
The NEBULA RPC-Optimized Architecture

Mark Sutherland
EcoCloud, EPFL

mark.sutherland@epfl.ch

Siddharth Gupta
EcoCloud, EPFL

siddharth.gupta@epfl.ch

Babak Falsafi
EcoCloud, EPFL

babak.falsafi@epfl.ch

Virendra Marathe
Oracle Labs

virendra.marathe@oracle.com

Dionisios Pnevmatikatos
National Technical University of Athens

pnevmati@cslab.ece.ntua.gr

Alexandros Daglis
Georgia Institute of Technology
alexandros.daglis@cc.gatech.edu

Abstract—Large-scale online services are commonly structured
as a network of software tiers, which communicate over the dat-
acenter network using RPCs. Ongoing trends towards software
decomposition have led to the prevalence of tiers receiving and
generating RPCs with runtimes of only a few microseconds. With
such small software runtimes, even the smallest latency overheads
in RPC handling have a significant relative performance impact.
In particular, we find that growing network bandwidth introduces
queuing effects within a server’s memory hierarchy, considerably
hurting the response latency of fine-grained RPCs. In this work
we introduce NEBULA, an architecture optimized to accelerate
the most challenging microsecond-scale RPCs, by leveraging two
novel mechanisms to drastically improve server throughput under
strict tail latency goals. First, NEBULA reduces detrimental
queuing at the memory controllers via hardware support for
efficient in-LLC network buffer management. Second, NEBULA’s
network interface steers incoming RPCs into the CPU cores’ L1
caches, improving RPC startup latency. Our evaluation shows
that NEBULA boosts the throughput of a state-of-the-art key-
value store by 1.25–2.19x compared to existing proposals, while
maintaining strict tail latency goals.

Index Terms—Client/server and multitier systems, Network
protocols, Queuing theory, Memory hierarchy

I. INTRODUCTION

Modern large-scale online services deployed in datacenters

are decomposed into multiple software tiers, which com-

municate over the datacenter network using Remote Proce-

dure Calls (RPCs) [1]–[3]. The growing software trends of

microservices and function-as-a-service have promoted this

decomposition, raising system-level implications. RPCs to

ubiquitous, performance-critical software tiers (e.g., data stores)

perform very little computation per RPC and often exhibit μs-
scale runtimes. Such software tiers have high communication-

to-computation ratios, designating networking as the key

performance determinant.

In response to these trends, datacenter networking tech-

nologies are evolving rapidly, delivering drastic bandwidth

and latency improvements. Modern datacenter topologies offer

ample path diversity and limit in-network queuing [4]–[6],

enabling μs-scale roundtrip latencies. To accommodate growing

demands for network bandwidth, commodity fabrics have been
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rapidly scaling their capacity, with 1.2Tbps InfiniBand and

1.6Tbps Ethernet on the roadmap [7], [8]. Although these

improvements will help sustain the demands created by extreme

software decomposition, they will also shift networking-

associated bottlenecks to the servers themselves. The confluence

of shrinking network latency and growing bandwidth with μs-
scale RPCs has initiated a “hunt for the killer microseconds” [9]

across all levels of the system stack, raising server design

implications because historically negligible overheads (e.g.,

15μs for TCP/IP [10]) have become bottlenecks.

In this work, we study two server-side sources of queuing that

significantly affect the tail latency of μs-scale RPCs. The first

is load imbalance, because the distribution of RPCs to a CPU’s

many cores directly affects tail latency. Load balancing for μs-
scale RPCs has thus recently attracted considerable attention,

with both software [11], [12] and hardware [13], [14] solutions

to improve upon the static load distribution support modern

NICs offer in the form of Receive Side Scaling (RSS) [15].

The second source of server-side queuing has received less

attention. As network bandwidth gradually approaches memory

bandwidth, memory accesses caused by incoming network

traffic interfere with the application’s accesses, creating queuing

effects in the memory subsystem that noticeably degrade the

tail latency of μs-scale RPCs. This bandwidth interference

effect is especially noticeable in the context of latency-

optimized networking technologies like DDIO, InfiniBand, and

next-generation fully integrated architectures like Scale-Out

NUMA [16]. We find that such interference can degrade a

server’s achievable throughput under strict tail latency goals

by more than 2×. It is evident that avoiding such interference

with specialized network traffic management in the memory

hierarchy is necessary to leverage advancements in software

architecture and networking hardware.

To tackle both sources of detrimental server-side queuing, we

propose the Network Buffer Lacerator (NEBULA) architecture,

optimized for fine-grained RPCs. While prior techniques

exist to ameliorate each queuing source individually, no

existing system tackles both. NEBULA extends a recently

proposed hardware design for load balancing [13] with a novel

NIC-driven buffer management mechanism, which alleviates

detrimental interference of incoming network traffic with

the application’s memory accesses. Our key insight is that
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network buffer provisioning should not be a function of the

number of remote endpoints a server communicates with, but

of an individual server’s peak achievable RPC service rate.

Consequently, network buffers that typically have footprints

of many MBs, or even GBs, can be shrunk to 100s of KBs,

delivering significant savings in precious DRAM resources,

which drive the scale and cost of datacenters [17], [18].

More importantly, NEBULA leverages this observation to

keep such small network buffers SRAM-resident via intelligent

management, thus absorbing the adverse effects of bandwidth

interference due to network traffic.

NEBULA’s second new feature is NIC-to-core RPC steering.

We introduce NIC extensions to monitor each core’s queue of

RPCs and directly steer the next queued RPC’s payload into

the correct core’s L1 cache, just in time before the core picks

it up for processing. Our design avoids L1 cache pollution—a

key reason why network packet placement in DDIO-enabled

NICs [19] has been restricted to the LLC—and accelerates

RPC startup time, reducing overall response latency. Combined,

NEBULA’s two memory hierarchy management optimizations

boost a key-value store’s achieved throughput under tail latency

constraints by 1.25− 2.19× compared to prior proposals.

In summary, our work makes the following contributions:

• We show that architects are currently faced with a

dilemma: either building a system with memory bandwidth

interference between the NIC and CPU cores, or with load

imbalance between the cores. This dilemma is particularly

pronounced when combining the immense bandwidth of

future NICs with emerging μs-scale software layers.

• We address the aforementioned dilemma by proposing

a co-design of the network protocol and NIC hardware

that maximizes network buffer reuse in the server’s LLC.

We conduct a mathematical analysis that enables in-LLC

buffer management by showing that strict application-level

tail-latency goals can only be met by maintaining shallow

queues of incoming RPCs, and that such queues are easily

accommodated in the LLC.

• We advance the state-of-the-art in network packet place-

ment by the NIC in the memory hierarchy. For the first

time, we drive network packets all the way to L1 caches

while avoiding cache pollution effects, improving the

response latency of μs-scale RPCs.

• We present the first holistically optimized architecture for

μs-scale RPCs, with integrated support for load balancing

and network-aware memory hierarchy management.

The rest of the paper is structured as follows. §II highlights

the impact of server-side queuing effects on the tail latency of

μs-scale RPCs, arising from load imbalance and/or memory

bandwidth interference due to incoming network traffic. §III

quantifies these two effects with a queuing model. §IV and §V

introduce NEBULA’s design and implementation, respectively.

We describe our methodology in §VI and evaluate NEBULA

in §VII. We discuss NEBULA’s broader applicability and

prospects for datacenter adoption in §VIII, cover related work

in §IX and conclude in §X.

II. BACKGROUND AND CHALLENGES

A. Online Services and Latency-Sensitive RPCs

Online services are deployed in datacenters to deliver high-

quality responses to a plethora of concurrent users, with

response times small enough to deliver a highly interactive

experience. Responding to each query with such low latency

often requires datasets to be replicated across servers, and

software to be decomposed into multiple tiers which commu-

nicate over the network to synthesize a response. Inter-server

communication typically occurs in the form of RPCs: a user

query triggers a sequence of RPC fan-outs, forming a tree of

sub-queries that spans hundreds or thousands of servers [20].

That fan-out requires strict limits on the tail response latency

of each service tier [21], commonly referred to as a Service

Level Objective (SLO).

We focus on services generating μs-scale RPCs, because of

their unique challenges and growing presence. While already

widespread in the form of in-memory data stores, services with

this profile are becoming increasingly omnipresent because of

the trend toward microservice software architectures [1]–[3].

