(K)

let W « f3(r3(K))

if random() < % then return 73(K) else return K

At this time, we do not know of any specific practical application for this ability.
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10 DISCUSSION

Using approximate counters (perhaps with addition) is easy: they are a direct replacement for
increment-only integer counters. The API is trivial: read, increment, and perhaps add operations,
plus a way to initialize them to zero. The question is under what circumstances (i.e., in what sort of
algorithm) it is appropriate to do such a replacement. We speak to that briefly in the last paragraph
of Section 16.

Approximate counters deliver only a (unbiased) statistical estimate of the true number of in-
crement operations (Flajolet 1985). The standard deviation of this estimate is the square root of
the variance (this is the very definition of “standard deviation”). If the statistical distribution of
values taken on by an approximate counter after some number n of increment operations were a
(continuous) normal distribution, then we could apply the standard “68-95-99.7 Rule” for normal
distributions and expect the statistical estimate to be less than one standard deviation away from
the true value about 68% of the time, to be less than two standard deviations away from the true
value about 95% of the time, and to be less than three standard deviations away from the true value
“nearly always” (about 99.7% of the time). However, the distribution of an approximate counter is
actually a discrete distribution—which is, however, easily computed by recurrence. We have done
so for eight choices of parameters g and M and for 0 < n < 1000. (As examples, Figure 1 shows the
discrete distributions for the estimated value of a general Morris approximate counter (for ¢ = 1.2)
after 3, 4, 5, 6,7, 8, 9, and 10 increment operations, and Figure 2 shows the discrete distributions
for the estimated value of a general Cstirs approximate counter (for g = 1.2, M = 4) after 6, 7, 8,
9, 10, 11, 12, and 13 increment operations.) For each of the 8,008 distributions, we computed the
mean, standard deviation, and the fraction of probability mass in the distribution that is within
one, two, or three standard deviations from the mean. The results are graphed in Figures 3 and 4.
In each chart, the x-axis is the number of increment operations and the y-axis is the fraction of
probability mass; the lowest data line corresponds to one standard deviation, the middle data line
to two standard deviations, and the uppermost data line to three standard deviations. These data
lines are “choppy” because of quantization effects of the discrete distributions; when the data line
for one standard deviation dips down low, it is because a substantial chunk of probability mass
happens to lie just outside that boundary, rather than at some great distance. Even so, that data
line pretty much stays above 0.6 for all but the smallest values of n. It will be seen from this ex-
emplary data that, at least for larger values of n, the 68-95-99.7 Rule does approximately describe
these distributions despite the fact that they are discrete.

As a specific example, by our Theorem 11.4 (which we present below in Section 11.1), the vari-
ance of a general Morris counter is no larger than qT_ln(n —1) + p(where 1 < p < 4—1}), so the stan-

dard deviation is the square root of that, and for large n this is approximately (1/(g — 1)/2)n; for
q = 1.1, the standard deviation is approximately 0.22n. Therefore, we can expect a counter esti-
mate to be within 22% of the true value about 2/3 of the time, to be within 44% of the true value
about 95% of the time, and to be within 66% of the true value “nearly always.”

Cstirds counters and Morris counters have similar behavior when the number of increments is
large (not surprising, because Morris counters are the special case of Cstirgs counters with M = 1).
An advantage of Cslirds counters over Morris counters is that they are exact until the number of
increments reaches M, but there is no free lunch: in exchange for achieving a variance of exactly
0 for small values of the counter, the upper bound on the variance of larger values of the counter
is slightly worse. Consider an 8-bit general Csiirés counter with M = Mc =8 and ¢ = qc = 1.2;
the largest representable value is (2= + (255 mod 8))(1.2)1%%/8] — 3— = (40 + 7)(1.2)*" - 40 ~

T.2-1

13348.02. An 8-bit general Morris counter described by g = gy whose highest representable value
255 _

is the same must satisfy 2‘§4—_f ~ 13348.02; solving for qum gives gm = 1.022667. So the coefficient
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(beyond x=511, dbuble-precision
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to a zeroed Morris approximate counter (parameter M = 1) for four different values of the parameter g.Note
that in all charts the lowest value shown for the y axis is 0.4, not 0.0.
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of n(n — 1) in the formula given by Theorem 11.10 for the upper bound on the variance of the
Cslirds counter is - = <1 = %2 — 00125, but the coefficient of n(n — 1) in the formula given by

2uc 2Mc ~ 16
. . . -1
Theorem 11.4 for the upper bound on the variance of the Morris counter is only q% = 0.022667 —

0.011333. ’

An advantage of a binary Csiirés counter over a non-binary Morris counter is that the incremen-
tation code is cheaper. However, binary Csiir6s counters support only a limited choice of maximum
counter value. If your application happens to have a maximum counter value that well matches
one of the possibilities for binary Cstirds counters, then that is a good choice. Otherwise, one might
be better off using a general Morris counter with an appropriately calculated value for g, unless
there is a specific desire to have small counter values be exact, in which case a general Cstiros
counter may be a better choice, where one first chooses the necessary M and then calculates the
appropriate value for q.

Table 1 shows the base-2 logarithm of the largest representable value of an 8-bit, 10-bit, 12-bit,
or 16-bit general Csirds counter for various values of g and M, truncated to one decimal place.
(One can pack six 10-bit counters or five 12-bit counters into a 64-bit word.) This table is useful for
getting an idea of what parameters might be appropriate for an approximate counter intended to
replace a k-bit ordinary integer counter. For example, if an application uses 64-bit integer counters
but there is reason to believe that no counter value ever exceeds 2%, then it is reasonable to look for
values just above 40 in the table. If we wish to use an 8-bit counter, then M = 1 (a general Morris
counter) and g = 1.11 may be about right; we can also see that no 8-bit counter works for M > 8,
but M = 4 and g = 1.5 is a possibility. If we are willing to use a 16-bit counter, then a binary Cs{iros
counter (q = 2) with M = 2048 should easily suffice, so this may be a better choice than ¢ = 1.08
and M = 256.

11 PROOFS OF BOUNDED VARIANCE

In this section, we prove three theorems about bounds on the variance of approximate counters:
one for general Morris counters, a slightly tighter bound for the special case of binary Morris
counters, and one for general Csiirds counters. In each case, the result is that the variance of a
counter whose expected value is n is bounded by an expression of the form & n(n — 1) + 1, where
& and 7 are specific constants that depend on the counter represention parameters g and s. For
each theorem the proof is inductive, following the structure of the computation that produced
the counter by using increment and add operations. Each of the subsections below presents one
theorem, preceded by relevant lemmas and their proofs.

11.1 Proof of Bounded Variance for General Morris Counters

LEMMA 11.1 [GENERALIZED FROM MORRIS (1978)]. Let X be a general Morris approximate counter
whose expected value is n, and let X’ be the result of applying an increment operation to that counter.
Let k be an arbitrary constant.

Assume Var (f(X)) < qT_ln(n —1) + k; then Var (f(X’)) < qT_l(n + 1)n + k. Alternatively, as-

sume Var (f (X)) = %n(n — 1) + «; in that case, Var (f(X')) = q74(n +1)n + k.

gq-1 _ 1
-1 —(gX-1)  fX+D)—f(X)"

PROOF. Let A = ¢ X = ( Then:

Var (f(X"))
=E[(f(X")*] - ELF(X)))*
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Table 1. Base-2 Logarithms of Largest Representable Values for General Cstirés Counters

8-bit counter: log, f (2% — 1) 10-bit counter: log, f(21° — 1)
M 1 2 4 8 16 32 4 8 16 32 64 128
q=2 255.0 128.5 65.8 34.9 19.9 12.9 257.8 130.9 67.9 36.9 21.9 14.9

qg=19 236.2 119.2 61.2 32.6 18.9 12.5 239.0 121.5 63.3 34.7 20.9 14.5
g=18 216.5 109.5 56.4 30.3 17.8 12.0 219.2 111.7 58.5 32.4 19.8 14.0
q=17 195.7 99.1 51.3 27.9 16.7 11.5 198.3 101.4 53.4 29.9 18.7 13.6
g=16 173.6 88.2 459 253 155 11.1 176.1 90.4 48.0 27.4 17.5 13.1
qg=15 150.1 76.6 40.3 22.6 14.3 10.6 152.6 78.8 42.4 24.7 16.3 12.6
qg=14 125.1 64.2 34.2 19.8 13.0 10.0 127.4 66.4 36.3 21.8 15.0 12.1

g=13 98.2 51.0 27.8 16.8 11.7 9.5 100.5 53.1 29.9 18.8 13.7 11.5
q=12 69.3 36.8 21.0 13.7 10.4 9.0 71.5 38.9 23.1 15.7 12.4 11.0
qg=11 38.3 21.8 14.0 10.6 9.1 8.5 40.4 239 16.1 12.6 11.1 10.5

q =1.09 35.1 20.3 13.3 10.3 9.0 8.4 37.2 22.3 15.4 12.3 11.0 10.4
q =1.08 31.9 18.8 12.7 10.0 8.9 8.4 34.0 20.8 14.7 12.0 10.9 10.4
q = 1.07 28.7 17.2 12.0 9.7 8.7 8.3 30.8 19.3 14.0 11.7 10.7 10.3
q = 1.06 25.4 15.7 11.3 9.4 8.6 8.3 27.5 17.8 13.3 11.5 10.6 10.3
q = 1.05 22.2 14.2 10.7 9.2 8.5 8.2 24.3 16.3 12.7 11.2 10.5 10.2
q =1.04 19.0 12.8 10.1 8.9 8.4 8.1 21.1 14.8 12.1 10.9 10.4 10.2
q =1.03 15.9 11.4 9.5 8.7 8.3 8.1 17.9 13.4 11.5 10.7 10.3 10.1
q =1.02 12.9 10.1 8.9 8.4 8.2 8.0 14.9 12.1 10.9 10.4 10.2 10.0

g =1.01 10.1 8.9 8.4 8.2 8.1 8.0 12.1 11.0 10.4 10.2 10.1 10.0
12-bit counter: log, f(2'% - 1) 16-bit counter: log, f(21® — 1)

