Language-Agnostic Integrated Queries in a Managed Polyglot
Runtime

Filippo Schiavio
Universita della Svizzera italiana
Lugano, Switzerland
filippo.schiavio@usi.ch

ABSTRACT

Language-integrated query (LINQ) frameworks offer a convenient
programming abstraction for processing in-memory collections of
data, allowing developers to concisely express declarative queries
using general-purpose programming languages. Existing LINQ
frameworks rely on the well-defined type system of statically-typed
languages such as ct or Java to perform query compilation and
execution. As a consequence of this design, they do not support
dynamic languages such as Python, R, or JavaScript. Such languages
are however very popular among data scientists, who would cer-
tainly benefit from LINQ frameworks in data analytics applications.

In this work we bridge the gap between dynamic languages
and LINQ frameworks. We introduce DynQ, a novel query engine
designed for dynamic languages. DynQ is language-agnostic, since
it is able to execute SQL queries in a polyglot language runtime.
Moreover, DynQ can execute queries combining data from multiple
sources, namely in-memory object collections as well as on-file
data and external database systems. Our evaluation of DynQ shows
performance comparable with equivalent hand-optimized code,
and in line with common data-processing libraries and embedded
databases, making DynQ an appealing query engine for standalone
analytics applications and for data-intensive server-side workloads.

PVLDB Reference Format:

Filippo Schiavio, Daniele Bonetta, and Walter Binder. Language-Agnostic
Integrated Queries in a Managed Polyglot Runtime. PVLDB, 14(1):
XXX-XXX, 2020.

doi: XX XX/XXX.XX

1 INTRODUCTION

In modern data processing, the boundary between where data is
located, and who is responsible for processing it, has become very
blurry. Data lakes [14] and emerging machine-learning frameworks
such as TensorFlow [55] make it very practical for data scientists
to develop complex data analyses directly “in the language” (i.e., in
Python or JavaScript), rather than resorting to “external” runtime
systems such as traditional RDBMSs. Such an approach is facili-
tated by the fact that many programming languages are equipped
with built-in or third-party libraries for processing in-memory col-
lections (e.g., arrays of objects). Well-known examples of such li-
braries are the Microsoft LINQ-to-Objects framework [33] (which

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Daniele Bonetta
Oracle Labs - VM Research Group
Cambridge, MA, USA
daniele.bonetta@oracle.com

Walter Binder
Universita della Svizzera italiana
Lugano, Switzerland
walter.binder@usi.ch

targets NET languages, e.g., Cﬂ) and the Java Stream API [43]. Mi-
crosoft’s implementation of LINQ not only allows developers to
query in-memory collections, but it can be extended with data-
source providers [32] (e.g., LINQ-to-SQL and LINQ-to-XML) that
allow developers to execute federated queries (i.e., queries that
process data from multiple sources). Many systems with similar
features have been proposed (e.g., Apache Spark SQL [2]). LINQ
systems have been studied from a theoretical point of view [10, 18],
and several optimization techniques have been proposed [29, 37, 38].
However, the proposed solutions mostly focus on statically-typed
languages, where type information is known before program exe-
cution.

Despite the many benefits it offers, LINQ support is currently
missing in popular dynamic languages, i.e., languages for which
the type of a variable is checked at runtime, such as Python or
JavaScript. Such languages are often preferred by data scientists
(e.g., in Jupyter notebooks [25]), because they are easier to use and
typically come with a simple data-processing API (e.g., filter, map,
reduce) and data-frame API (e.g., R dplyr library [58] and Python
Pandas library [35]) that simplify quick data exploration. Besides
data analytics, supporting language-integrated queries in dynamic
languages would also be useful in other contexts. As an example,
JavaScript and Node.]JS are widely used to implement data-intensive
server-side applications [51].

Due to their popularity, embedded database systems such as
DuckDB [46] often provide bindings for some dynamic languages.
With such an approach, the database query engine is hosted in the
application process, removing the inter-process communication
overhead imposed by solutions that adopt an exernal database
system [45]. However, developers cannot use embedded databases
to query arbitrary data that resides in the process address space (e.g.,
an array of JavaScript objects or a file loaded by the application).
Instead, using embedded databases, it is usually required to create
tables with a data schema, and then traverse the object collection
and insert relevant data in such tables, a so-called ingestion phase.
Some embedded databases are able to query specific data structures
implemented in a dynamic language, e.g., DuckDB [46] can execute
queries on both R and Pandas data frames. However, both R and
Pandas data frames are implemented with a columnar data structure
composed of typed arrays, and they cannot store dynamic objects,
such as e.g. a JavaScript Map.

In this paper we introduce DynQ, a novel query engine targeting
dynamic languages for the GraalVM platform [61]. Unlike existing
LINQ systems, DynQ is capable of running queries on dynamically-
typed collections such as JavaScript or R objects. Moreover, DynQ
is language-agnostic, and can execute queries on data defined in

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

any of the languages supported by GraalVM.DynQ is highly opti-
mized and benefits from just-in-time (JIT) compilation to speed up
query execution. To the best of our knowledge, DynQ is the first
query engine targeting multiple programming languages, which
explicitly interacts with a JIT compiler. Such a tight integration
with the JIT compiler is obtained by using the Truffle language im-
plementation framework [59] in a novel and previously unexplored
way. Indeed, the Truffle framework was designed for programming-
language implementations, whilst with our approach we exploit
Truffle as a general code-generation framework in the context of a
data-processing engine.

This paper makes the following contributions:

e We introduce DynQ, alanguage-agnostic query engine which
can execute queries on collections of objects as well as on
file data (e.g., JSON files) and other data sources without
requiring any data schema (neither provided nor inferred).
DynQ is able to optimize itself depending on the data types
encountered during query execution.

e We describe DynQ’s approach to query compilation, which
relies on self-optimizing abstract syntax tree (AST) inter-
preters and dynamic speculative optimizations.

e Our evaluation of DynQ shows performance comparable
with a hand-optimized implementation of the same query
and outperforms implementations based on built-in or third-
party data-processing libraries in most of the evaluated work-
loads.

This paper is structured as follows. In Section 2 we introduce
relevant background information in the context of our work. In
Section 3 we describe the design of DynQ and in Section 4 we
evaluate its performance against hand-optimized queries as well as
existing data-processing libraries and databases. Section 5 discusses
related work, and Section 6 concludes this paper.

2 BACKGROUND

In this section we give an overview of the NET implementation of
language-integrated queries (LINQ) and we discuss its execution
model as well as improvements proposed in the research literature.
Then, we introduce the GraalVM platform [61] and the Truffle [59]
framework that we use for implementing DynQ.