Fine-grained RPCs are particularly vulnerable to latency degra-

dation, as otherwise negligible overheads become comparable

to the RPC’s actual service time. As the frequency of μs-scale
RPCs in the datacenter increases, so does the importance of

handling them efficiently.

B. Architectures for Low-Latency Networking

As microservices imply a growth in communication-to-

computation ratio [1], the first necessary step to handle them

efficiently is the use of highly optimized network protocols and

operating system components. Recent datacenter networking

advancements to address this challenge include user-level

network stacks (e.g., DPDK [22]), hardware-assisted solutions

(e.g., dataplanes [23], [24], Microsoft Catapult [25]), and even

at-scale InfiniBand/RDMA deployments [26], whose hardware-

terminated protocol drastically shrinks the overhead of network

stack processing. The demand for lower latency motivates

even more radical proposals to approach the fundamental

lower bound of networking latency—propagation delay—via

on-server integration of network fabric controllers. Such designs

already exist in both academia (e.g., Scale-Out NUMA [16],

the FAME-1 RISC-V RocketChip SoC [27]) and industry (e.g.,

Intel Omni-Path [28], Gen-Z [29]). We expect similar latency-

optimized solutions to find their way into datacenters soon, in

response to the growing demands and latency-sensitive nature

of online services.

With protocol and architectural optimizations to minimize

the in-network component of each individual RPC, the next

step is to address server-side inefficiencies. In this work, we

identify two sources of queuing as primary obstacles for servers

handling μs-scale RPCs. The first is the contention that rapidly

growing network bandwidth can inflict on a server’s memory

channels. The second is load imbalance across a server’s many

cores. While there are existing techniques to address each

challenge, no current solution addresses both.
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C. Memory Bandwidth Interference or Load Imbalance?

The future of commodity network fabrics is one of tremen-

dous bandwidth, with 1.2Tbps InfiniBand and 1.6Tbps Ethernet

already on the roadmap [7], [8]. Such growth directly affects

server design, as incoming network traffic becomes a non-trivial

fraction of a server’s available memory bandwidth. If the server

is naively architected, network traffic will destructively interfere

with the memory requests of the executing applications, causing

queuing effects that noticeably degrade the tail latency of μs-
scale RPCs. Therefore, it is imperative for future servers to

prevent such interference by handling network traffic within

their SRAM caches, which have the requisite bandwidth to

keep pace.

High-performance user-level network stacks complicate the

task of in-cache network traffic management. To provide the

latency benefits of zero-copy and synchronization-free message

reception, network receive buffers are provisioned on a per-

endpoint basis (i.e., with dedicated buffers per connection), so

that the server can receive a message from any communicating

endpoint, anytime. Connection-oriented provisioning creates

a fundamental scalability problem, wasting precious DRAM

resources and raising performance implications for RPC

libraries built on RDMA NICs [30]–[33]. Furthermore, multi-

client interleaving of incoming requests results in unpredictable

access patterns to network buffers, effectively eliminating the

probability of finding these buffers in the server’s LLC, thus

causing increased DRAM bandwidth usage. We find that this

second—often overlooked—effect can significantly hurt the

latency of μs-scale RPCs.

Aiming to reduce the memory capacity waste of connection-

oriented buffer provisioning, InfiniBand offers the Shared

Receive Queue (SRQ) option to enable inter-endpoint buffer

sharing [34]. SRQ’s reduced buffer footprint can also implicitly

ameliorate memory bandwidth interference due to increased

LLC buffer residency. Another approach to prevent network

buffers from overflowing into memory is to statically reduce the

number of buffers available for allocation by the network stack,

suggested in prior work such as ResQ [35]. Unfortunately,

SRQ is vulnerable to load imbalance between the CPU cores, as

it corresponds to a multi-queue system by design: clients must

specify the queue pair (QP) each request is sent to, implying

an a priori request-to-core mapping. The same multi-queue

limitation is inherent to Receive-Side Scaling (RSS) [15] sup-

port, often used for inter-core load distribution [12], [23], [24].

Synchronization-free scaling of the ResQ approach for multi-

core servers similarly results in a multi-queue configuration

vulnerable to load imbalance.

Prior work has demonstrated that the distribution of incom-

ing μs-scale RPCs to a server’s cores crucially impacts tail

latency. Due to the fundamentally better tail latency provided

by single-queue systems, many proposals have advocated for a

single-queue approach in network switches [14], operating

systems [11], [12] and NIC hardware [13]. For μs-scale
RPCs, the overheads of software-based load balancing, or any

synchronization at all, can be comparable to the RPC service
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Fig. 1. Memory hierarchy associated with handling incoming RPCs, modeled
by our queuing system.

time itself; the corresponding throughput loss motivates using

hardware mechanisms for load balancing. RPCValet [13], a

recently proposed NIC-driven mechanism for synchronization-

free, single-queue load balancing, improves throughput under

SLO by up to 1.4× over a multi-queue system. However,

RPCValet’s network buffer provisioning is connection-oriented

by design, and thus creates memory bandwidth interference.

We now proceed to conduct a theoretical study of the effects of

these two shortcomings, interference and imbalance, on RPC

throughput under SLO.

III. THEORETICAL STUDY: INTERFERENCE & IMBALANCE

To demonstrate the performance impacts of the previous

quandary, we construct a first-order queuing model that captures

the critical interactions between the network, cores, and

memory. We assume a multi-core CPU and a NIC that places

packets directly into the LLC, similar to DDIO [19]. Fig. 1

shows the modeled components of our queuing system and

the interactions that occur during RPC handling: 1 incoming

traffic from the NIC placing RPCs into the memory hierarchy,

2 assignment of RPCs to cores, 3 demand traffic generated

by the cores while servicing RPCs, and 4 writebacks of dirty

blocks from the LLC to memory.

Load-balancing implications pertain to step 2 . We consider

two hardware-assisted alternatives: multi-queue behavior like

RSS/SRQ and single-queue behavior like RPCValet. In the

former case, we optimistically assume uniform load distribution,

which is the best-case performance for RSS/SRQ. We only

consider the effect of the single- or multi-queue policy, without

penalizing any system for implementation-specific overhead.

Memory bandwidth interference concerns relate to steps 1 ,

3 and 4 . When network receive buffers exceed the LLC in

size, writing new packets requires fetching the buffers from

DRAM into the LLC first 1 . The cores’ memory requests also

compete for memory bandwidth 3 . Write accesses from 1

and 3 create dirty blocks in the LLC, consuming additional

memory bandwidth when they are evicted from the LLC 4 .

We select parameters for Fig. 1’s queuing system by

reproducing the current best-performing server architecture

for key-value serving: 60 CPU cores, 45MB of LLC, six

DDR4 memory channels, and a 300Gbps NIC [36]. These

parameters are also representative of modern servers such

as Intel’s Xeon Gold [37] and Qualcomm’s Centriq [38].

We model a Poisson RPC arrival process, and assume RPCs
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modeled after MICA SETs [39], which perform a hash-index

lookup (64B read) followed by a 512B value write and have

an average service time S̄ = 630ns. Additional queuing model

details are available in Appendix A.
We evaluate the following four queuing system configura-

tions using discrete-event simulation:

1) RSS. A multi-queue system with uniform assignment of

incoming RPCs to cores and 136MB of receive buffers

(see §VI for sizing details). This configuration suffers

from load imbalance and memory bandwidth interference.

2) RPCValet. Single-queue load balancing of RPCs to cores

with equal receive buffer provisioning to RSS. Although

RPCValet solves load imbalance, it still suffers from

bandwidth interference.

3) SRQ. Like RSS, a multi-queue system with uniform

distribution of incoming RPCs to cores, but assumes ideal
buffer management, where all network buffers are reused

in the LLC, eliminating bandwidth interference.

4) NEBULA. Combines the best traits of RPCValet and SRQ:

single-queue load balancing and ideal buffer management.