M 16 32 64 128 256 512 256 512 1024 2048 4096 8192

q=2 259.9 132.9 69.9 38.9 239 16.9 263.9 136.9 73.9 42.9 27.9 20.9

qg=19 241.1 123.6 65.4 36.7 22.9 16.5 245.2 127.7 69.4 40.8 27.0 20.6
qg=18 2213 113.8 60.5 34.4 21.8 16.0 225.4 117.9 64.6 38.5 25.9 20.1
q=17 200.4 103.4 55.4 32.0 20.7 15.6 204.5 107.5 59.5 36.0 24.8 19.6
qg=16 178.2 92.5 50.1 29.4 19.5 15.1 182.3 96.5 54.1 33.4 23.6 19.1
qg=15 154.7 80.8 44.4 26.7 18.3 14.6 158.7 84.9 48.4 30.7 22.4 18.6
q=14 129.5 68.4 38.3 23.8 17.0 14.1 133.6 72.5 42.4 27.9 21.1 18.1
g=13 102.6 55.1 31.9 20.8 15.7 13.5 106.6 59.2 36.0 24.8 19.8 17.6
g=12 73.6 40.9 25.1 17.7 14.4 13.0 77.7 45.0 29.2 21.7 18.5 17.0
g=11 42.5 259 18.1 14.6 13.1 12.5 46.5 29.9 22.1 18.7 17.2 16.5
q =109 39.2 24.3 17.4 14.3 13.0 12.4 43.3 28.4 214 18.4 17.0 16.5
q =1.08 36.0 22.8 16.7 14.0 12.9 12.4 40.1 26.9 20.7 18.1 16.9 16.4
q = 1.07 32.8 21.3 16.0 13.7 12.8 12.3 36.8 253 20.1 17.8 16.8 16.4
q = 1.06 29.5 19.8 15.4 135 12.6 12.3 33.6 23.8 19.4 17.5 16.7 16.3
q = 1.05 26.3 18.3 14.7 13.2 12.5 12.2 30.3 22.3 18.8 17.2 16.6 16.3
q =104 23.1 16.8 14.1 12.9 12.4 12.2 27.1 20.9 18.1 17.0 16.4 16.2
q =1.03 19.9 15.4 135 12.7 12.3 12.1 24.0 19.5 17.6 16.7 16.3 16.2
q =1.02 16.9 14.1 12.9 12.4 12.2 12.1 20.9 18.2 17.0 16.5 16.2 16.1
g =1.01 14.2 13.0 12.4 12.2 12.1 12.0 18.2 17.0 16.5 16.2 16.1 16.1

Each entry is the base-2 logarithm of the largest representable value of an 8-bit, 10-bit, 12-bit, or 16-bit general Csiros
counter for the specified value of g and M, truncated to one decimal place. A counter for which this value is k is
comparable in range to an ordinary k-bit integer counter. Note that a Morris counter is the same as a Cs{irds counter
with M = 1, and a binary counter is simply a general counter with q = 2.

E[(1 - A)(F(X))? + A(f(X + 1))*] = (n +1)?
E[(F(X))? + A((F(X +1)* = (F())*)] = (n+1)*
E[(f(X))*] +E[f(X +1) + f(X)] = (n+1)*

=5[]+ [LOZDIEED L iy

—(n+1)?

ACM Transactions on Parallel Computing, Vol. 4, No. 1, Article 5. Publication date: October 2017.



Adding Approximate Counters 5:23

Var (f(X)) + (E [f(X)])z) +E[(g+1)f(X)+1] - (n+1)?
= (Var (f(X)) +n?) + (g + Dn+ 1= (n+1)*

< ;ln(n—l)+7<+nz+(q+1)n+1—(n+1)2
-1
-1 nn+1)+«x
2
with equality holding when the equality Var (f (X)) = —n(n —1) + « holds. O

LEMMA 11.2. Given values q and S such that1 < q<2and S >0, let K = [log,((q - 1)S + 1),

let V=2 letw = l,andletA: (S=V)W =S). Then, A < (g-Ds+1)
q-1 4q

Proor. From the definition of the floor operation |-|, K = log,((g — 1)S + 1) — r for some 0 <
r < 1.If we fix g and S and view V as a function of 7, then it is easy to see that it is monotonic; if

S -
%, then it follows that L < V < S.
We will now recharacterize V as an element of the range (L, S] using a more convenient pa-

rameter § = % such that 0 < § < 1. We write V in terms of S, g, and § as V =L+ §(S—-L) =
7 6(g-1)S+1)+S—1)and W = w =8((g—1)S+1) +S. Then, we have A = (S —
V)(W=5) =58(1-68)q ' ((g=1)S+1)°

Regard A as a function of § and ask what value of § maximizes it; the answer, easily derived by

solving %(5 (1-6))=0,is 6 = % and the second derivative there is negative, so the maximum

possible value for A is %(1 - %)q‘l((q —1)S + 1)%, and therefore for any value of § in (0, 1], we

((g=1)S+1)°
have A < EEr—

we then compute L = Vo =

]

LEMMA 11.3. Let X be a general Morris approximate counter with parameter q (1 < q < 2) whose
expected value is n, let Z be a general Morris approximate counter with parameter q whose ex-
pected value is m, and assume that X and Z are statistically independent. Let p = W,
and also assume that Var (f(X)) < qT_ln(n — 1) + p and that Var (f (2)) < qT_lm(m —1) + p; then

Var (f(X & Z2)) < %(n+m)((n+m) -1) +p.

Proor. If Z =0,then m =E[f(Z)] =0,w=0,S =0,V = v, and A = 0; therefore f(X ® Z) =
f(X) exactly, and it follows that Var (f(X & Z)) = Var (f(X)) < L 1n(n 1) < qT_l(n +m)(n+
m — 1) + p, as desired. Similarly, if X =0, then n =E[f(Z)] =0,v=0,S=w, V =w, and (1 -
A) = 0; therefore f(X ®Z) = f(Z) exactly, so Var (f(X @ Z)) = Var (f(Z)) < qT_lm(m— 1) <
qT_l(n+m)(n+m—1)+p.

Now, suppose X > 0 and Z > 0 (therefore n = E[f(X)] > land m = E[f(Z)] > 1):

Var (f(X & Z))
=E[(f(X ® 2))*] - B[f(X ® 2)])
=E[(1 - )V2+AW2] E[S?]

—E[ S_V WZ—SZ]
W Vv
[(S - V Y(W = 9)]
<E [W [by Lemma 11.2]
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. (g—1)28%+2(g-1)S+1
4q

E[(q (fCO + f(2))* + (f(X)+f(Z))+—

-8 4_q1) (E[(F00)] +ELFX)F@1+E[(£(2)?]) + TE[F(X) + £(2)] +

Y.
- 4q1_) (Var (F00) + BLFCOD? + B[2f(X)f(2)] + Var (f(2)) + B [f(Z)])Z)

PR ELF  F@D
_(g-1)?

Var (f(X)) +n +2nm-i—Var(f(Z))+m)+q_1(n+m)+i
2q 4q
_1(n+m)+£

-1 -1
n(n—1) +p+qu(m—1)+p+(n+m)2)+q—(n+m)+—

4q
(q_1>(q R L) PSP ) SO ([ k) PO Uk SR
8q 4q 8q 2q 4q
2y, (@-1° (2nm) (g-1(g+1)(q-3)

8q 4q 8q

Var (f(X)) + Var (f(2)) + n+m))+q

ol
(q—l (
(

(n+m)+p.

We wish to show that this last quantity is less than or equal to qT_l(n +m)(n+m-—1) + p; we do

so by showing that % times their difference is nonpositive (note that % > 0).

84 ((q—1><q2—1>(nz+mz) PR O Ul CR V(O R
q-1 8q 4q 8q

(n+m)+p

_(qgl(n+m)(n+m—1)+p))

= (" —4q—-1n* - (¢ —6q—3)n—2(q+ 1)+ (¢* — 49 — 1)m* — (¢* — 6q — 3)m — 2(q + 1)nm.
We now need only show that
(¢* —4q—1)n* - (¢* =69 —3)n—2(qg+ 1)nm < 0
and
(¢ —4q - 1)m® = (¢° - 6¢ — 3)m — 2(q + 1)nm < 0.

The two proofs are identical in form; here, we present just one of the proofs. Because 2(q + 1)n > 0
andm > 1,

(¢* — 49— 1)n* — (¢* — 6q — 3)n — 2(q + 1)nm

)
<(¢* —4g-1)n* - (¢* =69 —3)n— (2q + 2)n
=(¢*—4q-1)n’* - (" —4g - 1)n

=(¢* —4g-n(n—1) <0,

2
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because n(n — 1) > Oforalln > 1and ¢’ —4q—1 < Oforall1 < g < 2 (therootsof g> —4g—1=1
are 2 — V5~ —0.236...and 2 + V5 ~ 4.236 .. .). o

THEOREM 114. Let 1 < q <2, let p= and let X be a general Morris approximate

1
-2(q%-4q+1)’
counter with parameter q¢ whose expected value is n. Then, Var (f(X)) < Tn(n -1)+p.

Proor. We proceed by structural induction on the computation that created X.