2.1 Language-integrated Queries

LINQ was first introduced in Microsoft .NET 3.5 to extend the ct
language with an SQL-like query comprehension syntax and a set of
query operators [5]. The following is an example of a LINQ query:

IEnumerable<int> xs = ...;

var evenSquares = from x in xs
where x % 2 == 0@
select x * x;

LINQ implements a lazy evaluation strategy by converting query
operators to iterators, a so-called pull-based model [49], i.e., each
operator pulls the next row from its source operator. In the example
query, the where and select clauses in the query comprehension
are de-sugared into calls to the methods Where and Select defined
in the IEnumerable interface.

Another important feature of LINQ is its extensibility to new data
formats. LINQ can execute queries not only on in-memory object

collections, but also on any data type that extends the generic types
IEnumerable or IQueryable; indeed, from a theoretical point of
view, LINQ queries can be executed on any data type that exhibits
the properties of a monad [18]. This great flexibility is obtained
through so-called LINQ providers, i.e., data-source specific imple-
mentations of the mentioned generic types. Relevant examples of
LINQ providers are LINQ-to-XML (that queries XML documents)
and LINQ-to-SQL, which converts query expressions into SQL
queries and sends them to an external DBMS. Despite the benefits
it provides, LINQ was explicitly designed targeting statically-typed
languages, and it is currently not available in dynamic languages.
Our work overcomes this limitation.

2.2 Query Execution Models

The C# implementation of LINQ executes queries by leveraging
the pull-based model, which shares many similarities with the
Volcano [16] query execution model in use by many popular rela-
tional databases. It has been shown [30] that the main performance
drawbacks of this execution model are virtual calls to the interface
methods (e.g.,MoveNext () and Current () in ct,or hasNext () and
next() in Java), which introduce non-negligible overhead, since
they are executed for each input row of each operator in the query
plan. In the context of relational databases, the most relevant op-
timizations for removing such overhead are vectorization [6] and
data-centric query compilation [40]. Vectorized query execution,
similarly to the Volcano model, uses a pull-based approach. How-
ever, the query interpretation overhead is mitigated by leveraging a
columnar data representation and batched execution, i.e., instead of
evaluating a single data item at a time, query operators work on a
vector of items which represents multiple input rows. Data-centric
query execution completely removes the interpretation overhead
by generating executable code for a given query. Code generation
commonly happens at runtime, using schema and type informa-
tions to generate code that is specialized for the tables used in a
query. Data-centric query compilation adopts a so-called push-based
model, i.e., each operator pushes a row to its destination operators.

A well-known disadvantage of query compilation is the over-
head introduced by the compilation itself. Recent research [28]
addresses this issue by introducing an adaptive query compilation
model. With such a compilation model, the engine first quickly gen-
erates an executable representation of the query and executes it in
an interpreter. Then, during query execution, the engine performs
adaptive decisions whether to compile a query operator based on
execution-time estimations. This approach is inspired by the imple-
mentation of JIT compilers in language VMs and shares similarities
with the query execution model adopted by DynQ. Unlike exist-
ing SQL query compilation approaches, DynQ needs to generate
machine code that is specialized to access objects located in the
memory space of a running language VM. This scenario presents
unique challenges that are not found in existing SQL execution
runtimes, as we will discuss in the rest of the paper.

2.3 GraalVM and the Truffle Framework

DynQ is implemented targeting the GraalVM [61] platform, i.e., a
polyglot language runtime compatible with the Java Virtual Ma-
chine (JVM). GraalVM is capable of executing programs developed

in a variety of popular programming languages, such as e.g. Java,
JavaScript, Ruby, Python, and R. At its core, GraalVM relies on a
state-of-the-art dynamic compiler (called Graal [60]), which brings
JIT compilation to all GraalVM languages. Language runtimes and
systems for GraalVM (including DynQ) are implemented using the
Truffle [59] language implementation framework. Unlike other code
generation frameworks for the JVM or the .NET platform, Truffle
does not rely on bytecode generation, but rather on the concept of
self-optimizing interpreters [59], i.e., language interpreters that use
custom APIs and data structures enabling explicit and direct interac-
tion with the underlying language VM’s components (including the
JIT compiler). The Graal optimizing compiler has special knowledge
of such data structures and APIs, and is capable of generating effi-
cient machine code by means of partial evaluation [23]. In addition
to JIT compilation, the Truffle framework provides mechanisms to
interact with any of the dynamic languages supported by GraalVM.
Thanks to such interoperability mechanisms, DynQ can effectively
inline machine code used by GraalVM language runtimes into its
own query execution code. For example, DynQ can use the very
same machine code used by the GraalVM JavaScript VM to read
JavaScript heap-allocated objects, thereby enabling efficient access
to in-memory data during SQL query execution. This approach
to SQL execution allows DynQ to efficiently exploit runtime in-
formation, to benefit from optimizations that are normally used
in high-performance language VMs, such as, e.g., dynamic loop
unrolling and polymorphic inline caching [20].

3 DYNQ

In this section we provide a detailed description of DynQ’s inter-
nals, presenting its general design (Section 3.1), dynamic query
compilation (Section 3.2), and its built-in support for third-party
data providers (Section 3.3). We also explain how DynQ’s architec-
ture facilitates the development of language-specific optimizations
(Section 3.4). In designing DynQ we focused on the following three
goals:

e Language-independence: DynQ should be able to execute
queries on any collection of objects from any language sup-
ported by GraalVM.

e High performance: Query execution with DynQ from a dy-
namic language should be as efficient as a hand-optimized
application written in the same language.

o Extensibility and modularity: Integrating new data sources
and query operators in DynQ should impact only their re-
spective components.

In the following subsections we describe how we designed DynQ
to meet all these requirements.

3.1 DynQ Architecture

At its core, DynQ is a dynamic query engine for GraalVM that
exploits advanced dynamic compilation techniques to optimize
query execution. DynQ is exposed to users by means of a language-
agnostic API, and is capable of executing queries on any object rep-
resentation supported by GraalVM languages. Unlike the popular
LINQ implementation for the .NET platform, DynQ does not extend
its supported programming languages with a query-comprehension
syntax, but rather relies on SQL queries expressed as plain strings.

The LINQ query-comprehension syntax allows query validation at
program compilation time. However, as already discussed in the
literature [22], in a dynamically-typed language, where syntactic
validation and type checking take place at runtime, lacking this
form of compile-time validation is not an issue. Moreover, since one
of the main goals of DynQ is language independence, extending the
syntax of multiple languages would not be a practical approach.