Note that both SRQ and NEBULA are hypothetical configu-

rations we employ to demonstrate upper performance bounds

of an idealized zero-overhead buffer management mechanism.
Fig. 2 shows the 99th% latency of the RPCs and the total

memory bandwidth utilization of the modeled system, assuming

an SLO of 6.5μs (� 10 × S̄). The systems with connection-

oriented buffer bloat (RSS and RPCValet) saturate early at

a load of 0.61, because they exhaust the server’s memory

bandwidth by generating 127GB/s of traffic. Although RPC-

Valet attains sub-μs 99th% latency until saturation—an order

of magnitude lower than RSS at a load of 0.56—thanks to

improved load balancing, it only supports 61% of the maximum

possible load because of its memory bandwidth bottleneck.
SRQ scales beyond RSS and RPCValet, meeting the SLO

up to a load of 0.76. SRQ outperforms RPCValet despite load

imbalance because its network buffers are always reused in the

LLC, thus eliminating all traffic from step 1 and writebacks of

dirty network buffer blocks 4 . Effectively, network contention

for memory bandwidth is removed from 3 ’s path.
Despite SRQ’s improved performance, it still leaves 24%

of the server’s maximum throughput unprocured, due to its

inability to balance load across cores. SRQ’s lost throughput

would increase proportionally to RPC service time variance;

our model only considers the narrow distributions observed

in object stores. NEBULA combines the best of RPCValet

and SRQ, attaining near-optimal 99th% latency up to a load

of 0.97, only saturating when it becomes CPU bound. Even

at maximum load, NEBULA only consumes ∼ 50% of the

server’s maximum memory bandwidth.
In conclusion, our model shows that RPC-optimized architec-

tures must address both load balancing and memory bandwidth

interference. Although load balancing has been extensively ad-

dressed in prior work from both architectural [13] and operating

system [12], [14] perspectives, our models demonstrate that

memory bandwidth contention is also a primary performance

determinant. Next, we present the principles guiding our design

Fig. 2. Discrete-event simulation results, showing the impact of load imbalance
and memory bandwidth interference on the tail latency of μs-scale RPCs.

to address memory bandwidth interference and attain the

performance of Fig. 2’s NEBULA configuration.

IV. NEBULA DESIGN

In this section, we describe the insights guiding our design

for latency-critical software tiers using RPCs, that addresses

the problem of memory bandwidth interference. We begin by

describing the salient characteristics of our network protocol

and server system baseline, proceed to set out the additions we

propose for the NEBULA architecture, and finally demonstrate

the underpinning mathematical insights.

A. Baseline Architecture and Network Stack

Our baseline network stack features a hardware-terminated,

user-level network protocol, with an on-chip integrated

NIC [16], [40]. We choose this baseline because of its suitability

for latency-critical software systems, and because systems

featuring these characteristics are emerging in production

datacenters (see §II-B). NEBULA’s prerequisites from the

underlying system are the following.

Prerequisite 1: RPC-oriented transport. Recent work ad-

vocates for RPC-oriented transports as a better fit than con-

ventional bytestream transports in datacenters, as they enable

improved flow control [41], latency-aware routing [6], and

inter-server load balancing [14]. NEBULA requires an RPC

transport because exposing the abstraction of an RPC in the

transport layer enables the NIC to make decisions pertinent to

the application-level unit that an RPC represents, rather than

the limited view of packets as mere chunks of bytes.

Prerequisite 2: NIC-driven load balancing. NEBULA relies

on a synchronization-free mechanism to load-balance RPCs

between a server’s many cores, for improved tail latency under

SLO compared to statically partitioned RPC queues. In the

presence of load imbalance, a server could begin violating the

application’s SLO due to increased application-layer queuing,

hitting an earlier bottleneck than bandwidth interference, as

shown by our analysis in §III. For the remainder of this paper,

we adopt RPCValet [13] as our baseline architecture, which

features an integrated NIC that delivers single-queue load

balancing without incurring any software overheads.
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B. Key Design Features

In-LLC RPC buffer management. With RPC as the net-

work’s transport abstraction (Prerequisite 1), the NIC can

expose and manage a single network endpoint used by all

its N clients, instead of one endpoint per client, reducing the

set of buffers for incoming RPC requests from N to one. Our

analysis in §IV-C shows that for a stable latency-sensitive

system, the active buffer size required can be conveniently

accommodated in a modern server’s LLC—this lies at the

core of our contributions. NEBULA leverages this opportunity

to implement an in-LLC buffer management mechanism at

the NIC, eliminating the memory bandwidth implications

demonstrated in §III.

SLO-aware protocol. NEBULA targets latency-sensitive on-

line services with a strict tail-latency SLO; a response violating

the SLO has limited value. We leverage this qualitative

characteristic to relax hardware requirements. For example,

under conditions of heavy server-side queuing (deep queues),

newly arriving RPCs that would inevitably violate the SLO are

eagerly NACKed, informing the client early about increased

load conditions on the server. Bounding queue depths by taking

SLO constraints into account is synergistic with the goal of

maximizing the LLC residency of RPC buffers. NEBULA

includes the necessary protocol extensions to support judicious

NACKing to inform applications early of SLO violations. This

policy is also synergistic with existing tail-tolerant software

techniques, which eagerly retry [21] or reject [42] requests

predicted to be delayed. NEBULA’s fail-fast approach to SLO

violation complements these techniques, which can replace

predictions with timely feedback.

Efficient packet reassembly. A direct effect of moving from

a connection- to an RPC-oriented transport (Prerequisite 1)

is that packets belonging to various multi-packet RPCs are

intermingled and must be properly demultiplexed into destina-

tion buffers in the correct order. Given our basic assumption

of a hardware-terminated protocol, such demultiplexing and

reassembly needs to be handled by the NIC hardware. Our

baseline architecture featuring an on-chip integrated NIC

exacerbates the RPC reassembly challenge in two ways. First,

the on-chip resources that can be dedicated to the NIC’s

reassembly hardware are limited by tight power and area

constraints, as well as by the use of existing interfaces to

the server’s memory system. Second, because architectures

with integrated NICs often use small MTUs (e.g., 64B in

Scale-Out NUMA [16]), the frequency of RPC fragmentation

and reassembly is exceptionally high.

Although most RPCs in the datacenter are small, many

are still larger than 64B [41], [43]. Prior work circumvented

these reassembly challenges by allocating dedicated buffers

for messaging per node pair [13], leading to the buffer bloat

implications detailed in §II-C. As NEBULA drastically reduces

buffering requirements and shares buffers between endpoints,

we employ a protocol-hardware co-design to support efficient

packet reassembly, even at futuristic network bandwidths.

NIC-to-core RPC steering. When handling μs-scale RPCs,

small latency components, such as on-chip interactions involved

in the delivery of an RPC to a core, matter. Directly steering

an incoming RPC from the network to a core’s L1 cache,

rather than having the core read it from memory or the LLC,

can noticeably accelerate the RPC’s startup. However, such an

action has to be timely and accurate to avoid adverse effects.

A key challenge of NIC-to-core RPC steering is that the NIC

generally does not know a priori which core will handle a given

incoming RPC, and inaccurate steering would be detrimental

to performance. A second peril is potentially over-steering

RPCs, as directly storing several incoming RPCs into a core’s

L1 cache could thrash it. DDIO avoids these complications

by conservatively limiting network packet steering to a small

fraction of the LLC [19] and not further up the cache hierarchy,

leaving available opportunities for performance improvement.

Successful NIC-to-core RPC steering requires breaking RPC

handling into two distinct steps: arrival and dispatch. The goal

of the arrival step is payload placement in an LLC-resident

queue, to mitigate memory bandwidth interference. The goal of

the dispatch step is to transfer an RPC from the in-LLC queue

to a core’s L1 cache, right before that core starts processing

the RPC. The dispatch decision is also an integral part of

the load-balancing mechanism (Prerequisite 2); in the case of

steering, the focus shifts from which core to dispatch to, to

when. Therefore, we extend RPCValet’s basic load balancing

mechanism from simple RPC-to-core assignment to complete

payload steering. We defer implementation details to §V.

C. Bounded Server-Side Queuing

Our key insight motivating shallow SRAM-resident queues

for incoming RPCs is that SLO-violating RPCs typically spend
most of their on-server time waiting in a deep queue. Con-
versely, the on-server time of SLO-abiding RPCs is primarily

spent on-core rather than waiting in a queue. Therefore, it is

sufficient to allocate memory space for only enough RPCs

whose queuing latencies will not correspond to SLO violation.

Keeping these buffers SRAM-resident not only reduces the

memory footprint, but also boosts performance in two ways.

First, by lowering memory bandwidth demand, thus reducing

queuing in the memory subsystem for application accesses.