Basis case: Suppose that X is a newly created counter. Then, its value is definitely 0, and therefore
its expected value n is 0 and its variance is 0, and so Var (f(X)) =0 = O(OT_D < @ +

Inductive case 1 (incrementation): Suppose that X was produced by incrementing a counter Y
having expected value n — 1. By our inductive hypothesis, we have Var (f(Y)) < w + p,

and therefore by Lemma 11.1 with k = p, we have Var (f (X)) < M + p.

Inductive case 2 (addition): Suppose that X was produced by adding a counter Y with expected
value y and a statistically independent counter Z with expected value z, such that y+z =n.Byin-
ductive hypothesis, we have Var (f(Y)) < q2 y(y — 1) + pand Var (f(Z2)) < 45— (z - 1)+ p,and
therefore by Lemma 11.3, we have Var (f(X)) < L 1n(n -1)+p.

Therefore, in all cases Var (f (X)) < %n(n -1)+p. O

11.2  Proof of Bounded Variance for Binary Morris Counters

LEMMA 11.5. Let X be a binary Morris approximate counter whose expected value is n, and

Z be a statistically independent binary Morris approximate counter whose expected value is m.

Without loss of generality assume m < n. Assume also that Var (f(X)) < "(n—l then, we have

Var (f(X ® Z)) < —("+m)((;+m)_l). As an alternative, assume also that m <1 and Var (f(X)) =
—"("2_1); then Var (f(X & Z)) = —("+m)((;l+m)_l).

— f(2) .
Proor. Let A = m Then:

Var (f(X @ Z))
=E[(f X@Z))Z] - E[f (X & 2)))

=E[(1 - A (X)) + A(f(X + )] = (n+m)®

=E[(f(X))? + A((f(X + 1)) = (F(X))?)] = (n+ m)?
=E[(f(X))?] + ELf () (f(X +1) + F(X)] = (n + m)?

= (Var (£(X)) + (BLf(O)])?) + ELf(2)3f(X) + 1)] = (n+ m)”
< ”("2_ D s 2 4 B2 GLX) +1)] = (n + m)?

_n(n—-1)
==

+n* +mBn+1) - (n+ m)?

n , n
=—+nm-m’——-+m
2 2

2
n n 3
<—+nm—m?——+m+=(m*—m)
2 2 2

_ (n+m)((n+m)—-1)
2
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%(m2 —m) > 0forall integer m > 0), with equality holding when m < 1and Var (f(X)) =

because we have %(m2 —m)=0whenm=0orm=1). O

(because
n(n-1)
=7 (

THEOREM 11.6. Let X be a binary Morris approximate counter whose expected value is n. Then,
Var (f (X)) < #

Proor. We proceed by structural induction on the computation that created X.

Basis case: Suppose that X a newly created counter. Then, its value is definitely 0, and therefore
its expected value is 0 and its variance is 0, and so Var (f(X)) =0 = @ = @
Inductive case 1 (incrementation): Let us suppose that X was produced by incrementing counter

Y having expected value n — 1. By our inductive hypothesis, we have Var (f(Y)) < w, and

so by Lemma 11.1 with k = 0, we have Var (f(X)) < "(" O}
Inductive case 2 (addition): Suppose that X was produced by adding a counter Y with expected
value y and a statistically independent counter Z with expected value z, such thatz < yandy + z =

. . . y(y-1)
n. By inductive hypothesis, we have Var (f(Y)) < =5

Var (f(X)) < 20
Therefore, in all cases Var (f(X)) < @ o

, and therefore by Lemma 11.5, we have

11.3 Proof of Bounded Variance for General Cstiros Counters

LEMMA 11.7. Given real S > 0, real 1 < q < 2, and integer M > 1, let y = 2L - 1, = Llog, S
d+
V=ML, W=MI =WV o SV V=Y o, W=V 4o, and A= (S-

((g=1)S+M)* _ (S+p)*

V)W = 5). Then, A < g3iGt=t) = apturn)-

Proor. The interval [V, W] is divided into M subintervals of width w; subinterval j is the one
that contains S. (If S falls right on the boundary between two subintervals, then we can regard it
as being in either subinterval; then either S =V or S = W, and so (S-V)(W - S) =0.)

If S is in subinterval j (0 < j < M), then the smallest value Vi that V could have (holding g,

M, and j fixed while letting S vary) occurs when S is at the upper end of subinterval j, and similarly
Winin = ¢Vmin + M and iy = WXM But where is Vyin with respect to S? If S is at the upper
end of subinterval j, then S — Vipin = ( + 1)©Omin and Wiin —S = (qViin + M) =S =M - (j +
1)) @Wmin similarly. (Note that ‘W and w are minimized exactly when V' is minimized, which is what
justifies using the “min” subscripts on Wiyin and wmin.) Eliminating wmi, gives us (M — (j + 1))(S —
Vinin) = (j + 1)((¢Vinin + M) = S). Solving this for Vinin gives Vinin = ooty = L5-UL
Now Viin, the lowest possible value for V (which is the lower end of the subinterval containing
((q=1)jS+M(S-1) _ (S+u(S-1)
M+(qg-1)(j+1) —  p+(+1)
(Note that Vi, corresponds to L as used in the proof of Lemma 11.2.) We characterize V using a

parameter § as

S), is j subinterval-widths above Vi,n and s0 Vipin = (Vinin + j@min) =

M+ (qg-1)S)+(q—1)jS+M(S—1) 5(u+S)+jS+puS—-1)
+(@-1DG+1) - p+G+1)

Now, we have a formula for V in terms of S and § (and fixed g, M, and j); in exchange for introducing
the parameter §, we have gotten rid of those pesky floor functions.

Once V has been defined in this way and regarded as the actual lower end of subinterval j,
we can calculate a corresponding Vy that is exactly j subinterval-widths below V by solving

V= ((1-06)Vmin +65) =
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V=WVy)M —j) = (gVv + M) —V)j to get the result

MM +(g—1)S) — (g - 1)j* +j(g = 1)(S — 1) + MS — (j + 1)M)

Vy = - -
M+ (@-DHM+(g-1)3+1))
_ PO+ S) = +i(S=1) +pS = G+ 1)p)
(p+Np+G+1)

The width of each subinterval is wy, = W and, therefore, we have W =V + Wy, = S+

M+( 1)5 +S
5M+(Z 1)j S+(SZ+}

Then, (S - V)(W - ) = 8(1 - &) grrrrrs e ey We now have (S = V)(W = S) in terms

of S and § and q and M and j. Now, switch gears: hold S and q and M fixed, and allow é and j
to vary. Then, (S — V)(W —S) is maximal when § = % and (¢ +j)(g + (j + 1)) is minimal. Now
(2p + 1) is positive for 1 < g < 2 and M > 1; therefore for j > 0, (u+j)(u+ (G + 1)) =i + 2u +

1)j + p(p + 1) is minimal when j = 0, and so A = (S = V)(W — §) < {-DSHM — Gon

LEMMA 11.8. Let X be a Cstiros approximate counter with integer parameter M (M > 1) and real
parameter q (1 < q < 2) whose expected value is n, let Z be a Cstirds approximate counter with the
same parameters M and q whose expected value is m, and assume that X and Z are statistically
independent. Let j1 = andp me, and assume that Var (f (X)) < n(n — 1) + p and that

Var (f(2)) < —ﬂm(m— 1) + p; then, Var (f(X @ Z)) < lﬂ(n+ m)((n+m) — 1) + p.

PROOF. As in the proof of Lemma 11.3,if Z = 0, then m =E[f(Z)] =0, w=0,S =0, V =0,
and A = 0; therefore, f(X ® Z) = f(X), so Var (f(X & Z)) = Var (f(X)) < iﬂn(n— 1) < ﬁ(n+
m)(n+m — 1) + p, as desired. In the same way, if X = 0, thenn = E[f(Z)] =0,v=0,S=w,V =
w, and (1 — A) = 0; therefore, f(X ® Z) = f(Z), so Var (f (X @ Z)) = Var (f(2)) < ﬁm( -1) <

”(n+m)(n+m—l)+p
Now, suppose X > 0 and Z > 0 (therefore, n =E[f(X)] > land m = E[f(Z)] > 1):

Var (f(X & Z))
=E[(S-V)(W-1S5)] [as in proof of Lemma 11.3]
% [by Lemma 11.7]
_E S +2uS + pi?
4p(p+1)
Iz
= W (Bloreay] + BlfeOf @1+ B[(F@)]) + 505 1) BFOO+ F@) + iy
s e (VaF00) + BN+ BRFOOf D))+ Var(£(2)) + B D))
i
5 BLFCO + F@)) + 5
3 (Var(£(X)) + n* + 2nm + Var(f (Z)) + m*) + m(n +m) + PPN
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- ;(Var (F(X) + Var (£(2)) + (n+m)?) + TELACR 4(y”+ 5
n(n—l) m(m—1) 1 H
4u(ﬂ+1)( 20 +”+(”+’"’2)+z<u+1>‘”+’”)+4<u+1>
1 9 1 1
4u(ﬂ+1) (5 )(n rm) 4u(u+1)( ) (2(u+1) - 4u2(u+1)2)(n+m)

p+
Zu(u+1) (u+1)
2u+1 1 4 -1
Bty e — (o + L
8P (p+1) 4p(p+1) Bp(p+1)

We wish to show that this last quantity is less than or equal to ﬁ (n+m)(n+m—1) + p, by show-

(n+m)+p.

ing that 8% (i + 1)? times their difference is nonpositive (note that for 1 < ¢ < 2, u = % >M=>1
and that 8% (u + 1) > 0):
2

2u+1 1 4p° -1
8% (1 + 1) ———(n* + m*) + ———— (2 +——(n+m)+
e )(8u2(u+1)2(n ™) 4u(u+1)(nm) Suz(uﬂ)z(n e

—(i(n +m)(n+m—1) +p))
2p

=(=4p® — 2+ 1)(n® + m®) + (8p° + 4y — 1)(n + m) + (—4p® — 2p1)(2nm).
As in the proof of Lemma 11.3, we will exhibit only a proof that
(=4p® = 2p + 1)n® + (8p° + 4y — V)n + (—4p® — 2p)nm < 0.
Because (—4u? — 2p) < 0and m > 1,

(=4p® = 2p + 1)n® + 8y + 4 — V)n + (—4p® — 2p)nm
<(=4p® = 2p + 1)n® + (8 + 4p — V)n + (=4p® — 2p)n
= (—4p? —2p+ V)n? + (44 + 2 — 1)n
=(—4p* = 2p+Dn(n-1) <0,

because n(n —1) > 0 foralln > 1 and (—4u® — 2u +1) < 0 forall u > 1. O

LEMMA 11.9. Let X be a Cstiros approximate counter with integer parameter M (M > 1) and real
parameter q (1 < q < 2) whose expected value is n, let X’ be the result of applymg an increment
operation to that counter, and lety = andp Assume Var (f(X)) < m nn—1)+

p; then, Var (f (X)) < M(M+1) (n+ 1)n + p.