Two important differences between DynQ and existing LINQ
systems are its dynamic type system and the tight integration with
the underlying GraalVM platform. The flexibility of dynamic lan-
guages imposes additional performance challenges compared with
query engines that process data with a known type, as the engine
has to take into account that a value may be missing in an object
and that runtime types may differ from the expected ones. JIT com-
pilation is crucial in this context, as it allows DynQ to generate
machine code that is specialized for the data types observed at run-
time. For example, DynQ can emit offset-based machine code when
accessing R data frames, or hash-lookup-based access code when
reading data from JavaScript (map-like) dynamic objects. Close
interaction with the platform’s JIT compiler is a peculiar feature
of DynQ and a key architectural difference w.r.t. other popular
language-integrated approaches. Existing systems (e.g., NET LINQ
or Java 8 Streams) do not interact with the underlying language
runtime; in all such systems, queries are compiled to an intermedi-
ate representation (e.g., NET CLR or Java bytecode) like any other
language construct (e.g., Java 8 Streams are converted to plain Java
bytecode with virtual method calls and loops). Query compilation
to such intermediate representations happens statically, before pro-
gram execution. At runtime, the language VM might (or might not)
generate machine code for a specific query. However, the lack of
domain knowledge of the underlying JIT compiler could limit the
class and scope of optimizations that the language VM can perform.
For example, a language VM might (or might not) decide to inline
certain methods into hot method bodies depending on runtime
heuristics that have nothing to do with the structure of the actual
query being executed.

DynQ, on the contrary, takes a radically different approach as it
explicitly interacts with the underlying VM’s JIT compiler to drive
query compilation. In this way, DynQ can effectively propagate its
runtime knowledge of any given query to machine code generation,
resulting in high performance. As an example, DynQ can effectively
force the inlining of the predicates of a given query expression into
table-scan operators, ensuring efficient data access. Moreover, the
tight integration with the language VM’s JIT compiler unlocks a
class of optimization that are not achievable with existing LINQ-
like systems, namely, dynamic speculative optimizations: not only
can DynQ apply an optimization (e.g., inlining) when it sees poten-
tial performance gains, but it can also de-optimize the generated
machine code when certain runtime assumptions are invalidated,
giving a chance to its query execution engine to re-profile the
data that is being processed, possibly leading to the generation of
new machine code that now takes into account different runtime
assumptions.

Thanks to its design, DynQ can outperform hand-optimized im-
plementations of queries written in dynamic languages. Internally,
the type system of DynQ’s query engine handles two main types,

JavaScript DynQ

Apache Calcite
QP = plan(SQL_QUERY);

v

AST = generateAST(QP)
Truffle.execute(AST)

var result = DynQ(
SQL_QUERY, data);

// Language-independent
// result set

Figure 1: High-level query life cycle in DynQ.

namely primitive types and structured types. Primitive types in-
clude all Java primitive types as well as String and Date. Structured
types include arrays and nested data structures, i.e., objects with
properties of any of the mentioned types; multiple nesting levels
are supported as well. As expressions, DynQ supports logical and
arithmetic operators, the SQL LIKE function on strings, and the
EXTRACT function on dates. Moreover, DynQ seamlessly supports
user-defined functions (UDFs), as it can directly inline code from
any GraalVM language into its SQL execution code. In this way,
UDFs from any of the GraalVM languages can be called during
SQL evaluation with minimal runtime overhead. In particular, it
is not required that a UDF is written in the same language as the
application that is using DynQ, e.g., it is possible to use DynQ
from JavaScript, executing a query with a UDF written in R. As
GraalVM is compatible with Java, DynQ can leverage existing Java-
based components to perform SQL query parsing and initial query
planning. To this end, our implementation currently leverages the
state-of-the-art SQL query parser and planner Apache Calcite [4].
While using Calcite as an SQL front-end has the notable advantage
that DynQ’s implementation can focus on runtime query optimiza-
tion after query planning, it is important to note that DynQ’s design
is not bound to Calcite’s API, and other SQL parsers and planners
could be used as well.

A high-level overview of the life-cycle of a query executed with
DynQ from a dynamic language (JavaScript in the example) is
depicted in Figure 1. As the figure shows, as soon as a developer has
defined a dataset in the form of an object collection (e.g., an array) it
is possible to execute an SQL query on the in-memory data. DynQ is
invoked from the host dynamic language, passing (as parameters) a
string representation of the query and a reference to the input data.
DynQ leverages Calcite for parsing and validating the SQL query;
if successful, the validated query is converted into an optimized
query plan. Then, DynQ traverses the query plan, generating an
equivalent executable representation (i.e., Truffle nodes [59]), which
is our form of a physical plan. By generating Truffle nodes, the code
generation phase of DynQ is very efficient, as Truffle nodes are
ready to be executed by GraalVM. Query execution thus begins
by executing the Truffle nodes generated by DynQ. As soon as the
DynQ runtime detects that the AST (or parts of it) are frequently
executed, it delegates (to GraalVM) the JIT compilation to machine
code. As discussed, dynamic compilation is triggered by DynQ,
which also takes into account possible runtime de-optimizations
and re-compilations. Finally, the result of query execution, i.e., a
language-independent data structure accessible by any GraalVM
language, is returned to the application.

3.2 Query Compilation in DynQ

Query compilation in DynQ is implemented using a push-based
approach, and takes place by visiting the query plan generated
by Calcite and converting it into Truffle nodes. It is important to
stress that Truffle nodes are an executable representation of the
DynQ query that the GraalVM JIT compiler can efficiently compile
to machine code. The push-based query execution approach used
by DynQ is inspired by the model introduced in LB2 [54]. In this
model, each operator produces a result row that is consumed by an
executable callback function. Rather than relying on statically gen-
erated callback functions, however, DynQ propagates result rows
to Truffle nodes. In this way, those nodes can specialize themselves
on the actual data types observed at runtime. Internally, DynQ
relies on two classes of Truffle nodes, namely (1) Expressions and
(2) Query-operators.

Expression nodes represent the supported SQL expressions and
UDF functions introduced in Section 3.1. Since DynQ is a schema-
less query engine, each expression node used in a query has initial
unknown input (and output) type. During query execution, Truffle
nodes rewrite themselves to specialized versions capable of handling
the actual types observed during query execution. This specializa-
tion mechanism is natively supported by the Truffle framework,
and allows DynQ to handle type polymorphism in a way analogous
to language runtimes, resorting to runtime optimization techniques
such as polymorphic inline caches [20]. In this way, an expression
can be specialized during query execution to handle multiple data
types.

Query-operator nodes are responsible for executing SQL opera-
tors, eventually producing a concrete result value. DynQ relies on
two categories of query-operator nodes, namely consumer nodes
and executable nodes. Intuitively, each query operator (excluding
table scans) has its own consumer node, whilst only table-scan and
join operators implement an executable node. The main executable
node of a query, i.e., the one containing the root operator, takes
care of producing the result set for that query.