Second, by providing cores with faster access to the arrived

RPC, thus reducing RPC startup time.

Setting a hard constraint on tail latency implies that the

maximum amount of time an RPC can be queued at a server

must also be bounded. A server’s RPC response time is tr =
tq + ts, where tq and ts represent the average RPC queuing

and service time, respectively. Assuming an SLO of 10× ts as

is common in the literature [12], [13] constrains queuing time

to tq ≤ 9ts. Simply put, to respect the SLO, a hypothetical

server with a single processing unit must be operating at a

load point where the 99th% of the distribution of the number

of waiting RPCs is ≤ 9.
We conduct a queuing analysis to generalize this observation

and estimate the queuing capacity required for a server that is

operating under an SLO-abiding load. We model a k-core server
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TABLE I
MEASURED LOAD AND QUEUE DEPTHS AT SLO, USING SYNTHETIC

SERVICE TIME DISTRIBUTIONS.

Distribution Max Load @ SLO 99th% Q. Depth @ SLO
Deterministic 0.999 54
Exponential 0.995 319
Bimodal 0.940 410

after an M/G/k queuing system, assuming Poisson arrivals

and a general service time distribution. We are interested in

the distribution N̂q that represents the number of queued RPCs

under a system load A = λ
μ , where λ is the arrival rate of new

requests, and μ is the per-core service rate (stability condition:

λ < k × μ). The mean of the distribution, E[N̂q] is given by

Eqn. 1 [44], where Ck(A) is the Erlang-C formula:

E[N̂q] = Ck(A)
A

k −A
(1)

Although E[N̂q]
A→k−−−→ ∞, solving the equation for high

system load results in E[N̂q] values closer to k. For example,

for a 64-core CPU at an extreme load of A = 63, E[Nq] = 54.
Ideally, we would be able to analytically solve for the 99th%

of the N̂q distribution. However, closed-form expressions for

the various percentiles of N̂q are not known. We therefore use

§III’s queuing simulator to collect statistics for N̂q using three

service time distributions from ZygOS [12]:

• Deterministic: P [X = S̄] = 1
• Exponential: P [X] = λe−λx (S̄ = 1

λ )

• Bimodal: P [X = Ŝ
2 ] = 0.9, P [X = 5.5× S̄] = 0.1

Table I shows the maximum load meeting an SLO of 10× S̄
and the 99th% of N̂q at that load. The results corroborate the

intuition that as the service time dispersion grows (e.g., for

bimodal), the peak load under SLO drops and the 99th% queue

depth increases. Additionally, the deterministic distribution’s

99th% is equal to E[N̂q], because there is no variability in

the rate at which cores drain requests from the queue. This

analysis shows that even at extremely high loads, the number

of RPCs waiting in the queue is small enough to easily fit

inside a server’s existing SRAM resources. Provisioning for

deeper queuing is effectively useless, because RPCs landing

in queues deeper than the upper bound demonstrated by our

analysis will violate the SLO anyway.

Provisioning a receive buffer of limited size on the server

requires the transport protocol to signal a “failure to deliver”

(NACK) if the request is dropped because of a full queue. It

is up to the client to react to a NACK reception; for example,

the request could be retried or sent to a different server, as

proposed by Kogias et al. [45]. Exposing delivery failures to the

client follows the end-to-end principle in systems design [46]:

the client application is best equipped to handle such violations

and should be informed immediately. Note that the client has

to perform proactive load monitoring for SLO violations even

if the transport protocol never rejects requests.

In summary, we show that meeting strict SLOs requires

shallow server-side RPC queues. Thus, system designers can
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Fig. 3. Overview of baseline and NEBULA architectures.

leverage this observation to provision small enough amounts

of buffering that comfortably fit inside the on-chip caches

of a modern server, eliminating the buffer memory footprint

problem, as well as the latency implications because of memory

bandwidth interference.

V. NEBULA IMPLEMENTATION

We now describe our NEBULA implementation, based on the

design features outlined in §IV. We first briefly introduce the

baseline architecture’s critical features, then detail NEBULA’s

protocol and NIC hardware extensions.

A. Baseline Architecture

We use Scale-Out NUMA (soNUMA) [16] as our baseline

architecture. soNUMA combines a lean user-level, hardware-

terminated protocol with on-chip NIC integration. The NIC

leverages integration into its local CPU’s coherence domain for

rapid interactions with the cores. Applications schedule soN-

UMA operations (e.g., send) using an RDMA-like memory-

mapped Queue Pair (QP) interface.

RPCValet [13] is a NIC extension for RPC load balanc-

ing and a key enabler for NEBULA’s RPC-to-core steering

mechanism. RPCValet balances incoming RPCs across the

cores of a multi-core server in a single-queue, synchronization-

free fashion. Fig. 3a provides a high-level demonstration of its

operation. RPCValet is based on soNUMA’s NIsplit architecture

[40], where the NIC comprises two discrete entities, a frontend

(FE) and a backend (BE). The former handles the control plane

(i.e., QP interactions) and is collocated per core; the latter

handles the network packets and data transfers between the

network and memory hierarchy and is located at the chip’s

edge.

When a new RPC arrives 1 the NIC BE writes its payload

in the LLC, creates an RPC arrival notification 2 —which

contains a pointer to the RPC’s payload—and stores it in

a dedicated queue. As soon as a core becomes available to

process a new RPC, its corresponding NIC FE notifies the

NIC BE 3 , which, in turn, dequeues the first entry from the

arrival notification queue and writes it in the core’s Completion

Queue (CQ) 4 . The core receives the RPC arrival notification

by polling its CQ and follows the pointer in the notification

message to read the RPC’s payload from the LLC. This greedy

load assignment policy corresponds to single-queue behavior.
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while (true):
payload_ptr = wait_for_RPC(msg_domain)
//process the received RPC and build response...

free_buffer(buffer_ptr, buffer_size)

RPC_send(resp_buffer_ptr, buffer_size,
target_node, msg_domain)

Fig. 4. Pseudocode of an RPC-handling event loop.

Fig. 3b highlights in red NEBULA’s key extensions over

Fig. 3a’s baseline architecture. The first feature, marked as

A and detailed in §V-C and §V-D, is NEBULA’s in-LLC

network buffer management for reduced memory pressure. The

second feature, NIC-to-core RPC steering, extends the baseline

architecture’s sequence of RPC arrival notification actions with

payload dispatch, shown in steps 5 - 6 and detailed in §V-E.

B. RPC Protocol and Software Interface

We implement an RPC layer on top of soNUMA’s send
operation, maintaining RPCValet’s messaging interface [13]:

all nodes of the same service join the same messaging domain,

which includes the buffers and data structures defining where

incoming RPCs are placed in memory. Every node participating

in a messaging domain allocates a receive buffer in its memory

to hold the payloads of incoming RPCs. We change RPCValet’s

underlying connection-oriented buffer management to achieve

NEBULA’s key goal of handling all traffic within the server’s

caches. In NEBULA’s case, after the receive buffers are

allocated and initialized by software, they are managed by

the NIC. We first focus on the software interface and detail

hardware modifications later in this section.

Fig. 4 demonstrates the three functions the NEBULA RPC

interface exposes to applications within a sample RPC-handling

event loop. A server thread waits for incoming RPCs using the

wait_for_RPC function, which can be blocking or non-

blocking. The NIC sends RPC arrivals to this thread via

the thread’s CQ that is associated with the incoming RPC’s

messaging domain. After completing the RPC, the application

invokes the free_buffer function to let the NIC reclaim

the buffer. Finally, the application sends a response in the form

of a new RPC, specifying the messaging domain, target node,

and local memory location that contains the outgoing message.

RPC_send has a return value indicating whether the outgoing

RPC was accepted by the remote end or not, which only clients

use to check whether their requests are NACKed by the server.

In a well-designed system, the server does not use the return

value, as clients should always provision sufficient buffering

for responses to their own outstanding requests.

soNUMA acknowledges all messages at the transport layer.

NEBULA extends this mechanism with negative acknowledge-

ments (NACKs), which are responses to send operations if

the receiving end cannot accommodate the incoming RPC. In

response to a NACK reception, the application layer receives

an error code. The most appropriate reaction to an error code

is application-specific, and can range from simple retry of the

same send at a later time, to arbitrarily sophisticated policies.