4 +4,u -2

ProoF. Analysis of the increment and add algorithms presented in Section 6 shows that
increment(X) is equivalent in its behavior to add(X, 1). Moreover, the variance of a Cs{ir6s counter
with expected value 1 is 0. Therefore, we can apply Lemma 11.8. O

THEOREM 11.10. Let X be a Cstiros approximate counter with integer parameter M (M > 1) and
real parameter q (1 < q < 2) whose expected value is n, and let u = Tl and p = Then,
Var (f(X)) < —Fn(n -1)+p.

Proor. We proceed by structural induction on the computation that created X.

4y1+4p 2°
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Basis case: Suppose that X a newly created counter. Then, its value is definitely 0, and

therefore its expected value is 0 and its variance is 0, and so Var (f(X)) =0 < ﬁO(O -1 +p=

1
ﬁn(n -1)+p.
Inductive case 1 (incrementation): Suppose that X was produced by incrementing a counter Y

having expected value n — 1. By inductive hypothesis, we have Var (f(Y)) < ﬁy(y —1) + p, and
therefore by Lemma 11.9, we have Var (f(X)) < in(n -1)+p.

Inductive case 2 (addition): Suppose that X was produced by adding a counter Y with expected
value y and a counter Z with expected value z, such that z < y and y + z = n. By inductive hy-
pothesis, we have Var (f(Y)) < ﬁy(y —1) + pand Var (f(2)) < iﬂz(z — 1) + p, and therefore by
Lemma 11.8, we have Var (f(X)) < ﬁn(n -1) +p.

Therefore, in all cases Var (f (X)) < ﬁn(n —-1)+p. O

Note that % <p< %, so the bound on the variance of Cstirds counters with addition, no matter
what the values of M and g, is just as reasonably tight as the bound on the variance of Morris
counters.

12 MEASUREMENTS OF TWO APPLICATIONS

We implemented a distributed version of the LDA Gibbs topic-modeling algorithm described by
Tristan et al. (2015). The algorithm is presented in Figure 5.

The Gibbs sampler for LDA has the following parameters: I is the number of iterations to per-
form, M is the number of documents, V is the size of the vocabulary, K is the number of topics,
N[M] is an integer array of size M that describes the shape of w, « is a parameter that controls how
concentrated the distributions of topics per documents should be, f is a parameter that controls
how concentrated the distributions of words per topics should be, w[M][N] is ragged array con-
taining the document data (where subarray w[m] has length N[m]), 0[M][K] is an M X K matrix
where 0[m][k] is the probability of topic k in document m, and $[V][K] is a V X K matrix where
¢[v][k] is the probability of word v in topic k. Each element w[m][n] is a nonnegative integer less
than V, indicating which word in the vocabulary is at position n in document m. The matrices
0 and ¢ are typically initialized by the caller to randomly chosen distributions of topics for each
document and words for each topic; these same arrays serve to deliver “improved” distributions
back to the caller.

The algorithm uses three local data structures to store various statistics about the model (lines 2-
4): tpd[M][K] is an M X K matrix where tpd[m][k] is the number of times topic k is used in docu-
ment m, wpt[V][K] is an V X K matrix where wpt[v][k] is the number of times word v is assigned
to topic k, and wt[K] is an array of size K where wt[k] is the total number of time topic k is in use.

The algorithm works by iterating over the dataset I times (loop starting on line 5 and ending on
line 33). An iteration starts by clearing the local data structures to zero (lines 6-8). Each iteration
is composed of two phases. In the first phase (lines 10-21), we assume that the values of 0 and
¢ are fixed, and to every word occurrence w[m][n] in the document data we assign a new topic,
randomly chosen according to a distribution computed from 6 and ¢, and tally these choices in
wpt, tpd, and wt. In the second phase (lines 23-32), we assume that the statistics wpt, tpd, and
wt are fixed, and we compute new values for 6 and ¢; each new value is the mean of a Dirichlet
distribution induced by the statistics. We now review these two phases in detail.

In phase 1, we iterate over all the documents m (line 10) and all the words n in each document
(line 11). To each word, we need to associate a topic. A topic is chosen randomly according to the
following formula: the probability of associating a word w[m][n] to topic k is proportional to the
probability 0[m][k] that topic k is associated to document m times the probability ¢p[w[m][n]][k]
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1: procedure LDA_Gibbs(int I, int M, int V, int K, int N[M], float «, float 3,
int w[M][N], var float 0[M][K], var float ¢[V][K])

2:  local array int tpd[M][K]

3:  local array int wpt[V][K]

4: local array int wt[K]|

5.  for i from O through I — 1 do

6: clear array tpd > Set every element to 0
7 clear array wpt > Set every element to 0
8: clear array wt > Set every element to 0
9: > Phase 1: tally statistics by sampling distributions computed from 6 and ¢

10: forall0 <m < M do

11: forall0 <n < N do

12: local array float p[K]

13: forall0 <k < K do

14: plk] < 0[m][k] x p[w[m][n]][k]

15: end for

16: let =z < sample(p) >Now 0 <z < K

17: increment tpd[m]|[z] > Increment counters

18: increment wpt[w[m][n]][z] > (which may be integer
19: increment wt|z] > or approximate)

20: end for
21: end for
22: > Phase 2: Compute new 6 and ¢ arrays from the tallied statistics

23: forall0 <m < M do

24: forall0 <k < K do
25: O[ml][k] < (tpd[m][k] + «)/(N[m] + K x «)
26: end for

27: end for
28: forall0 <v <V do
29: forall0 <k < K do

30. olu)[k] — (wpt[v][k] + B)/(wtlk] + V x B)

31: end for

32: end for

33:  end for
Fig. 5. Pseudocode for the LDA Gibbs topic-modeling algorithm.

that vocabulary word word w[n][m] is associated to topic k (lines 12-15). From the resulting array
p of relative (unnormalized) probabilities, we sample a new topic z (line 16) and update the statistics
wpt, tpd, and wt accordingly (lines 17-19).

In phase 2, for every document m, we compute the mean of the Dirichlet distribution in-
duced by the per-document statistics tpd[m] (lines 23-27). Then, for every vocabulary word v,
we compute the mean of the Dirichlet distribution induced by the per-word statistics wpt[v]
(lines 28-32).

The algorithm was implemented on a cluster of four nodes (connected by 1Gb/s Ethernet), each
with an Intel Core-i7 4820k CPU and two NVIDIA Titan Black GPU cards, for a total of 8 GPUs.
The code is written in C++ and CUDA. We use MPI for internode communication. The behav-
ior is quite similar to that of the single-GPU version reported by Tristan et al.: replacing integer
counters with approximate counters does not affect the statistical performance of the algorithm,
but allows the same hardware to process larger datasets. Moreover, the speed of the algorithm is
markedly increased, largely because of a third effect: less data needs to be pushed through the
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Fig. 6. 32-bit integer counters vs. 8-bit approximate counters used in a distributed (multiple-GPU) applica-
tion (LDA Gibbs topic modeling) coded in CUDA using MPI, compared by log likelihood (higher is better).

network connecting the nodes. In one test, either 32-bit integer counters were used, or 8-bit ap-
proximate counters; using approximate counters improved the overall speed of each iteration of
the distributed application by over 65% (see Figure 6, which shows measurements of time and log
likelihood). Using 8-bit general Morris counters with a = 10 (i.e.,q = % = 1.1) worked well, in that
topics were produced using the same number of iterations as with 32-bit integer counters, without
decreasing the log-likelihood measure of statistical performance. (Because the maximum counts
for this particular dataset are not large, we could have used an even smaller value of g, say 1.03,
to achieve smaller variance, but we found that ¢ = 1.1 provided sufficient statistical quality and
moreover was sufficient to handle the much larger counts, up to 232 and beyond, of larger datasets.)
Also effective were 8-bit binary Cstiros counters with s = 5. However, using 8-bit binary Morris
counters (a = 1) caused the algorithm to converge to a smaller (less desirable) value of log like-
lihood; we conjecture that this occurs because an 8-bit binary Morris counter has huge dynamic
range, much of which is wasted, so the part of the range that is actually used is too coarse to be
fully effective (put another way, the variance is too large).

We have also tested a distributed implementation of a stochastic cellular automaton (SCA) for
topic modeling as described by Zaheer et al. (2015, 2016). The algorithm is presented in Figure 7.