DynQ generates a query’s root executable node by visiting the
plan generated by Calcite. In particular, DynQ generates a con-
sumer node € for the currently visited operator &. If & is not a
join (i.e., it has only one child), " will consume the rows produced
by the child of &.If & is a table scan, DynQ generates an executable
node which iterates over a data structure (which acts as a table),
invoking the generated chain of consumer nodes for each row. The
implementation of the consumer nodes generated by visiting a join
operator depends on the join type. DynQ supports nested-loop
joins and hash-joins (possibly with non-equi conditions). In case of
nested-loop joins, DynQ creates a left consumer which inserts all
rows into a list .Z, and a right consumer that finds matching pairs
of rows by iterating over the elements in .Z for each row. In case
of hash-joins, the left consumer inserts the rows in a hash-map,
which is used by the right consumer to find matching pairs. The cor-
responding Java interfaces ExpressionNode, ConsumerNode, and
ExecutableNode are shown in Figure 2. When the query root oper-
ator is not a materializer (e.g., for queries composed of projections
and predicates), DynQ adds a custom consumer which fills a list
of rows, since DynQ always outputs an array data structure. On
the other hand, when the root operator is a sort or an aggregation,

interface ExecutableNode {
Object execute();

interface ConsumerNode {

void consume(Object row) throws EndOfExecution;
Object getResult();

}

interface ExpressionNode {
Object execute(Object row);

Figure 2: Main interfaces in DynQ.

DynQ returns the sorted (or aggregated) data, which is already a list
of rows. Moreover, since push engines do not allow terminating the
source iteration, i.e., an operator cannot control when data should
not be produced any more by its source operator, DynQ imple-
ments early exits for the limit query operator by throwing a special
EndOfExecution exception, which is part of the signature of the
method ConsumerNode. consume (row). Stateful operators do not
need any specific executable node, since they are implemented using
the ConsumerNode methods consume (row) and getResult(). As
an example, if a query has a group-by operator (which is not the root
operator in the query plan), its implementation of consume (row)
updates the internal state (a hash-map) and the implementation
of getResult (), which is invoked by its source operator once all
input tuples have been consumed, sends all tuples from the ag-
gregated hash-map to its destination (a ConsumerNode), calling
the consume(row) method for each aggregated row, and finally
returns the value obtained by calling the getResult () method on
its destination consumer.

Query compilation example. Consider the DynQ query targeting
a JavaScript array of objects shown in Figure 3. The query execution
plan for the example query is composed of a table-scan operator,
a predicate operator, and an aggregation operator that counts the
number of rows that satisfy the predicate. The AST of Truffle nodes
generated by DynQ for the example query is depicted in Figure 4.
The implementation of the nodes that compose the query is de-
picted in Figure 5. As shown in Figure 5, the LessThanNode node
leverages Truffle specializations for implementing the less-than
operation. The LessThanNode implementation shown in Figure 5
presents only the specializations for Int and Date types, because
those types are the ones used in the example. The actual implemen-
tation contains specializations for all types supported in DynQ as
well as their possible combinations (e.g., Int/Double and Double/Int).
In particular, DynQ specializations with mixed types respect the
implicit type conversion (i.e., type cast) semantics commonly in-
tegrated in a query planner, but in DynQ the detection of such
casts must take place during data processing (instead of during
query planning), since at query planning time types are not known
in DynQ. Consider the method execute(Object row) defined in
the class LessThanNode. This method first executes the left and
right children expression nodes (i.e., property reads in the example
query). Then, the method call to executeSpecialized (internally)
performs a type check for the two arguments (i.e., fst and snd). If
both values have type int, the specialization execute(int, int)
is executed,; if they are both dates, the method execute(LocalDate,

var T = [{x: 1, y: 2},
{x: 2, y: 1},
{x: Date('2000-01-01"'), y: Date('2000-01-02"')3}1];
var result = DynQ('SELECT COUNT(x) FROM T WHERE x < y',T);

Figure 3: Example of a DynQ query on a JavaScript array.

(3 Executable Node
c :l Consumer Node

- .' ,: Expression Node

Figure 4: AST generated by DynQ for the query in Figure 3.

LocalDate) is executed; otherwise, the current tuple is discarded.
Note that, although our current implementation is permissive, i.e.,
it does not stop the query execution throwing an exception in
case a malformed row is encountered, implementing different error
handling strategies would be trivial.

Consider again the AST generated by DynQ for the example
query depicted in Figure 4. When the query would be executed
on an R data frame, DynQ would generate the same tree, but the
TableScan executable node and the ReadMember expression nodes
would specialize in different ways, depending on the runtime types.
The flexible design of DynQ allows reusing the very same query-
operator nodes for executing queries on different data structures,
like a JavaScript array of objects or an R data frame. Thanks to
this design, we achieve all the three goals listed in the beginning
of this section. In particular, the extensibility and modularity of
our design allow adding new data sources (e.g., a data structure
in a dynamic language or an external source like a JSON file) by
integrating only the expression nodes which take care of accessing
data from such a data source, without requiring any modification
to the query-operator nodes.

Dynamic machine code generation. By implementing DynQ on
top of Truffle, DynQ has fine-grained control over GraalVM’s JIT
compiler. Dynamic compilation is triggered based on the runtime
profiling information collected during query execution, and the
Graal JIT compiler applies (to DynQ queries) all optimizations that
are commonly used in dynamic language runtimes. Examples of
optimizations applied by Graal include aggressive inlining, loop un-
rolling, and partial escape analysis. JIT compilation is performed by
GraalVM using a configurable number of parallel compiler threads.
This leads to short compilation times, as we will further discuss in
Section 4.1.1.