(snid, tid) Recv buf
address

NIC

LLC

(0, 123)
(42, 7)

X
Y

RPC tail

bitvector

Reassembler

head
snid: 3
tid: 5
size: 192B
pkt_idx: 1

new head

(3, 5)

... Receive 
buffer

Z

address Z

12
free buf.

3 3

... 

Fig. 5. NIC RPC reassembly and buffer management.

C. NIC Extension: Buffer Management

NEBULA’s NIC manages a receive buffer per established

messaging domain. After the software sets up and registers

these buffers with the NIC, the NIC must dynamically allocate

them to incoming RPCs, and place incoming packets appro-

priately. The buffer manager’s role is to reserve enough space

in the receive buffers for each RPC, ensuring each core has

zero-copy access to the buffer until the application explicitly

permits the NIC to reclaim it after the RPC is serviced. As the

allocator must operate at line rate, simplicity is paramount. The

NIC therefore uses a chunk allocation algorithm that manages

each receive buffer as an array of consecutive slots in host

memory. In allocators of this style, performing a new allocation

is as simple as returning the next available slot(s).

The buffer manager uses a bitvector built into the NIC,

containing a bit for every cache-block-sized (64B) slot in the

receive buffer. Bits corresponding to allocated slots are set to 1
(shaded in Fig. 5). Upon a new RPC arrival, the NIC advances

the receive buffer’s head pointer by �RPC_size/64B� slots
and sets the corresponding bits in the bitvector. In Fig. 5 step

1 , the arrival of a new RPC with 128B < size ≤ 192B
would trigger the head pointer to advance three slots to new
head. As this RPC has a size greater than one cache block

and will thus arrive in more than one packet, it will also add

an entry to the reassembler, described in §V-D.

Applications free slots by sending a free_buffer mes-

sage specifying a buffer address and length to the NIC (see

§V-B), which resets the bitvector’s corresponding bits (step 2 ).

After each free_buffer message, the buffer manager checks

whether the tail pointer can advance, thus reclaiming receive

buffer space. In Fig. 5’s example, the tail cannot advance

because the slot(s) immediately in front of tail are still

allocated. If the head pointer reaches the tail pointer, the receive

buffer is full and the NIC starts NACKing any new RPCs.

As receive slots are freed out of order by the applications,

a naive implementation can suffer from internal fragmentation

and thus excess NACKs in the case of a rare long-latency

event (e.g., a core receives a hard IRQ while handling an RPC).

Therefore, we implement a simple scrubbing policy to allow

the buffer manager to scan through the bitvector and find the

next free range; this operation is triggered when the head meets

the tail pointer and is performed off the critical path of new

allocation and freeing.

To size the receive buffer (and thus the bitvector), we rely

on our analysis in §IV-C. We provision for 10×E[Nq] queued
RPCs, which conveniently covers the 99% depth of even the
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bimodal distribution considered in Table I. Factoring the RPC

size as well, we size the receive buffer at 10 × E[Nq] ×
avg_RPC_size. As per §IV-C’s example, assuming a 64-core

server at load A = 63 and an average RPC size of 1KB1, our

provisioning results in a 540KB buffer. This choice results in

a 1KB bitvector, a modest SRAM cost for a large server chip.

D. NIC Extension: RPC Reassembly

Incoming RPCs exceeding the network MTU in size are

fragmented at the transport layer; thus, they must be reassem-

bled before being handed to the application. In a hardware-

terminated protocol, such reassembly has to be performed in

the NIC’s hardware. The specific challenges for designing

such reassembly hardware for NEBULA are the baseline

architecture’s small MTU (64B) and the NIC being an on-chip

component. The former implies high reassembly throughput

requirements; the latter implies tight area and power budgets.

In many emerging transport protocols for RPCs, all the

packets of the same message carry a unique identifier (tid)
assigned by the originating node [13], [14], [41]. Thus, an

incoming packet’s combination of tid and source node id

(snid) uniquely identifies the message the packet belongs to.

The reassembly operation can be described as performing an

exact match between the (snid, tid) pair found in each

incoming packet’s header, and an SRAM-resident “database”

of all RPCs that are currently being reassembled. Returning to

Fig. 5’s example, assume that the second packet of the RPC

which previously arrived in step 1 reaches the NIC in step 3 .

The packet’s header contains the pair (3,5), which is looked

up in the reassembler and receive buffer address Z is returned.

Being the second packet of this RPC (pkt_idx=1), the NIC

writes the payload to address Z+64.
The most common solution for exact matching at high

throughput is to use CAMs [48], which are power-hungry

due to the large number of wires that must be charged and

discharged each cycle. Contrary to our initial expectation,

deploying a CAM is a feasible solution. Just as NEBULA’s

design decision to bound the queue depth of incoming RPCs

shrinks receive buffer provisioning requirements, it also sets

an upper limit for the number of incoming RPCs that may be

under reassembly. Consequently, NEBULA sets an upper size

limit on the CAM required for RPC reassembly purposes. With

§V-C’s 64-core configuration as an example, we need a CAM

with 10×E[Nq] = 540 entries. To model the hardware cost of

NEBULA’s CAM, we use CACTI 6.5 [49] and configure it with

the following parameters: built-in ITRS-HP device projections,

a 22nm process, and dynamic power optimization with the

constraint of meeting a 2GHz cycle time (targeting a futuristic

1Tbps network endpoint—i.e., a packet arrival every ∼ 0.5ns).
With a reported dynamic power of 45.3mW, such a CAM is

reasonably accommodated on chip.

E. NIC-to-Core RPC Steering

RPCValet’s mechanism to assign RPCs to cores involves

metadata only: the NIC places a pointer to the buffer containing

190% of network packets within Facebook’s datacenters are <1KB [47].

TABLE II
PARAMETERS USED FOR CYCLE-ACCURATE SIMULATION.

Cores
ARM Cortex-A57; 64-bit, 2GHz, OoO, TSO
3-wide dispatch/retirement, 128-entry ROB

L1 Caches
32KB 2-way L1d, 48KB 3-way L1i, 64B blocks
2 ports, 32 MSHRs, 3-cycle latency (tag+data)

LLC
Shared block-interleaved NUCA, 16MB total
16-way, 1 bank/tile, 6-cycle latency

Coherence Directory-based Non-Inclusive MESI
Memory 45ns latency, 2×15.5GBps DDR4

Interconnect 2D mesh, 16B links, 3 cycles/hop

the next RPC’s payload in the CQ of the thread that will service

that RPC. NEBULA extends this mechanism to also trigger a

dispatch of the RPC’s payload to the target core’s L1 cache. If

this payload dispatch completes in a timely fashion, it reduces

the RPC’s execution time. The accuracy of such RPC payload

prefetching is not probabilistic, as it is based on prescience
rather than prediction: the hardware leverages the semantic

information of an RPC arrival and assignment to a core to

choreograph the cache hierarchy for faster RPC startup.

NEBULA’s NIC-to-core steering mechanism is implemented

as a sequence of additional steps after RPCValet’s normal op-

eration. First, we modify RPCValet’s RPC arrival notifications

(Fig. 3a, 2 ): in addition to the pointer to the RPC’s payload,

the notification also includes the payload’s size. As soon as

a new RPC is assigned to a core for processing (Fig. 3a, 4 ),

its NIC FE reads the payload buffer’s base address and size

from the notification message and forwards them to the core’s

L1 cache controller as a prefetch hint (Fig. 3b, 5 ). The cache

controller uses this information to prefetch the whole RPC

payload before the core starts processing that RPC (Fig. 3b,

6 ). We discuss alternative mechanisms to prefetch hints for

NIC-to-core RPC steering in §IX.

To guarantee timely RPC payload prefetches, we configure

RPCValet to allow two RPCs instead of one to be queued

at the NIC FE, thus giving the cache controller ample time

to prefetch the second RPC’s payload while the first one is

being processed by the core. Such slight deviation from true

single-queue RPC balancing corresponds to the JBSQ(2) policy

proposed by Kogias et. al [14], and has been shown to preserve

tail latency in an on-chip setting [13].

VI. METHODOLOGY

System organization. We simulate one ARMv8 server running

Ubuntu Linux in full-system, cycle-level detail, by enhancing

QEMU [50] with the timing models of the Flexus simulator [51].