The SCA algorithm is best understood in comparison with the Gibbs sampler we just detailed.
Like the Gibbs algorithm, the SCA algorithm iterates over the data to compute statistics for the
topics (loop starting on line 9 and ending on line 31). However, SCA does not explicitly represent
the entire probability matrices 6 and ¢. Since these matrices are the output of the algorithm, they
need to be computed in a post-processing phase that follows the iterative phase (lines 33-42).
In this post-processing phase, we compute the 6 and ¢ distributions as the means of Dirichlet
distributions induced by the statistics.

In the iterative phase of SCA, the values of 8 and ¢, which are necessary to compute the topic
proportions, are computed on the fly (lines 20 and 21). Unlike the Gibbs algorithm, where on each
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1: procedure SCA(int I, int M, int V, int K, int N[M], float «, float g, int w[M][N])
2:  local array int (pd[M][K]

3: local array int wpt[V][K]

4: local array int wt[K]|

5. initialize array (pd[0] > Randomly chosen distributions
6: initialize array wpt|[0] > Randomly chosen distributions
7. initialize array wt[0] > Randomly chosen distributions
8: > The main iteration

9:  for i from O through (7 = 2) — 1 do

10: for r from 0 through 1 do

11: clear array ipd[l — r| > Set every element to 0
12: clear array wpt[l — r| > Set every element to 0
13: clear array wt[1 — r] > Set every element to 0
14: > Compute new statistics by sampling distributions

15: > that are computed from old statistics

16: forall 0 < m < M do

17: forall0 <n < N do

18: local array float p[K]

19: forall0 <k < K do

20: let 0 < (tpd[r][m][k] + @)/(N[m] + K x «)

21: let ¢ < (wpt[r][v][k] + B)/(wt[r][k] +V x 5)

22: plk] <+ 0 x ¢

23: end for

24: let =z + sample(p) >Now 0 <z < K

25: increment ipd[l — r][m][z] > Increment counters

26: increment wpt[1 — r][w[m|[n]][7] > (which may be integer
27 increment wt[1 — r][z] > or approximate)

28: end for

29: end for

30: end for

31: end for

32: > Final output pass

33: forall0 <m < M do

34: forall0 <k < K do

35: write 0[m|[k] as (tpd[0][m][k] + @)/ (N[m] + K X «)
36: end for

37: end for

38: forall0<v<Vdo

39: forall0 <k < K do
40: write ¢[v][k] as (wpt[0][v][k] + B)/(wt[0][k] + V x j8)
41: end for

42: end for

Fig. 7. Pseudocode for the Stochastic Cellular Automaton algorithm.

iteration we have a back-and-forth between two phases, where one reads 6 and ¢ to update the
statistics and the other reads the statistics to update 6 and ¢, SCA performs the back-and-forth
between two copies of the statistics. Therefore, the number of iterations is halved (line 9), and each
iteration has two subiterations (line 10), one that reads tpd[0], wpt[0], and wt[0] to write tpd[1],
wpt[1], and wt[1], then one that reads tpd[1], wpt[1], and wt[1] to write tpd[0], wpt[0], and wt[0].
One key advantage of this algorithm over the Gibbs algorithm is that all the in-memory arrays
are counters, so using approximate counters leads to an even smaller memory footprint and even
better memory bandwidth usage than for LDA Gibbs.
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Fig. 8. 32-bit integer counters vs. 8-bit approximate counters used in a distributed (multiple-CPU) applica-
tion (SCA topic modeling) coded in Java using MPI, compared by perplexity (lower is better).

We tested a version of the SCA algorithm implemented in the Java programming language.
To achieve good performance, we use only arrays of primitive types and pre-allocate all arrays
before learning starts. We implement multithreaded parallelization within a node using the work-
stealing Fork/Join framework (tasks are recursively subdivided until the number of data points
to be processed is less than 10°). Internode communication uses the Java binding to a version of
OpenMPI 1.8.7 that we modified to support the use of approximate-counter addition operations
as arguments to the al1Reduce method (see Section 13). We use a sparse array representation for
the counts of topics per document 6 and use Walker’s alias method (Walker 1974) to draw from
discrete distributions. We run our experiments on a small cluster of 16 nodes (connected by 10Gb/s
Ethernet), each with two 8-core Intel Xeon E5 processors (some nodes have Ivy Bridge processors
while others have Sandy bridge processors) for a total of 32 hardware threads per node and 256GB
of memory. We run 32 JVM instances (one per Xeon socket), assigning each one 20GB of memory.
The number of topics (K) is 100, the number of training iterations is 75, and a = f§ = 0.1. We use
two datasets, both of which are cleaned by removing stop words and rare words: we use the English
Wikipedia dataset for training and the Reuters RCV1 dataset for testing. Our Wikipedia dataset
has 6,749,797 documents comprising 6,749,797 tokens with a vocabulary of 291,561 words. Our
Reuters dataset has 806,791 documents comprising 105,989,213 tokens with a vocabulary of 43,962
words.

Time and perplexity measurements of the SCA algorithm are shown in Figure 8. Versions that
use 8-bit approximate counters (Morris with ¢ = 1.08, and Cs{iros with either s = 4 or s = 5) are
approximately twice as fast as the baseline that uses 32-bit integer counters. Cstirds counters with
s = 4 achieved the best (lowest) perplexity in these tests. Cslirds counters with s = 5 do not have
enough range for the application, and we observe that its asymptotic perplexity score is markedly
worse.

ACM Transactions on Parallel Computing, Vol. 4, No. 1, Article 5. Publication date: October 2017.



5:34 G. L. Steele Jr. and J.-B. Tristan

#define APPROX_ADD(name,kind,s,counter,value,random,
COMPUTE_S, COMPUTE_K, COMPUTE_V, COMPUTE_G)
counter##_t name##kind(counter##_t x, counter##_t y) {
COMPUTE_S (name, s, counter,value) ;
COMPUTE_K (name, s, counter,value) ;
COMPUTE_V (name, s, counter,value) ;
COMPUTE_G (name, s, counter,value,random) ;
if (((next_random_##random() * G) < (S - V))
&% (K < (counter##_t)(-1))) { ++K; }
return K;

PP A e

Fig. 9. C macro template code for defining addition functions on approximate counters.

13 MODIFYING OPENMPI TO SUPPORT ADDITION OF APPROXIMATE COUNTERS

In an effort to get the best possible speed on the stochastic cellular automaton application described
in Section 12, we modified the source code of OpenMPI 1.8.7 (obtained from https://www.open-
mpi.org) to provide operations that could be used with the al1Reduce method to combine arrays
of approximate counters by adding them elementwise using approximate-counter addition. To
test the relative speeds of various implementation strategies, we used C macros to systematically
produce 264 distinct implementations of approximate-counter addition. Most of the modifications
were made in the files ompi/op/op.c and ompi/mca/op/base/op_base_functions.c; we also
found it necessary to extend certain other tables (especially in the Java code that provides the
Java binding to OpenMPI) and to arrange for the MPI initialization code to precompute additional
tables.

We implemented addition operations for seven distinct 8-bit representations of approximate
counters: binary Csiirds counters fors = 3,s = 4,s =5,s = 6, s = 7, and s = 8, and general Morris
counters with ¢ = 1.08. For each of the Cstirs counters, we chose the smallest possible integer type
for representing estimated values in the intermediate calculations, or the smallest possible floating-
point type if no integer type would suffice. For the general Morris counters, we implemented two
versions, one using type float and one using type double for estimated values. We also needed
to decide whether to use random numbers of type float or type double. The resulting eight
combinations that we used may be seen in the header lines of Table 2 (see page 36. Each of these
combinations was then provided multiple implementations.

Each of the 264 implementations was generated by the C macro APPROX_ADD shown in Figure 9.
The basic idea is that addition of two approximate counters, as described in Section 3, given two
counter representation values x and y, consists of five steps: computing S, computing K, comput-
ing V, computing G = W — V, and finally deciding whether to add 1 to K before returning it. We
always implement the last step in the same way, but each of the first four steps may be carried
out in more than one way; therefore, APPROX_ADD has four parameters COMPUTE_S, COMPUTE_K,
COMPUTE_V, and COMPUTE_G. For each of these, the actual argument text will be the name of an-
other C macro. The parameter name will be replaced by one of eight identifiers, indicating which
of the eight operations is being implemented; the parameter kind is another identifier that (redun-
dantly) encodes which actual C macros are to be used for COMPUTE_S, COMPUTE _K, COMPUTE_V, and
COMPUTE_G. The parameter s is the s value for a Cstirds counter and is not used for a Morris counter.
Each of the three parameters counter, value, and random indicates a type (one of uint8, uint16
uint32,uint64, float, double) to be used for the representation of respectively the approximate
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APPROX_ADD (approx8add3,CBACC,3,uint8,uint16,float, \
S_CSUROS_SUM,K_BINARY_SEARCH_CSUROS,V_CSUROS,G_FROM_W_CSUROS)
APPROX_ADD (approx8add4,CBACC,4,uint8,uint32,double, \
S_CSUROS_SUM,K_BINARY_SEARCH_CSUROS,V_CSUROS,G_FROM_W_CSUROS)
APPROX_ADD (approx8add5,CBACC,5,uint8,uint64,double, \
S_CSUROS_SUM,K_BINARY_SEARCH_CSUROS,V_CSUROS,G_FROM_W_CSUROS)
APPROX_ADD (approx8add6,CBACC,6,uint8,float,float, \
S_CSUROS_SUM,K_BINARY_SEARCH_CSUROS,V_CSUROS,G_FROM_W_CSUROS)
APPROX_ADD (approx8add7,CBACC,7,uint8,double,double, \
S_CSUROS_SUM,K_BINARY_SEARCH_CSUROS,V_CSUROS,G_FROM_W_CSUROS)
APPROX_ADD (approx8add8,CBACC,8,uint8,double,double, \