In contrast to many engines based on query compilation, DynQ
does not need to generate machine code before executing a query.
Query execution in DynQ begins as soon as the Truffle nodes
have been instantiated. First, the execution starts by interpret-
ing those nodes; during this phase the runtime collects type in-
formation for the nodes that leverage Truffle specializations (e.g.,
LessThanNode in the previous example). Then, once the runtime
detects that some nodes are frequently executed (e.g., the main loop
in TableScanNode), it initiates machine-code generation. Once the
runtime has collected type information for those rows which have

class TableScanNode implements ExecutableNode {
ConsumerNode consumer;
PolyglotArray input;
Object execute() {
try {
for(int i = @; i < input.numElements, i++) {
consumer.consume (readJsArrayElement (input, 1i));

}
} catch (EndOfExecution e) {3}
return consumer.getResult();
3
3

class PredicateConsumerNode implements ConsumerNode {
ConsumerNode consumer;
Expression predicate;
void consume (Object row) {
if(predicate.execute(row)) { consumer.consume(row); }
3
Object getResult() { return consumer.getResult(); }
3

class CountConsumerNode implements ConsumerNode {
long result = 0;
void consume(Object row) { result++; }
Object getResult() { return result; }

3

class LessThanNode implements ExpressionNode {
ExpressionNode left, right;
boolean execute(Object row) {
Object fst = left.execute(row);
Object snd = right.execute(row);
return executeSpecialized(fst, snd);
3}
@Specialization
boolean execute(int left, int right) {
return left < right;
3
@Specialization
boolean execute(LocalDate left, LocalDate right) {
return left.isBefore(right);
}
3}

class ReadMemberNode implements ExpressionNode {
String name;
Object execute(Object row) {
return readJsMember (name, row);
}
3

Figure 5: Simplified Truffle-node implementation in DynQ
for the nodes used in the example query in Figure 3.

been executed in the interpreter, it speculatively generates machine
code assuming that the subsequent rows will have the same types.
If such speculative assumptions get invalidated (e.g., because a
subsequent row has an unexpected type), the compiled code gets
invalidated and the execution falls back to interpreted mode. Then,
the runtime can update the collected type information and later
re-compile the nodes to machine code accordingly. It is important to
note that, even if triggering recompilation has a cost, specializations
stabilize quickly [60], typically incurring only minor overhead. By
leveraging a state-of-the-art dynamic compiler like Graal, DynQ can
selectively compile single components of the query’s physical plan.
In particular, each table-scan executable node can be selectively
compiled to self-contained machine code. Thanks to this approach,
a query does not need to be fully compiled to machine code to
benefit from high performance, since e.g. executing a join operator
could lead to the evaluation of one child node in the interpreter (if
it has few elements) and another child in compiled machine code.

executeMethodAfterJITCompilation() {
result = 0;
for(int i = @; i < input.numElements, i++) {
row // read i-th array element
fst // read property "x" of row
snd = // read property "y" of row
// Type checking for predicate
if(/x fst and snd are integers */) {
if(fst < snd) { result++; }

}
else if(/* fst and snd are dates */){
if(fst.isBefore(snd)) { result++; }

return result;

Figure 6: Pseudo-code equivalent to the machine code gen-
erated by DynQ, executing the example query in Figure 3.

Figure 6 shows the pseudo-code equivalent to the machine code
generated by DynQ for the example query of Figure 3, once both
types in the example are encountered (i.e., both x and y properties
have either type Int or Date). As the figure shows, all the calls to
the interface methods are aggressively inlined by the compiler. The
operations listed at the beginning of the while loop that interact
with the host dynamic language (i.e., reading the current array ele-
ment and its properties x and y) are inlined by the compiler as well.
Moreover, the predicate node is compiled into two if statements
that check whether in the current row the fields x and y have one of
the expected types. If this is not the case, in general, the generated
code would be invalidated as described above, whilst in this specific
example, since there is no other specialization in the less-than node,
the current row is discarded and the generated code does not need
to be invalidated.

3.3 DynQ Providers

As introduced in Section 2.1, LINQ queries are not limited to object
collections, instead they can be executed on any data format for
which a so-called LINQ provider (i.e., a data-source specific imple-
mentation of the enumerable and queryable interfaces) is available.
Such flexibility is an appealing feature for developers, since it allows
executing federated queries within the same programming model,
leaving the complexity of orchestrating different data sources to
the system. In the context of DBMS, orchestration of federated
queries is a widely studied topic, pioneered by systems like Gar-
lic [24] and TSIMMIS [9]. As an example of custom providers in
DynQ, consider a scenario where a developer needs to analyze a
web-server log file in JSON format, counting the number of accesses
for each user who registered to the website after a specific date,
with user registration data however stored in a database. Figure 7
shows how such a log analysis can be executed with DynQ. As the
figure shows, developers do not have to deal with opening/clos-
ing any file or database connection; they only need to provide a
file name and configurations for accessing the database (e.g., the
URL, credentials, and database name) to DynQ, which takes care
of everything else. Moreover, the Calcite query planner detects
the operators that can be pushed to external data sources. When
executing the example query, DynQ sends (to the database) the SQL
query with the predicate on the date field and retrieves only user
names of the rows matching the predicate. Hence, the operation can

be executed more efficiently (i.e., exploiting database optimizations)
and communication overhead is reduced.

var path = 'file://.../log.json’';
DynQ.registerJSON('logs', path);

var config = // DB url, credentials,
DynQ.registerJDBC('users', config);

var result = DynQ.executeQuery ("
SELECT users.name, COUNT(*) as count
FROM users, logs
WHERE logs.user.id = users.id
AND users.registration_date > DATE
GROUP BY users.name‘);

Figure 7: Federated query with DynQ.

Implementing a DynQ provider requires defining a specific table-
scan operator, which takes care of iterating over the rows in the
input data source, and a data-accessor operator, which takes care
of accessing the fields of each row. Our JSON provider builds on
Jackson [15], an efficient JSON parser for Java, for accessing fields
in JSON objects. This approach can be further extended with more
complex parsers that integrate predicate execution during data-
scan operations, which is an approach already explored in the
literature [31, 48].

Besides the query parser and planner, Apache Calcite has another
appealing feature for DynQ, namely its flexibility in integrating
new data sources by defining specific adapters. A Calcite adapter
takes care of representing a data source as tables within a schema,
i.e., a representation that can be processed by the query planner.
Similarly to LINQ providers, from a query execution point of view,
a Calcite adapter takes care of converting the data from a specific
source to a Calcite enumerable that can be integrated into the query
engine, allowing the execution of federated queries.

3.4 Language-Specific Type Conversions

Although GraalVM allows efficient interactions among different lan-
guages [17], it may introduce overhead related to data conversion
operations. As an example, dates are represented as LocalDate
instances once shared among different languages, but the inter-
nal representation in a specific language may be different, e.g., in
JavaScript dates are represented as long values, as the number of
milliseconds from the epoch day January 1, 1970-01-01, UTC [12].
As an example, consider the following simple query:
SELECT COUNT(*) FROM T WHERE X < DATE '2000-01-01'

Suppose DynQ executes such a query (without language-specific
type conversions) on JavaScript objects, in a first step (before query
execution) it would create a LocalDate instance for the constant
date (2000-01-01), then during predicate evaluation, for each row:
o It would check that the current row contains the field X and
that it is actually a date instance (this step cannot be avoided
in the context of dynamic languages).
e It would convert the JavaScript date into a LocalDate in-
stance.
o Finally, it would compare the converted LocalDate instance
with the constant one (2000-01-01).
On the other hand, evaluating the predicate in JavaScript would
require only the first step above (i.e., checking that the field exists
and has type date), if so the date comparison is executed using

the JavaScript internal representation of dates, that is, a single
comparison of two primitive longs, which is of course much more
efficient than the steps above.