Table II summarizes the simulation parameters. The server

implements the NIsplit soNUMA architecture [40] with LLC,

DRAM, and NIC parameters following the state-of-the-art

system tuned for in-memory key-value serving [36], which

provisions 118GB/s of DRAM bandwidth, a 300Gbps NIC, and

a 60MB LLC for 60 CPU cores. To make simulation practical,

we scale the system down to a 16-core CPU, maintaining

the same LLC size and DRAM bandwidth per core; thus,

we provision 31GB/s of DRAM bandwidth and a 16MB

LLC. Commensurately scaling the NIC bandwidth indicates
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(a) 99th percentile latency. (b) Total memory bandwidth.

Fig. 6. Tail latency and bandwidth for all evaluated systems, using a 50/50 GET/SET query mixture.

provisioning an 80Gbps NIC. However, we found that under the

most bandwidth-intensive workloads, NEBULA could saturate

the full 80Gbps while still having ~15% idle CPU cycles;

therefore, we increased NIC bandwidth to 120Gbps to permit

NEBULA to reach the CPU cores’ saturation point.

Application software. We use the MICA in-memory key-value

store [39] with the following modifications: (i) we ported its

networking layer to soNUMA, (ii) for compatibility reasons

with our simulator, we ported the x86-optimized MICA to

ARMv8. We deploy a 16-thread MICA instance with a 819MB

dataset, comprising 1.6M 16B/512B key/value pairs. We use

the default MICA hash bucket count (2M) and circular log size

(4GB). Larger datasets would further reduce the LLC hit ratio,

exacerbating the memory bandwidth interference problem that

NEBULA alleviates.

We build a load generator into our simulator, which generates

client requests at configurable rates, using a Poisson arrival

process, uniform data access popularity, and the following

GET/SET query mixtures: 0/100, 50/50, 95/5. Unless explicitly

mentioned, results are based on the 50/50 query mix.

Evaluated configurations. We evaluate five different designs

to dissect NEBULA’s benefits:

• RPCValet: We use RPCValet [13] as a baseline architecture,

which features NIC-driven single-queue load balancing,

optimized for tail latency. RPCValet provisions its packet

buffers in a static connection-oriented fashion, resulting in

buffer bloat with high connection counts. Assuming a cluster

size of 1024 servers, a maximum per-message size of 512B,

and 256 outstanding messages per node pair, RPCValet’s

buffers consume 136MB, significantly exceeding the server’s

LLC size. This provisioning represents any connection-based

system that allocates buffer space per endpoint, such as

RDMA-optimized [31] and UDP-based RPC systems [33].

• RSS: A representative of the Receive Side Scaling (RSS) [15]

mechanism available in modern NICs. Our implementation

optimistically spreads requests to cores uniformly. Like

RPCValet, RSS suffers from buffer bloat, and also suffers

from load imbalance being a multi-queue system.

• NEBULAbase: This configuration retains RPCValet’s load-

balancing capability and adds NEBULA’s protocol and

hardware extensions for space-efficient buffer management.

Following our analysis in §IV-C, NEBULAbase allocates

81KB of buffering for incoming RPCs, corresponding to

10× E[Nq] = 160 slots of 512B each.

• SRQemu: A proxy for InfiniBand’s Shared Receive Queue

(SRQ) mechanism, enabling buffer sharing among end-

points/cores to tackle the buffer bloat problem. We opti-

mistically assume the same hardware-based buffer manager

as NEBULAbase without any software overheads normally

involved when the threads post free buffers to the SRQ.

Unlike NEBULAbase, existing SRQ implementations do

not feature hardware support for load balancing. Hence,

SRQemu represents an RSS system without buffer bloat,

or, equivalently, a NEBULAbase system without hardware

support for single-queue load balancing.

• NEBULA: The full set of our proposed features, namely

NEBULAbase plus NIC-to-core RPC steering.

Evaluation metrics. We evaluate NEBULA’s benefits in terms

of throughput under SLO. Our SLO is a 99th% latency

target of 10× the average RPC service time [12]. All of our

measurements are server-side: each RPC’s latency measurement

begins as soon it is received by the NIC, and ends the moment

its buffers are freed by a core after completing the request.

As NEBULA can NACK incoming RPCs under high load, we

conservatively count NACKs as ∞ latency measurements.

VII. EVALUATION

A. Impact of Load Imbalance and Bandwidth Interference

We start by evaluating §VI’s first four designs to quantify the

impacts of load imbalance and memory bandwidth interference.

Fig. 6 shows 99th% latency and memory bandwidth as a

function of load. Fig. 6b groups the series for RSS/RPCValet

and SRQemu/NEBULAbase together, as they are effectively

identical. RSS performs the worst, as it suffers from both

load imbalance and bandwidth contention. Although RPCValet

delivers 2.6× lower 99th% latency than RSS at 10MRPS
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TABLE III
SENSITIVITY ANALYSIS FOR QUERY MIXTURE.

GET/SET
Mix

RPCValet
MRPS

RPCValet
BW@SLO

NEBULA

MRPS
NEBULA

BW@SLO
0/100 11.4 24.5 GB/s 26.7 22.6 GB/s
50/50 11.4 25.3 GB/s 22.2 21.1 GB/s
95/5 11.4 24.8 GB/s 22.2 20.9 GB/s

due to superior load balancing, both systems saturate beyond

11.4MRPS.

Fig. 6b sheds light on the source of the performance gap

between SRQemu and the two systems suffering from buffer

bloat. RSS and RPCValet utilize about 25.3GB/s of memory

bandwidth at 11.4MRPS, greater than 80% of the server’s

maximum of 31GB/s. In contrast, SRQemu consumes less than

75% of that bandwidth at 20MRPS and therefore delivers 1.75×
higher load than RSS/RPCValet, corroborating our claim that

memory bandwidth contention can negatively impact latency.

SRQemu’s performance, combined with the small difference

between RPCValet and RSS, may seem to suggest that load

balancing is unimportant. However, we demonstrate next that

as soon as the bandwidth bottleneck is removed, load balancing

has a major performance impact.

NEBULAbase is the only system of the four that avoids both

destructive bandwidth contention and load imbalance, attaining

a throughput under SLO of 22.2MRPS with a sub-2μs 99th%
latency. We measured the mean zero-load service time of MICA

RPCs using 512B payloads to be ∼630ns, which corresponds

to a throughput bound of 25.3MRPS. Thus, NEBULAbase is

within 12% of the theoretical maximum. Before saturation,

NEBULAbase’s minimal 81KB of buffers are adequate and

we observe no NACK generation, which concurs with our

theoretical analysis suggesting that 10× E [Nq] receive buffer

slots suffice for a server operating under strict SLO. Beyond

∼22MRPS, the system quickly becomes unstable, server-side

queues rapidly grow, and the number of NACKs escalates.

We consider this to be a non-issue, because operating a server

beyond its saturation point is not a realistic deployment scenario.

Overall, NEBULAbase outperforms SRQemu by 1.2× in terms

of throughput under SLO and by 2.2× in 99th% latency at a

load of 16MRPS, due to improved load balancing.

B. Sensitivity to Workload GET/SET Ratio and Item Size

We now study the sensitivity of NEBULAbase and RPCValet

to different workload behaviors by varying the GET/SET query

mix. Table III reports the maximum throughput under SLO

and the memory bandwidth consumption at peak throughput

for each query mix we experimented with. We find that both

systems are largely insensitive to query mixture, as RPCValet

reaches the same saturation point for all three workloads,

remaining bottlenecked by memory bandwidth contention in

all cases. As the fraction of GETs increases, the NIC-generated

bandwidth drops because GET payloads only carry a key,

as compared to SETs that carry a 512B value. Despite less

NIC-generated bandwidth, the cores’ aggregate bandwidth

commensurately rises, because they must copy 512B values

Fig. 7. Performance of RPCValet and NEBULA varying the MICA value size,
using a 50/50 GET/SET query mix.

out of the data store into the message sent in response to the

GET. Ultimately, memory bandwidth usage per query remains

roughly constant.

In contrast, NEBULAbase experiences a 19% throughput

increase for the 0/100 mix compared to 50/50, because the

mean service time drops by 70ns. This improvement happens

because of different data copy directions. For a SET, the core

loads the incoming value from the NIC’s small on-chip cache

or the LLC (where the payload buffer resides after the NIC

writes it), and then must write it to the DRAM-resident MICA

log. As the payload buffer is already on-chip, the time that the

core’s LSQ is blocked on the payload’s data is a single remote

cache read. In contrast, GETs first must fetch the value from

the MICA log, and write it to the response buffer; thus, GETs

block the core for a longer period of time.