S_CSUROS_SUM,K_BINARY_SEARCH_CSUROS,V_CSUROS,G_FROM_W_CSUROS)

APPROX_ADD (approx8add3,TMTW,3,uint8,uint16,float, \
S_TABLE_SUM,K_MATRIX_LOOKUP,V_TABLE,G_FROM_W_TABLE)
APPROX_ADD (approx8add4,TMTW,4,uint8,uint32,double,
S_TABLE_SUM,K_MATRIX_LOOKUP,V_TABLE,G_FROM_W_TABLE)
APPROX_ADD (approx8add5,TMTW,5,uint8,uint64,double,
S_TABLE_SUM,K_MATRIX_LOOKUP,V_TABLE,G_FROM_W_TABLE)
APPROX_ADD (approx8add6,TMTW,6,uint8,float,float,
S_TABLE_SUM,K_MATRIX_LOOKUP,V_TABLE,G_FROM_W_TABLE)
APPROX_ADD (approx8add7,TMTW,7 ,uint8,double,double,
S_TABLE_SUM,K_MATRIX_LOOKUP,V_TABLE,G_FROM_W_TABLE)
APPROX_ADD (approx8add8,TMTW,8,uint8,double,double,
S_TABLE_SUM,K_MATRIX_LOOKUP,V_TABLE,G_FROM_W_TABLE)
APPROX_ADD (approx8addg, TMTW, (%unused’) ,uint8,double,double,
S_TABLE_SUM,K_MATRIX_LOOKUP,V_TABLE,G_FROM_W_TABLE)
APPROX_ADD (approx8addf , TMTW, (%unused’) ,uint8,float,float, \
S_TABLE_SUM,K_MATRIX_LOOKUP,V_TABLE,G_FROM_W_TABLE)

~ ~ ~ ~ ~ ~

Fig. 10. C macro invocations for defining addition functions on approximate counters (14 of 264 shown).

counters, their estimated values, and generated pseudorandom numbers. Figure 10 shows the first
six and the last eight of the 264 specific invocations of the APPROX_ADD macro that we used in our
experiments. (In all 264 cases, the counter type was uint8; the APPROX_ADD macro was designed
also to support implementation of 16-bit approximate counters, but we have not yet investigated
such cases.)

Figure 11 shows C macros that define names for some useful constants, namely sentinel val-
ues (of type float and double) that are much larger than any actual table entries, and the con-
stant 1 of various data types (especially useful as left-hand operand of the C left-shift operator
<<).

Figure 12 shows C macros that, given a representation value for a Cstirds counter and the value
of s for that counter representation, computes the estimated value of the counter. Five versions are
provided, one for each of the possible types uint16,uint32, uint64, float, double that might be
used for representing the estimated value.

Figure 13 shows C macros that, given a representation value x for a Cs(irés counter and its
corresponding estimated value v and the value of s for that counter representation, computes
the estimated value of the counter representation value x+1. This can be done more cheaply than
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#define APPROX_ADD_SENTINEL_float ((float) (1dexp(1.0, 70)))
#define APPROX_ADD_SENTINEL_double (ldexp(1.0, 500))
#define ONE16 ((uintl6_t) 1)

#define ONE32 ((uint32_t) 1)

#define ONE64 ((uint64_t) 1)

Fig. 11. C macros for certain useful constants.

#define INTERPRET_BINARY_CSUROS_uint16(x,s) \
((uint16_t) (INTERPRET_BINARY_CSUROS_uint32(x,s)))

#define INTERPRET_BINARY_CSUROS_uint32(x,s) \
((((ONE32 << (s)) + ((x) & ((ONE32 << (s8)) - ONE32))) << ((x) >> (s))\
- (ONE32 << (8)))

#define INTERPRET_BINARY_CSUROS_uint64(x,s) \
((C((ONEB4 << (8)) + ((x) & ((ONE64 << (s)) - ONE64))) << ((x) >> (s))\
- (ONE64 << (8)))

#define INTERPRET_BINARY_CSUROS_double(x,s) \
(1dexp((ONE64 << (s)) + ((x) & ((ONE64 << (s)) - ONE64)), (x) >> (s)) \
- (ONE64 << (s)))
#define INTERPRET_BINARY_CSUROS_float(x,s) \
((float_t) (1dexp((ONE64 << (s)) + ((x) & ((ONE64 << (s)) - ONE64)), \
(x) >> (s8)) \
- (ONE64 << (8))))
Fig. 12. C macros for calculating the estimated value from a Cs(irés counter representation x.
#define INCREMENTALLY_UPDATE_BINARY_CSUROS_uint16(x,v,s) \
((v) + (ONE16 << ((x) >> (s))))
#define INCREMENTALLY_UPDATE_BINARY_CSUROS_uint32(x,v,s) \
((v) + (ONE32 << ((x) >> (s))))
#define INCREMENTALLY_UPDATE_BINARY_CSUROS_uint64(x,v,s) \
((v) + (ONEB4 << ((x) >> (s))))
#define INCREMENTALLY_UPDATE_BINARY_CSUROS_double(x,v,s) \
((v) + 1ldexp(1.0, ((x) >> (s8))))
#define INCREMENTALLY_UPDATE_BINARY_CSUROS_float(x,v,s) \

((v) + (float_t)ldexp(1.0, ((x) >> (s))))

Fig. 13. C macros for calculating the estimated value for x + 1 given x and its estimated value v.
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#define S_CSUROS_SUM(name,s,counter,value) \
value##_t S = (INTERPRET_BINARY_CSUROS_##value(x,s) + \
INTERPRET_BINARY_CSUROS_##value(y,s));
(C) Compute S by adding Cstiros values calculated from x and y
#tdefine S_TABLE_SUM(name,s,counter,value) \
value##_t S = (name##_interpret_##value[x] + \

name##_interpret_##value[y]);
(T) Compute S by adding value-table entries indexed by x and y

Fig. 14. C macros for calculating S from x and y.

computing the estimated value for x+1 from scratch. Again five versions are provided, one for each
of the possible types uint16, uint32, uint64, float, double that might be used for representing
the estimated value.

Figure 14 shows two different ways of computing S. The C macro S_CSUROS_SUM (also iden-
tified in abbreviated contexts, such as in Table 2, by the letter C) uses the relevant estimate-
calculation macro from Figure 12 twice (once on x and once on y) and adds the results. The C macro
S_TABLE_SUM (also identified by the letter T) instead assumes there is a precomputed table, whose
name is constructed by the phrase name##_interpret_##value, which can be indexed by x and
then by y to fetch two values to be added. The choice between these two macros for computing S
reflects a potential space-time tradeoff that we wished to measure.

Figures 15 and 16 together show seven different ways of computing K. The C macro
K_CSUROS_CALCULATE (also identified by C) in Figure 15 uses the relevant type-specific C macro
(also shown in that same figure) to calculate K from S by using logarithms (computed using
__builtin_clz if S has an integer representation, or using frexpf or frexp if S has a floating-
point representation). Five of the six alternative C macros in Figure 16 use another approach,
starting from the larger of x and y and searching upward to find the appropriate value of K; the
last alternative instead uses a large two-dimensional table. The choices among the seven macros
for computing K reflect potential space-time tradeoffs that we wished to measure.

The C macro K_LINEAR_SEARCH_CSUROS (also identified by LA) sets K equal to the larger of x
and y and then repeatedly increments K until the calculated estimated value for K + 1 is not larger
than S. (This technique depends on the fact that K is represented using a sufficiently large data
type that the calculation of K cannot overflow.)

The C macro K_LINEAR_INCR_CSUROS (also identified by LI) likewise sets K equal to the
larger of x and y and then repeatedly increments K until the estimated value for K + 1 is not
larger than S, but it calculates estimated values using the incremental technique of the macros in
Figure 13.

The C macro K_BINARY_SEARCH_CSUROS (also identified by BA) sets K equal to the larger of x
and y and then repeatedly adds 8 to K until the calculated estimated value for K + 8 is not larger
than S; then, it successively tries increments of 4, 2, and 1. The next effect is to search linearly for
an appropriate block of 15 values, then perform binary search on that block. Our intuition was that
in practice the loop would nearly always perform at most one iteration, so this technique would
nearly always behave as a straight binary search; the question was, would it beat a linear search?
(This technique depends on the fact that K is represented using a sufficiently large data type that
the calculation of K cannot overflow.)
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#define K_CSUROS_CALCULATE(name,s,counter,value) \
K_CSUROS_CALCULATE_##value(s)

(C) Calculate K from S (by dispatching to a type-specific macro below)

#define K_CSUROS_CALCULATE_uint16(s) \
K_CSUROS_CALCULATE_uint32(s)

How to calculate K from an S value of type uint16

#define K_CSUROS_CALCULATE_uint32(s) \
uint32_t Sprime = S + (1 << s); \
/* Note: __builtin_clz operates on a 32-bit value */ \
uint32_t d = (31 - (1 << s)) - __builtin_clz(Sprime); \
uint32_t K = (d << s) + (Sprime >> d) - (1 << s8);

How to calculate K from an S value of type uint32

#define K_CSUROS_CALCULATE_uint64(s) \
uint64_t Sprime = S + (1 << s); \
/* Note: __builtin_clz operates on a 32-bit value */ \
uint32_t d = (Sprime >= (((uint64_t)1)<<32)) ? \

(63 - (1 << 8)) - __builtin_clz((uint32_t) (Sprime >> 32)) \
(31 - (1 << 8)) - __builtin_clz((uint32_t)Sprime); \

uint32_t K = (d << s) + ((uint32_t) (Sprime >> d)) - (1 << s);

How to calculate K from an S value of type uint64

#define K_CSUROS_CALCULATE_float(s) \
float_t Sprime = S + (1 << s); \
int d; \
(void) frexpf(Sprime, &d); \
d -= (1 << 8) + 1) \
uint32_t K = (d << s) + (uint32_t)1ldexpf (Sprime, -d) - (1 << s);

How to calculate K from an S value of type float

#define K_CSUROS_CALCULATE_double(s) \
double_t Sprime = S + (1 << s); \
int d; \
(void) frexp(Sprime, &d); \
d -= ((1 << 8) + 1); \

uint32_t K = (d << s) + (uint32_t)1ldexp(Sprime, -d) - (1 << s);
How to calculate K from an S value of type double
Note: __builtin_clz takes a 32-bit integer and returns the number of leading zero bits in the

binary representation of the operand. The definition of K_CSUROS_CALCULATE_uint64 could be
greatly simplified if a 64-bit version of this count-leading-zeroes operation were available.