The reason for those data conversions is that different languages
may internally represent the same data type differently, but expos-
ing those types to other languages requires a common represen-
tation. To overcome these inefficiencies related to the type con-
versions introduced by language interoperability, DynQ provides
an extension mechanism that can be used to implement language-
specific type conversions. As discussed in Section 3.2, DynQ relies
on two main categories of nodes, namely expression nodes and
query operator nodes. Language-specific type conversions can be
implemented by extending expression nodes with new specializa-
tions for types of a certain language.

Considering for example JavaScript dates, language-specific type
conversions can be implemented to extend comparison nodes by
taking care of checking if the object subject to a comparison is
actually a JavaScript date. If so, the comparison can be executed
more efficiently by delegating it to the JavaScript engine, an opera-
tion that could be inlined by the Graal compiler into the DynQ’s
query operator nodes. Note that language-specific type conversions
do not break the high modularity of DynQ, since only expression
nodes are extended with such optimizations, whilst adding new
query operators, data sources, or features of the query engine (e.g.,
parallel query execution) would impact only query operator nodes.
Moreover, language-specific type conversions are an optional ex-
tension, i.e.,, DynQ can execute queries on objects of a language
for which no language-specific type conversions are implemented.
In this case, depending on the data type of the processed objects,
DynQ may have to execute data-conversion operations.

4 EVALUATION

In this section we evaluate the performance of DynQ. We evaluate
DynQ with two dynamic languages, R (Section 4.1) and JavaScript
(Section 4.2). In both settings, we evaluate DynQ using the TPC-
H benchmark queries and a micro-benchmark composed of a set
of queries based on the dataset of the TPC-H benchmark. Those
queries, listed in Table 1, have been presented in the context of a
stream-fusion engine [49]. We refer to the i-th query in TPC-H as
Qi, and to the j-th query in the micro-benchmark as MQj.

We run all our experiments on an 8-core Intel Xeon E5-2680
(2.7 GHz) with 64 GB of RAM. The operating system is a 64-bit Linux
Ubuntu 18.04 and the language runtime is GraalVM Community
Edition 20.1.0. Unless otherwise specified, for all experiments the
reported execution times include the query preparation time, i.e.,
the Truffle nodes generation obtained by traversing the query plan
generated by Calcite and the actual query execution time. Note that
query execution time takes into account also the JIT compilation
of the Truffle nodes. Unless otherwise indicated, all the figures
presented in this section are bar plots that show the query execution
time for each implementation. The numbers on top of the bars
represent the speedup (factors) achieved by DynQ. Speedup factors
below 1 indicate that DynQ is slower.

Table 1: Micro-benchmark queries from stream-fusion engine [49].

MOQ1 | SELECT COUNT(*) FROM lineitem WHERE 1_shipdate >= DATE '1995-12-01"

MQ2 | SELECT SUM(1_discount * 1_extendedprice) FROM lineitem WHERE 1_shipdate >= DATE '1995-12-01'

MQ3

SELECT SUM(1_discount * 1_extendedprice) FROM lineitem
WHERE 1_shipdate >= DATE '1995-12-@1' AND 1_shipdate < DATE '1997-01-01'

MQ4 | SELECT 1_discount * 1_extendedprice FROM lineitem WHERE 1_shipdate >= DATE '1995-12-01'

MQS5 | SELECT 1_extendedprice FROM lineitem WHERE 1_shipdate >= DATE '1995-12-01' ORDER BY 1_orderkey LIMIT 1000

MQ6 | SELECT 1_discount * 1_extendedprice FROM lineitem WHERE 1_shipdate >= DATE '1995-12-01' LIMIT 1000

MQ7 SELECT SUM(o_totalprice) FROM lineitem, orders WHERE o_orderkey = 1_orderkey
AND o_orderdate >= DATE '1995-12-01' AND 1_shipdate >= DATE '1995-12-01'
. DuckDB (df) DuckDB pleload D\nQ

o & qsv

10

10° I
2

10!

Execution Time {msj

Q9 Qlo

®
(LQ
\
\
I I «\x Q qf-'gb

I I |
I I |
Q21 Q22

¢4

Q12 QI3 Q4 Q15 Q6 QIT QI8 Q19 Q20

Figure 8: R TPC-H benchmark (SF-10).

Bl DuckDB (df) - DuckDB (pleload)

~
N N 2 >
& & 9 N
10" © o & o
Q /\ e 3§
S
3 K ,\@ N

MQL MQ2 MQ3 MQ4 MQ5 MQ(MQ7

data.table DynQ

Execution Time |ms|
= e e
2=

=

Figure 9: R micro-benchmark (SF-10).

4.1 R Benchmarks

In this section we evaluate DynQ with the R programming language.
Here, we use the dataset from the TPC-H benchmark generated
with the original dbgen tool [56] loaded into an R data frame. Since,
like DynQ, DuckDB [46] allows executing SQL queries directly
on R data frames, we evaluate DynQ on the TPC-H benchmark
queries and the micro-benchmark queries against DuckDB, on a
dataset of scale factor 10; the dataset size is 10GB in a text format. In
particular, we use DuckDB (version 0.2.0), executed on GnuR [44]
(version 3.6.3). DuckDB provides two ways for executing queries
on R data frames, i.e., directly on the data-frame data structure,
and in a managed table, which is much more efficient but requires
an ingestion phase. We refer to the former setting as DuckDB(df),
and to the latter one as DuckDB(preload). Note that, by comparing
DynQ against DuckDB, the fair comparison is with DuckDB(df),
since the data is accessed directly on R data frames, as in DynQ.
Moreover, in evaluating DuckDB(preload), we do not measure the
time spent in the ingestion phase. In this evaluation, we measure
the median of 20 executions.

Due to the different query planners and implementation choices
in DynQ and DuckDB (DuckDB is vectorized and interpreted whilst
DynQ is tuple-at-a-time and JIT compiled), the goal of this perfor-
mance evaluation is not to compare two very different systems, but
rather to demonstrate that DynQ achieves performance competitive

with an established, state-of-the-art data-processing system. We
consider the micro-benchmark queries important in our evalua-
tion, since, due to their simplicity, we expect the query plans to
be the same in DynQ and in other systems. Moreover, since the
micro-benchmark queries are rather simple, they stress data-access
operations, showing that the extensibility of DynQ in accessing data
in different formats does not impair query execution performance,
which we consider a great achievement.