Next, we evaluate the impact of varying MICA’s item size.

Fig. 7 shows the maximum throughput under SLO, and memory

bandwidth of RPCValet and NEBULAbase with 64B, 256B

and 512B items. Items smaller than 64B (cache line size)

result in the same memory bandwidth utilization as 64B

items. As item size shrinks, RPCValet’s throughput under SLO

commensurately increases, reaching 16MRPS with 256B items

and 26.7MRPS with 64B items: smaller items naturally result

in less memory bandwidth generated from both the NIC and the

CPU cores, alleviating memory bandwidth contention. For item

sizes larger than 64B, RPCValet becomes bandwidth-bound,

capping throughput under SLO at ∼ 21MRPS.

NEBULAbase’s performance also improves with smaller

items. Cores are less burdened with copying data to/from

the MICA log, reducing the mean RPC service time by 9%

and 19% with 256B and 64B items, respectively. The shorter

service time results in a saturation point of 33.3MRPS with

64B items. This is 1.16× higher than RPCValet even when

bandwidth contention is not a factor, because NEBULAbase

eliminates the costly step of write-allocating payloads into the

LLC before an RPC can be dispatched to a core. Finally, we

emphasize that NEBULAbase attains equal throughput under

SLO as RPCValet, handling items 4× larger (256B vs. 64B).

C. NIC-to-Core Steering

Finally, we evaluate NEBULA’s NIC-to-core steering mecha-

nism. Fig. 8 compares NEBULAbase (no prefetching), NEBULA

(NIC-to-core steering enabled) and NEBULASWPref , which is

the same hardware configuration as NEBULAbase, but contains
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a modification to the RPC handling loop (Fig. 4) to prefetch any

future RPCs found waiting in the CQ. As the software prefetch

overhead is on the critical path, we optimize the prefetch logic

to scan a maximum of 8 slots (which fit in a single cache

block) in the CQ to find an RPC, and set a prefetch degree of

one. We measure the overhead of this code as 60ns.

Below 16MRPS, all configurations perform identically,

because each core only has one RPC outstanding, and the

software overhead to scan the CQ is small enough to complete

before the next RPC arrival. Above 16MRPS, the software

overhead begins to manifest itself, causing a 31% increase in

99th% latency compared to NEBULAbase at 22MRPS. As 60ns

represents ∼ 10% of MICA’s service time, we conclude that

prefetching at such high loads requires hardware support to

eliminate the overhead of determining prefetch addresses in

software.

Our expectation is that NEBULA should trim ∼ 50 cycles

(25ns) from each RPC’s runtime, hiding the latency of fetching

the remotely cached RPC payload that is needed to access

MICA’s hash index. This improvement should only show at

the tail, because in the average case, the cores only have one

RPC in their CQ without a next RPC to prefetch. Between 16

and 22MRPS, NEBULA improves the 99th% latency by 64ns,

i.e., a 10% reduction in RPC service time. We attribute the

roughly 2× difference with our expectation to the increased

cache subsystem latencies in the loaded system. Therefore, the

benefit of removing the longer wait for the RPC’s payload

from the critical path via timely prefetching increases. As a

result, NEBULA outperforms NEBULAbase by 3MRPS. At

high load, the fraction of RPCs dispatched to a core with CQ

depth >= 1 grows to 75%, making NEBULA’s 10% service

time reduction the common case.

We also repeated the same experiment with 64B pay-

loads, which have reduced on-core service times of 510ns.

NEBULASWPref ’s overhead grows to > 10% of the service

time, and therefore NEBULA delivers 3× lower 99th% latency

at 22.2MRPS. NEBULA delivers the same 3MRPS throughput

benefit for both 64B and 512B payloads.

Employing all of its features, NEBULA improves throughput

under SLO over current multi-queue (SRQ) and single-queue

(RPCValet) systems by 1.25× and 2.19× respectively. With

both 512B and 64B RPCs, NEBULA saturates at maximum

CPU throughput, and does not leave significant performance

improvement headroom.

VIII. DISCUSSION

Deployments benefitting from NEBULA. Datacenter services
are increasingly adopting a microservices architecture, where

the overall functionality is broken down into modular com-

ponents and a single user request reaches across hundreds or

thousands of servers [20]. As the number of layers comprising

these services grows, so does the importance of minimizing the

latency of each inter-layer RPC-based interaction—a typical

case of the “tail at scale” effect [21]. The more pervasive

such decomposition is across datacenter-deployed services,

the broader NEBULA’s applicability. We evaluate a Key-Value

Fig. 8. Comparison of NEBULA prefetching policies. MICA uses 512B values
and a 50/50 GET/SET query mix.

Store (KVS) as a representative of μs-scale software, because it
is an extensively optimized application that is used by virtually

every service and is well-known to exhibit μs-scale service

times [12], [13], [33].

In general, for an application to benefit from NEBULA, it

must have at least one of the following characteristics in addi-

tion to strict tail-latency constraints: (i) intensive network traffic,

which, when combined with application memory bandwidth

usage, approaches the system’s total memory bandwidth; or

(ii) μs-scale on-core service times. For the former, NEBULA

removes bandwidth interference effects inflicted by system

scale, by limiting the number of RPCs queued on the server

and ensuring in-cache network packet residency. For the latter,

NEBULA converts 80–100ns per-packet DRAM accesses into

L1 cache hits, which our evaluation shows boosts throughput

under SLO by more than 10% for sub-μs RPCs on a 16-core

server. As examples, we identify two other applications that

exhibit these characteristics and also form important building

blocks of datacenter services.

State machine replication (SMR) provides fault-tolerance

by electing a leader server to replicate incoming RPCs across

N followers, which are often themselves KVS. SMR leaders

meet both criteria for benefitting from NEBULA. With service

times of ~1μs [33], they benefit from NEBULA’s NIC-to-core

steering. Furthermore, because they replicate incoming RPCs

in a 1 : N fashion, their network packet buffers may spill into

DRAM, creating memory bandwidth interference, and would

therefore benefit from NEBULA’s in-cache buffer management.

Network function virtualization (NFV) workloads execute

user-defined packet processing operations inside a software

switch (e.g., OpenVSwitch). NFV operations exhibit 300ns–5μs
service times and LLC-resident datasets [35], [52]; therefore,

NFV would benefit from NEBULA’s NIC-to-core steering.

Finally, NEBULA can benefit co-located application deploy-

ments. When a latency-critical application is co-located with

one that is LLC- and/or memory bandwidth-intensive, NEBULA

will constrain the LLC space taken up by the latency-critical

application’s packet buffers, improving its LLC hit ratio on

network packets, while indirectly also benefitting the bandwidth-

intensive workload by limiting LLC interference.
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Integration with datacenter networks. NEBULA requires

the following features from the underlying network stack: (i)

native protocol support for an RPC-oriented transport, (ii)

hardware-terminated transport, and (iii) a lossless link layer.

The two latter requirements are being addressed by recent works

targeting datacenter-scale RDMA deployments [26], [53], while

native support for RPC-oriented transports is an active research

direction [14], [41]. A NEBULA-compliant protocol requires

the addition of NACK messages which are sent by the receiver

upon encountering deep server-side queues, and passed back

to the RPC layer when they return to the sender. We argue that

similar messages already exist in high-performance networking

solutions (e.g., an RDMA NIC generates a local CQ entry after

a remote memory write is performed).

IX. RELATED WORK

Leaky DMA. ResQ [35] encounters the “leaky DMA” problem,

which is similar to the bandwidth interference problem we

study. ResQ’s authors observe that when deploying co-located

NFV workloads using DPDK, the LLC space required by

DDIO exceeds its default limit, and memory traffic multiplies.

ResQ ameliorates memory traffic by statically limiting DPDK’s

buffer allocation to 10% of the LLC. In contrast, our work

establishes a mathematical bound on the number of required

buffers, based on queuing theory. While we share the intuition

that limiting outstanding buffers can reduce excessive memory

traffic, NEBULA targets hardware-terminated transports and

demonstrates that mere KBs of buffering space are sufficient

to handle μs-scale RPCs. NEBULA also maintains inter-core

load balancing, a factor beyond ResQ’s scope.