Fig. 15. C macros for calculating K from either S or x and y (part 1 of 2).
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#tdefine K_LINEAR_SEARCH_CSUROS (name,s,counter,value)
uint32_t K= (x> y) 7 x : y;
while (S >= INTERPRET_BINARY_CSUROS_##value (K+1,s)) ++K;

~

(LA) Linear search of Absolutely calculated Csuros values

#define K_LINEAR_INCR_CSUROS (name,s,counter,value)
uint32_t K= (x> y) 7 x : y;
value##_t Z = INTERPRET_BINARY_CSUROS_##value(K+1,s);
while ((S >= Z) && (K !'= (counter##_t)(-1))) {
++K;
Z = INCREMENTALLY_UPDATE_BINARY_CSUROS_##value(X,Z,s)

P

}

(LI) Linear search of Incrementally calculated Csuros values

#define K_BINARY_SEARCH_CSUROS(name,s,counter,value)
uint32_t K = (x> y) 7 x : y;
/* This loop and binary search cannot blow past the 8 sentinels */
while (S >= INTERPRET_BINARY_CSUROS_##value(K+8,s)) K += 8;
if (S8 >= INTERPRET_BINARY_CSUROS_##value(K+4,s)) K += 4;
if (8 >= INTERPRET_BINARY_CSUROS_##value(K+2,s)) K += 2;
if (S8 >= INTERPRET_BINARY_CSUROS_##value(K+1,s)) K += 1;

P

(BA) Binary search after linear search of every eighth Absolutely calculated value

#define K_LINEAR_SEARCH_TABLE(name,s,counter,value)
uint32_t K= (x> y) 7?7 x : y;
/* This loop cannot blow past the sentinel */
while (S >= name##_interpret_##value[K+1]) ++K;

~

(LT) Linear search of entries in value Table

#define K_BINARY_SEARCH_TABLE(name,s,counter,value)
uint32_t K = (x> y) 7 x : y;
/* This loop and binary search cannot blow past the 8 sentinels */
while (S >= name##_interpret_##value[K+8]) K += 8;
if (S >= name##_interpret_##value[K+4]) K += 4;
if (S >= name##_interpret_##value[K+2]) K += 2;
if (8 >= name##_interpret_##value[K+1]) K += 1;

P

(BT) Binary search after linear search of every eighth entry in value Table

#define K_MATRIX_LOOKUP (name,s,counter,value) \
uint32_t K = name##_lookup[x] [y];

(M) lookup in a 2-D Matrix using x and y (and ignoring .S)

Fig. 16. C macros for calculating K from either S or x and y (part 2 of 2).
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Table 2. Average Benchmark Execution Time for 264 Implementation Variations
of Approximate-counter Addition

general general

Csliros Csliros Csliros Csliros Csliros Csliros Morris Morris

estimates type: s=3 s=4 s=5 s=6 s=7 s=38 q=1.08 q=1.08

random type: | uint16 uint32 uint64 float double double double float

S K |4 G float double double float double double double float
C BA C C 9,097 9,073 8,715 25,935 24,607 26,963
C BA T T 8,610 8,651 8,453 20,512 19,000 19,627
C BA T W 8,082 8,250 8,056 21,774 19,692 21,345
C BT C C 7,711 7,958 7,515 15,794 15,542 13,452
C BT T T 7,265 7,236 7,305 10,813 10,782 9,711
C BT T W 7,310 6,962 6,892 11,019 10,606 9,726
C C C C 7,885 7,663 7,935 17,868 17,171 18,223
C C T T 7,382 7,375 7,685 13,132 12,544 12,159
C C T W 7,034 7,281 7,628 13,093 12,582 12,744
C LA C C 8,567 7,551 7,273 16,979 19,231 17,659
C LA T T 8,491 7,263 7,085 13,002 12,061 10,850
C LA T W 8,477 7,037 6,723 13,105 12,564 10,961
C LI C C 7,797 7,370 6,879 17,303 18,176 15,401
C LI T T 7,587 7,199 6,904 12,842 11,603 11,028
C LI T W 7,421 7,364 6,521 12,781 13,095 11,080
C LT C C 7,151 6,751 6,703 16,545 15,292 12,945
C LT T T 6,695 6,294 6,456 9,965 9,840 8,765
C LT T W 6,988 6,305 6,373 10,056 9,555 8,924
C M C C 6,831 6,761 6,347 16,447 13,718 13,420
C M T T 5,959 6,166 6,386 10,027 9,441 8,680
C M T W 6,227 6,173 6,318 9,849 9,625 8,906
T BA C C 8,692 8,442 8,441 22,182 21,189 21,172
T BA T T 8,204 7,920 7,949 18,050 14,820 15,848
T BA T W 7,822 7,897 7,745 18,176 15,022 16,043
T BT C C 7,554 7,333 7,189 13,031 11,290 9,904

T BT T T 6,946 6,776 6,879 6,836 6,345 6,014 6,842 6,860

T BT T W 7,022 6,514 6,625 7,031 6,436 6,295 7,092 7,056
T C C C 8,033 7,636 8,059 13,886 13,100 12,398
T C T T 7,160 7,220 7,654 8,922 8,595 8,540
T C T W 7,031 6,969 7,322 8,767 8,709 8,318
T LA C C 8,068 7,188 6,909 12,696 12,246 11,328
T LA T T 7,791 6,881 6,836 8,342 7,638 7,049
T LA T W 7,469 6,836 6,526 8,417 7,757 7,040
T LI C C 7,564 6,792 6,660 12,727 12,033 10,994
T LI T T 7,272 6,683 6,636 8,618 7,785 6,806
T LI T W 7,106 6,566 6,318 9,248 7,691 6,828
T LT C C 6,792 6,590 6,323 10,079 9,525 8,804

T LT T T 6,573 6,148 6,341 5,594 5,249 4,960 6,021 6,075

T LT T W 6,643 6,118 6,218 5,608 5,265 5,007 6,096 6,092
T M C C 6,445 6,373 6,220 9,794 9,494 8,728

T M T T 5,929 5,721 5,894 5,555 5,173 4,856 5,839 5,711

T M T W 6,076 5,818 5,978 5,606 5,308 4,962 5,882 5,849

Each entry is a time in milliseconds, computed by making nine measurements of benchmark execution time, discarding
the highest and lowest, and averaging the remaining seven. The maximum relative standard deviation in any set of seven
averaged measurements was less than 0.122, and the average relative standard deviation over all 264 table entries was less
than 0.022. The smallest time in each column is shown in boldface. These times may be compared to those in Table 3.

The C macro K_LINEAR_SEARCH_TABLE (also identified by LT) corresponds to the add pseu-
docode at the end of Section 4 (see page 7); it is similar to K_LINEAR_SEARCH_CSUROS but uses a
table of estimated values rather than calculating them. (This technique depends on the additional
fact that each table named name##_interpret_##value is padded at the end with one copy of a
sentinel value, of the appropriate type, from Figure 11.)

The C macro K_BINARY_SEARCH_TABLE (also identified by BT) 1is similar to
K_BINARY_SEARCH_CSUROS but uses a table of estimated values rather than calculating them. (This
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Table 3. Average Benchmark Execution Time for 10 Standard MPI Combining Operations

MAX MIN SUM PROD LAND BAND LOR BOR LXOR BXOR
1,913 1,924 1,869 1,875 1,891 1,862 1,887 1,854 1,940 1,854

Each entry is a time in milliseconds, computed by making nine measurements of benchmark execution time, discarding
the highest and lowest, and averaging the remaining seven. Compare these to Table 2.

#define V_CSUROS(name,s,counter,value) \
value##_t V = INTERPRET_BINARY_CSUROS_##value(K,s);

(C) Compute V as a Cstiros value calculated from K

#define V_TABLE(name,s,counter,value) \
value##_t V = name##_interpret_##value[K];

(T) Compute V by using a value-table entry indexed by K

Fig. 17. C macros for calculating V from K.

technique depends on the additional fact that each table named name##_interpret_##value is
padded at the end with eight copies of a sentinel value, of the appropriate type, from Figure 11.)

The last C macro in Figure 16, K_MATRIX_LOOKUP (also identified by M), ignores S and instead
uses x and y to index into a precomputed two-dimensional table. This is expected to be quite fast,
but the size of the table is fairly large (half a megabyte for the case of 8-bit approximate counters
and a double representation for estimated values).

Figure 17 shows two different ways of computing V. The C macro V_CSUROS (also identified by
C) uses the relevant estimate-calculation macro from Figure 12 on K. The C macro V_TABLE (also
identified by T) instead assumes there is a precomputed table, whose name is constructed by the
phrase name##_interpret_##value, which can be indexed by K to fetch the estimated value. The
choice between these two macros for computing S reflects a potential space-time tradeoff that we
wished to measure.