Micro-benchmarks. Due to the simplicity of the queries in the
micro-benchmarks listed in Table 1, we manually implement them
using the data.table API, which is arguably the most efficient
library for processing R data frames. The benchmark results are
depicted in Figure 9. As the figure shows, DynQ is comparable with
the data. table API on MQ7 and outperforms it on all other queries
by speedup factors ranging from 1.62x (MQ1) to 12.31x (MQ5). The
impressive speedup on MQ6 against data. table (i.e., 1029x) is be-
cause DynQ chains query operators and stops the computation once
it finds the first 1000 elements that satisfy the predicate. On MQ6,
DynQ performs comparably with DuckDB, with speedup factors of
about 1.3x against DuckDB(df) and 0.69x against DuckDB(preload),
with a query execution time of about 1ms, showing the effectiveness
of our exception-based approach for implementing early exists for
the LIMIT operator. Moreover, as we will discuss in Section 4.1.1,
we consider such a low query execution time a great achievement
for DynQ, since the existing query engines based on compilation
commonly suffer from a latency overhead due to query compilation.
DynQ outperforms DuckDB(df) in all other queries as well, with
speedup factors ranging from 5.11x (MQ7) to 34.52x (MQ1). DynQ
performance is closer to DuckDB(preload), which significantly out-
performs DuckDB(df), showing that the great flexibility of DynQ
in accessing data in different formats does not impair performance.

TPC-H Benchmark. Here, we evaluate DynQ using the TPC-H
benchmark. Like in our previous experiment, we compare DynQ

against DuckDB executing queries directly on the data frame, i.e.,
DuckDB(df) and with data loaded into a managed memory space,
i.e., DuckDB(preload). The benchmark results are depicted in Fig-
ure 8. As the figure shows, DynQ outperforms DuckDB(df) in all
queries, with speedup factors ranging from 1.02x (Q13) to 31.37x
(Q15). In comparison with DuckDB(preload), DynQ is faster on 11

queries (i.e., Q2, Q4, Q6, Q7, Q9, Q10, Q14, Q15, Q17, Q18, Q19).

4.1.1 Latency Benchmarks. As discussed in Section 3.2, even if
DynQ is an engine based on query compilation, it is able to start
executing a query before compiling it, by executing the Truffle
nodes which represent the query in the interpreter. This feature is
crucial for obtaining high throughput when executing queries on
small datasets. Here, we evaluate the throughput of DynQ against
DuckDB. Since DuckDB is based on interpretation and vectoriza-
tion, it does not spend any time on code generation and query
compilation. On small datasets, such an approach is commonly
faster than compiling queries, since the compilation overhead may
not be paid off.

For this evaluation, we considered an experiment similar to
the one performed in the context of Umbra [41]. Such an experi-
ment [26] evaluates the throughput (by calculating the geometric
mean of queries per second for all TPC-H queries) over different
scale factors. In our experiment we evaluate the throughput over
scale factors 0.001, 0.01, 0.1, 1, and 10, first on the micro-benchmark
queries and then on the TPC-H queries. The benchmark results are
depicted in Figure 11 for the micro-benchmark and in Figure 10
for TPC-H. As the figures show, for both the micro-benchmark
and TPC-H, DynQ outperforms DuckDB(df) on all evaluated scale
factors, ranging from a factor of 1.76x (SF 0.001) to 13.31x (SF 10)
on the micro-benchmark, and from a factor of 1.67x (SF 0.001) to
3.66x (SF10) on TPC-H.

In comparison with DuckDB(preload), the evaluation shows in-
teresting trends. On the smallest scale factor (SF 0.001), DynQ fully
executes all queries in the interpreter; in this case, the through-
put is comparable with DuckDB(preload). In particular, the DynQ
throughput differs by the one of DuckDB(preload) by a factor of
0.84x on the micro-benchmark, and of 1.1x on TPC-H. On small
scale factors 0.01 and 0.1, DynQ starts compiling parts of the queries;
however, since the datasets are still small, the compilation is not
well paid off. Indeed, the DynQ throughput is smaller than the
one of DuckDB(preload), by factors 0.43x and 0.33x on the micro-
benchmark, and of 0.57x and 0.58x on TPC-H. Then, on scale factor
1, in DynQ query compilation is paid off on the micro-benchmark,
reaching a throughput comparable with DuckDB(preload), i.e., 1.04x
factor. This is not the case for TPC-H, where the throughput of
DynQ is factor 0.76x compared with DuckDB(preload). The reason
is that the TPC-H queries are much more complex than the micro-
benchmark queries, leading to longer query compilation times.
Finally, on scale factor 10, DynQ outperforms DuckDB(preload) on
the micro-benchmark queries by a factor of 1.71x, and becomes
comparable with DuckDB(preload) on the TPC-H queries, by a
factor of 0.99x. Our evaluation on the query latency shows that
JIT compilation in DynQ is not a source of performance concerns,
differently from most existing query engines based on compilation.

4.1.2 Comparison with Native DBMS. In this section we evalu-
ate DynQ against MonetDB[21], i.e., a modern, interpreter-based,

- DuckDB (df)
DuckDB (preload)
1 DynQ

—

Throughput [queries/s]

SF-0.001 SF-0.01 SF-0.1 SF-1 SF-10

Figure 10: Throughput, geometric mean of queries/s over the
TPC-H queries.

-~ DuckDB (df)
DuckDB (preload)
1 DynQ

Throughput [queries/s|

=}

SF-0.001 SF-0.01 SF-0.1 SF-1 SF-10

Figure 11: Throughput, geometric mean of queries/s over the
micro-benchmark queries.

native DBMS featuring high-performance vectorized execution. Al-
though we do not consider MonetDB a direct competitor to DynQ,
this evaluation should be considered an indication of how DynQ
performs in comparison with a native RDBMS. For this evaluation,
we use MonetDB Database Server Toolkit v11.39.7 (Oct2020-SP1),
executing the queries with mclient. We measure the end-to-end
query execution time, taking into account the cost of inter-process
communication for sending result sets from the server to the client
process. For fairness, we configure MonetDB for executing in a
single-thread, since we have not yet implemented parallel query
execution in DynQ. For this experiment, we evaluate DynQ on R
data frames, using a scale factor of 10 for both the micro-benchmark
and TPC-H; we present the median of 20 executions.