The leaky DMA problem is also observed in the context of

the Shenango runtime scheduler for latency-sensitive datacenter

workloads [54]. Shenango foregoes zero-copy I/O to hand

buffers back to the NIC as soon as possible, increasing LLC

reuse by DDIO. In contrast, NEBULA maintains zero-copy

I/O, because we find that all useful packet buffers can be

accommodated in the LLC when operating under a tight SLO.

RPCs over connected transports. HERD [55], FaSST [31]

and FaRM [30] all propose optimizations in order to alleviate

the scalability issues of InfiniBand’s connected transports.

FaSST uses solely unconnected datagram transports to reduce

the number of Queue Pairs that must be cached in the NIC [31],

while FaRM accepts the inherent performance loss of some

connection sharing [30]. Storm [32] shows that at rack scale

(i.e., up to 64 nodes), the newest generation of ConnectX-5

NICs have significantly improved in scalability, and hence

designs a transaction API prioritizing RDMA operations which

require connected transport. Our work targets datacenter-scale

deployments and applies to any software with μs-scale RPCs.

eRPC [33] improves buffer scalability by using multi-packet

receive queue descriptors introduced in Mellanox ConnectX-4

NICs. These descriptors keep NIC-resident state constant with

the number of connected nodes. However, eRPC’s server-side

buffering state still scales with the number of connections, as it

allocates memory for each pair of connected threads ([33]:§3.1).

We show that although server memory is plentiful, μs-scale

RPCs require buffers to be kept to LLC-resident sizes in order

to avoid memory bandwidth interference and meet tight SLOs.

Compute hardware/NIC co-design. The importance of KVS

in datacenters has resulted in multiple proposals for KVS-

optimized hardware [36], [56]. SABRes [57] leverages coherent

on-chip NIC integration to introduce a NIC extension for

atomic remote object access, alleviating software overheads

in KVS using one-sided RDMA reads for low latency. Li et

al. [36] study MICA’s performance characteristics and propose

a bespoke CPU for KVS whose parameters we adopt for our

baseline. Their work also observes the primacy of in-LLC

buffer management, and empirically sizes the LLC based on

simulation to minimize miss rate. They do not observe the same

DRAM bandwidth contention as we do, because the amount of

network state in their system would not scale with the number

of communicating servers due to its use of UDP [39]. Achieving

similar throughput with an order of magnitude lower latency, as

we attempt to do, requires hardware-terminated network stacks

and brings back the challenge of scaling dedicated per-endpoint

state. NEBULA therefore begins with a hardware-terminated

protocol, and demonstrates that packet buffering state should

be sized based on SLO rather than system scale.

Daglis et al. [40] studied the on-chip latency implications

of the VIA/RDMA network programming model [58], and

proposed NIC decomposition and passing messages between

NIC components to avoid multi-hop coherence interactions.

We have similar insights regarding the on-chip data path of

RPC payloads under μs-scale SLOs, and propose a solution

that uses the NIC’s role in RPC dispatch to accurately prefetch

payloads without cache coherence modifications.

Latency-optimized systems software. The need for low

latency has led systems designers to aggressively limit queuing

in the transport and RPC protocol stacks themselves [45],

[59]. Kogias et al. [45] also observe that limiting server-side

queuing is critical for μs-scale RPCs, and use TCP flow control

to limit the number of requests per connection based on the

application’s SLO. NEBULA performs buffer management for

hardware- rather than software-terminated protocols.

CacheDirector [60] improves RPC latency by modifying

DDIO to steer the header of each network packet into the

LLC tile closest to the core that will process the packet. We

go further by steering the whole packet all the way into the

core’s L1 cache. In the past, placing network data in L1 caches

has been avoided due to pollution concerns, which NEBULA

addresses by steering only a single RPC at a time.

Thomas et al. [61] observe that at 100Gbps+, packet inter-

arrival times drop below DRAM latency, and that applications

performing memory accesses will inevitably backpressure the

NIC and lead to dropped packets. They propose CacheBuilder,

a slab allocator using existing cache partitioning technology to

guarantee the application’s dataset is LLC- rather than memory-

resident. CacheBuilder therefore only benefits applications

with LLC-resident datasets, whereas NEBULA considers SLO-

constrained applications with memory-resident datasets.

NIC-to-core data steering. NEBULA employs a prefetch hint
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mechanism to steer the payload of an incoming RPC to its target

core. Payload prefetches differ from regular cache accesses that

are triggered by front-side demand accesses, because they are

initiated from the back-side of the cache. Our work chooses to

use prefetch hints because payload prefetches are transformed

into regular front-side initiated operations, keeping both the

cache controllers and coherence protocol unmodified. Intel’s

DCA mechanism also leverages prefetch hints to load data

into the LLC [62]. Other mechanisms such as direct injection

(e.g., DDIO’s write-allocate/update policy [19]) and Curious

Caching [63] have been proposed to support back-side initiated

operations. NEBULA could be trivially adapted to use these

mechanisms if supported by the cache controller.

X. CONCLUSION

In hyperscale datacenters, the combination of growing

network bandwidth and μs-scale software layers is shifting

performance bottlenecks to server endpoints. In particular, this

work shows that the vast bandwidth of future NICs can interfere

with application traffic at the server’s memory controllers, due

to network buffer bloat resulting from non-scalable connection-

oriented buffer provisioning. However, for software with

tight latency constraints, queuing theory in fact indicates

that only limited server-side queuing is useful, and therefore

network buffer provisioning can be shrunk to sizes trivially

accommodated by the server’s LLC. Following this insight, we

propose NEBULA, a co-design of the network protocol and

server hardware that actively keeps all network buffers LLC-

resident, mitigating memory bandwidth interference. NEBULA

thus alleviates the bottleneck of deployment scale for latency-

critical software layers, hastening the path to adoption of

latency-optimized hardware-terminated network stacks.

NEBULA demonstrates that nascent RPC-oriented transport

protocols serve as powerful enablers for future NIC architec-

tures to actively cooperate with network-intensive applications

in achieving their performance goals. NEBULA uses the NIC’s

integral role in load balancing to minimize tail latency by

actively triggering prefetches in the cache hierarchy before

RPCs begin processing, without requiring changes to the

caches or coherence protocol. Our evaluation shows that this

capability delivers performance benefits of 1.13× for a Key-

Value Store application, as packets are directly placed into the

L1 cache rather than the LLC. Overall, NEBULA improves the

throughput under SLO of μs-scale RPCs by up to 2.19×.
ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their

constructive feedback, as well as Dmitrii Ustiugov, Ed Bugnion,

Marios Kogias, and Adrien Ghosn for their invaluable advice

during this work. We also thank the members of the PARSA

group for their unwavering support.

APPENDIX A

This appendix details the queuing model used in §III (Fig. 1).

We model bandwidth consumption by assuming that accesses

reaching memory are (a) NIC writes of incoming RPCs into

receive buffers, deemed to be misses (described next), and (b)

all key/value accesses to the datastore (no cache locality). To

model the extra bandwidth of dirty writebacks (Fig. 1, 4 ), we

double an access’ memory bandwidth utilization iff the access

is both a write and determined to be a miss.

Assuming abundant interleaving among requests from clients,

we model the LLC miss ratio for the network buffers as:

MRbuf = 1−min

(
LLC capacity

Recv. buf. size
, 1

)
(2)

Thus, the DRAM traffic generated by the NIC writing in-

coming RPC payloads (Fig. 1, 1 ) is BWNIC × MRbuf ,

where BWNIC is the incoming network bandwidth. Eqn 2

optimistically assumes that the NIC can use the entire LLC,

whereas Intel servers place a default (but configurable) limit

at 10% of the LLC size [19].

We use a service time S = tfixed+(Nacc ×AMAT ), where
tfixed is the CPU processing time for the RPC, Nacc is the

number of serialized memory accesses per RPC and AMAT
is the average memory access time, which under zero load is

45ns, but is affected by queuing conditions. We measured the

zero-load service time to be 630ns in our experimental setup

(see §VI) and set Nacc = 2 because MICA first synchronously

accesses its hash index, and then moves multiple cache blocks

in/out of the data store in parallel due to the MLP of an out-of-

order core. Thus, tfixed = 540ns and each request’s resulting

service time is solely affected by AMAT , which changes as

a function of system load.
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