Figure 18 shows three different ways of computing G. The C macro G_FROM_W_CSUROS (also iden-
tified by C) uses the relevant estimate-calculation macro from Figure 12 on K + 1; then it subtracts
V. The C macro G_FROM_W_TABLE (also identified by W) instead assumes there is a precomputed ta-
ble, whose name is constructed by the phrase name##_interpret_##value, which can be indexed
by K + 1 to fetch the estimated value; then it subtracts V. The C macro G_TABLE (also identified
by T) bypasses the computation of W and instead assumes there is a second precomputed table,
whose name is constructed by the phrase name##_gap_##random, which can be indexed by K to
fetch the precomputed quantity W — V. The choice among these three macros for computing S
reflects a potential space-time tradeoff that we wished to measure.

We have now exhibited two ways to compute S, seven ways to compute K, two ways to compute
V, and three ways to compute W. However, in our experiments, we chose to take V from a table
(using macro V_TABLE), if and only if G was also taken from a table (using either G_FROM_W_TABLE
or G_TABLE). Therefore, we tried 2 X 7 X 3 = 42 different implementation combinations. For each
of the six Csiirés counter representations, we implemented all 42 combinations, but for the two
implementations of Morris counters, only the 6 implementation combinations that use tables (thus
avoiding any use of INTERPRET_BINARY_CSUROS_xxx macros) are applicable. Therefore, we pro-
duced atotal of 6 X 42 + 2 X 6 = 252 + 12 = 264 implementations of approximate-counter addition.
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#define G_FROM_W_CSUROS (name,s,counter,value,random)
value##_t W INTERPRET_BINARY_CSUROS_##value(K+1,s);
value##_t G = W - V;

~ -

(¢) Compute G by subtracting V' from a Cstros value calculated from K + 1

#define G_FROM_W_TABLE(name,s,counter,value,random)
value##_t W = name##_interpret_##value [K+1];
value##_t G = W - V;

= -

(W) Compute G by subtracting V' from a value-table entry indexed by K + 1

#tdefine G_TABLE(name,s,counter,value,random) \
value##_t G = name##_gap_##random[K] ;

(T) Compute G by using a gap-table entry indexed by K

Fig. 18. C macros for calculating G from K and possibly V.

To measure the relative speed of these implementations, we used an artificial benchmark that
within each MPI process constructed an array of 8-bit approximate counters and then repeatedly
did two things: initialize the array and then use the allReduce method to combine one array
from each process, using one of the 264 implementations of approximate-counter addition as the
combining operation. Only the execution time of the loop was measured. To provide a baseline for
comparison, we also took measurements of the same benchmark using the standard MPI combining
operators MAX, MIN, SUM, PROD, LAND, BAND, LOR, BOR, LXOR, and BXOR on 8-bit values.

We tried array lengths of 10,000, 100,000, and 1,000,000, adjusting the number of iterations to
keep measured run times between 2 and 30s (most were at least 5s); we also tried various ways
of initializing the arrays. These variations had some effect on the absolute measured run time, but
had almost no effect at all on the relative comparisons. Therefore, we present just one set of mea-
surements here, in Table 2, as being representative of all our observations. For these measurements
the array length was 1,000,000, the number of iterations was 250, and every element of every array
was initialized to 43. The measurements were taken on the same hardware (16 nodes containing
two Xeon processors each) used for the SCA application measurements described in Section 12,
using 32 JVM instances communicating with one another as 32 MPI processes. Each instance of
the benchmark was run nine times; from each set of nine measurements, the lowest and highest
values were discarded and the other seven averaged to produce the data presented in Table 2. For
comparison, similarly processed measurements of 10 standard MPI combining operations applied
to the same data are presented in Table 3.

The results are perhaps unsurprising. In the specific CPU-based hardware/software environ-
ment that we measured, we generally find that:

—Approximate-counter addition is slower than any of the 10 standard MPI combining
operations.

—Incremental calculations during a linear search (LI) are faster than from-scratch absolute
calculations during a linear search (LA).

—Linear search turns out to be faster than binary search.

—Table-based techniques are faster than making calculations.
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Our conclusion, however, is not that any one implementation technique is superior in all circum-
stances, but rather that it may be worthwhile to compare the speed of several such techniques in
each new computational environment. In a GPU-based environment, for example, it may be infea-
sible to use a very large table, or it may be that some form of calculation is faster than using even
small tables, or it may be that binary search is faster than linear search, either because of SIMD
constraints or because the value of g is small (very close to 1).

14 DON’T SUBTRACT (OR DECREMENT) APPROXIMATE COUNTERS

It is conceptually straightforward to define a subtraction operation for approximate counters: just
take the pseudocode for the add operation in Section 3 and change the “+” to “~” in the computa-

tion of S in line 4:

1: procedure subtract(var X: T, Z: T)
2. letv « f(X)

32 letw« f(Z)

4 letS—v-w > We do not recommend use of this procedure!
5: let K « (p(S)

6 letV « f(K)

7. let W « f(r(K))

g letA e« 21

9. if random() < A then

10: X « 1(K)

11:  else

12: X« K

It is similarly easy to define a decrement operation (perhaps in terms of subtract).

But this is not a good idea. Subtraction increases the variance of the result in the same man-
ner as addition, but the result itself may be smaller in magnitude (absolute value) than either of
its operands, so a series of addition and subtraction operations can cause the relative standard
deviation to grow without bound.

We tried to obtain empirical confirmation of this theoretical observation by taking a well-known
LDA algorithm that, rather than recalculating all counts from scratch on each iteration, instead
updates counters incrementally: whenever the topic assigned to a word is changed, it decrements
the words-per-topic count for the old topic and then increments the words-per-topic count for
the new topic. We straightforwardly modified this algorithm to use approximate counters rather
than standard integer counters. As expected, it behaved extremely poorly. It wasn’t just that the
log likelihood of the computed parameters failed to converge, even after an enormous number of
iterations; there was gross misbehavior. We finally realized that the correctness of the algorithm
depends critically on the fact that every counter always has a nonnegative value—but when incre-
mentations and decrementations are only statistical, a probabilistic counter can take on negative
values even if the number of decrementation attempts is always smaller than the number of in-
crementation attempts. Trying to address this naively by saturating at the lower end (i.e., refusing
to decrement a counter that is already zero) introduced biases that violated other invariants of the
algorithm, such as that the sum (or at least the expected sum) over an entire array should remain
constant. While this particular experiment did not fully verify that the variance might grow with-
out bound in practice, it did support the general hypothesis that pitfalls await the unwary who
use subtraction on approximate counters.
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15 MULTIPLICATION OF APPROXIMATE COUNTERS MIGHT BE WELL-BEHAVED

It might be reasonable to define a multiplication operation for approximate counters and to at-
tempt to prove an appropriate bound on the variance of the product. However, we have not yet
encountered or thought of a practical application for such an operation.

16 WHY HASN’T THIS BEEN DONE BEFORE?

When we set out to test a distributed version of the single-GPU LDA Gibbs algorithm with ap-
proximate counters, we recognized the need to replicate the counters—simple tests showed that
trying to increment counters stored on a remote node would result in much slower performance—
and therefore the need to add approximate counter values. We thought it would be easy to locate
the necessary algorithm in the literature; approximate counters have been around for almost four
decades, and it’s an “obvious” operation to provide. But our best efforts uncovered no mention at
all of this operation or anything like it.

We speculate that the need simply has not arisen until now, and offer a “just-so” story: If counters
are stored in a central memory, then it never makes sense to use a replicated representation for the
counters; if one can afford to store two copies of an 8-bit approximate counter, then one is better
off using one 16-bit approximate counter, affording greater range or precision or both. So adding
approximate counters makes sense only in a distributed setting. But, we have found that most uses
of approximate counters in the literature have had to do with counting events (such as performance
counters in a hardware processor); it does make sense, for example, for every processor in a cluster
to have its own counters, but typically one clears the counters, runs a computation, and then
gathers and aggregates the performance data just once, after the computation has completed. For
database applications, past use has typically focused on counting features while making a single
(possibly distributed) pass over the database. In such cases there is nothing to be gained by reducing
the aggregated values back to the approximate-counter representation; rather, one communicates
the approximate counter values, expands each to a full integer, and then sums the integers—that’s
all there is to it.

What motivates addition of approximate counters is an iterative distributed application that can
use replicated approximate counters within each iteration, where each iteration also includes the
aggregation and redistribution of such replicated counters. We found that machine-learning algo-
rithms (such as topic modeling) and stochastic cellular automata fit this description and benefit ac-
cordingly. We admit that one benefit of adding approximate counters in such applications, namely
the reduction in network traffic, could be had in other ways, such as applying a generic data-
compression algorithm to an array of ordinary integer counters. However, the addition process
is fairly quick, and there are other benefits to maintaining intermediate values in approximate-
counter form, such as reduction of memory footprint.

17 CONCLUSIONS AND FUTURE WORK

Statistically independent approximate counters can be added, producing a result in the same rep-
resentation, so the expected value of the result is the sum of the expected values of the operands,
and the variance of the result is bounded. We present specific novel algorithms for adding five
kinds of approximate counters in the literature; for three of them (general Morris, binary Mor-
ris, and Cslirds), we present proofs of bounded variance. We report that replacing integer counters
with approximate counters maintains the statistical behavior of a distributed multiple-GPU imple-
mentation of a machine-learning application while improving its overall performance by almost a
factor of 3, and of a distributed multiple-CPU implementation of another machine-learning appli-
cation while improving its overall performance by almost a factor of 2.
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It remains to produce proofs of bounded variance (if possible) for the other two kinds of approx-
imate counters (DLM probability and DLM floating-point), to measure the relative speeds of vari-
ous implementations of approximate-counter addition in other computational environments, and
to investigate what other sorts of applications might benefit from adding approximate counters.
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