The benchmark results are depicted in Figure 12 for TPC-H
and in Figure 13 for the micro-benchmark. As the figures show,
MonetDB outperforms DynQ in all queries containing the join
operator, i.e., in MQ7 and in all TPC-H queries but Q1 and Q6.
Moreover, MonetDB outperforms DynQ in MQ5. All remaining
queries are rather simple and mostly dominated by table scans.
For those queries, DynQ is faster than MonetDB; in particular,
in both Q1 and Q6, DynQ outperforms MonetDB by a speedup
factor of about 1.6x. Concerning the remaining micro-benchmark
queries, on MQ6 DynQ shows an impressive speedup of about
700x; this is because MonetDB (like the data.table R package) does
not stop the query execution once the first 1000 elements (i.e.,
the limit operator) have been found. On MQ4, DynQ outperforms
MonetDB by a speedup factor of 15.04x, because MQ4 returns a
large result set that MonetDB needs to serialize and transfer to the
client process, whereas DynQ (being an embedded query engine)
does not incur such an overhead. Finally, on MQ1, MQ2, and MQ3,
DynQ outperforms MonetDB by speedup factors of 1.37x, 3.34x,
and 2.1x.

= = =
=) =] 2,

—

Execution Time |ms|

1
10 Q5 Q6 Q7 Q10

B MonetDB

Q11

DynQ

Q12 QI3 QM4 Q15 QI6 Q7 QI8 Q19 Q20 Q21 Q22

Figure 12: TPC-H benchmark against MonetDB (SF-10).

Z 1o+ MonetDB | DynQ 15.04
g

E10°

E

g 10°

£

g 10"

"

= 100

MQ2 MQ3 MQ4 MQ5 MQ6 MQ

Flgure 13: Micro-benchmark against MonetDB (SF-lO).

4.2 JavaScript Benchmarks

Here, we evaluate DynQ with the JavaScript programming language.
For this evaluation, we first evaluate DynQ against AfterBurner [13],
an in-memory database entirely written in JavaScript, on both
the micro-benchmark and on TPC-H. Then, we evaluate DynQ
querying data loaded into a JavaScript array of objects, like in the
example of Figure 3. In this setting, we evaluate DynQ on the micro-
benchmark against hand-written implementations in JavaScript and
implementations that rely on Lodash [34], which is arguably the
most efficient and popular stream API for JavaScript. Finally, we
evaluate DynQ on existing code bases, comparing the performance
of a JavaScript library against equivalent implementations using

DynQ.

4.2.1 Evaluation on AfterBurner. For evaluating DynQ against Af-
terBurner [13], we created a specific DynQ provider for the memory
layout implemented in AfterBurner, i.e., a columnar layout com-
posed of JavaScript typed arrays. The implementation of such a
specific data-source provider required only about 1000 lines of code,
which shows the great extendibility of DynQ. In this setting we
evaluate AfterBurner both on GraalVM and on V8 [57] (Node.JS
version 12.15.0). All our experiments on AfterBurner are executed
using only scale factor 1; we cannot evaluate AfterBurner on bigger
datasets due to a limitation in the Node.js file parser used in After-
Burner, which cannot parse files exceeding 2GB. In this setting, we
measure the median of 20 executions.

Micro-benchmarks. Due to the simplicity of the queries in the
micro-benchmark listed in Table 1, we manually implemented them
using the AfterBurner AP, which is a streaming-like API based on
a method-chaining notation, inspired by Squel.js [50]. The bench-
mark results are depicted in Figure 15. As the figure shows, even
if AfterBurner is based on query compilation, it does not optimize
the early exit for the limit operator. Thus, for MQ6, DynQ outper-
forms AfterBurner by a speedup factor of 56.32x on V8, and 985x on
GraalVM. DynQ outperforms AfterBurner running on GraalVM for
all other queries, too, ranging from a speedup factor of 4.89x (MQ1)
to 21.89x (MQ5). When executing AfterBurner on V8, AfterBurner
is faster than DynQ on MQ1, MQ2, and MQ7; the reason is that V8’s

compiler is faster than GraalVM on these queries, so the benefit of
compilation is almost immediate.

TPC-H Benchmark. We evaluate DynQ against AfterBurner on
TPC-H using the original AfterBurner benchmark [1]. Since Af-
terBurner uses a streaming-like API, there is no query parsing
and planning phase, and the query plan is made explicit by the
API usage. For fairness, we manually fine-tuned the queries in our
evaluation such that Calcite generates the same query plans used
by AfterBurner. The benchmark results are depicted in Figure 14.
As the figure shows, DynQ outperforms AfterBurner executed on
GraalVM on all queries, with speedup factors ranging from 7.16x
(Q20) to 36.6x (Q19). When executing AfterBurner on V8, DynQ
shows comparable performance on Q1, and is slower only on Q20
by a factor of 0.77x. On all remaining queries, DynQ outperforms
AfterBurner on V8 with speedup factors ranging from 1.12x (Q14)
to 4.87x (Q17), which is motivated by the fact that AfterBurner
materializes more intermediate results than DynQ.

4.2.2 Evaluation on Object Arrays. Here, we evaluate DynQ using
JavaScript object arrays as datasets. First, we evaluate DynQ with
the micro-benchmark against equivalent hand-written implemen-
tations. Then, we evaluate DynQ on an existing code base, by com-
paring the original implementation of a utility Node.JS npm [42]
module with an equivalent one based on DynQ. In this setting we
evaluate all experiments measuring only query execution time at
peak performance.

Micro-benchmarks. Similarly to the evaluation on R, we manually
implemented the micro-benchmark queries in JavaScript. In this
setting, we evaluate the micro-benchmark queries against hand-
written implementations and implementations that use Lodash.
Since Lodash does not offer an API for the join operator, we do not
evaluate MQ7 using Lodash. The scale factor used for our JavaScript
evaluation is 1 (whereas we used a scale factor of 10 for the R evalu-
ation). This is motivated by the fact that querying R data frames is
more efficient than JavaScript object arrays, since R data frames are
internally implemented using a columnar data format composed
of typed arrays, whereas JavaScript arrays are a more flexible data
structure that can be composed of heterogeneous objects.

The benchmark results are depicted in Figure 16. In this set-
ting, we measure the median of 20 executions. As the figures show,
DynQ outperforms both implementations for all queries. In par-
ticular, DynQ outperforms Lodash with speedup factors ranging
from 1.58x (MQ2) to 48.62x (MQ6). The high speedup on MQ6 is
motivated by the fact that, similarly to the data.table APIin R,
also Lodash does not chain the filter with the limit operation, un-
like DynQ. Moreover, DynQ also outperforms all the hand-written
implementations, with speedup factors ranging from 1.15x (MQ6)

5 I AfterBurner (GraalVM) . AfterBurner (V8) DynQ

o
o
Lid

—
=]
=

Execution Time {ms]
[
(= =3
% 2

10!

o

R
& ®
o ¥
o S
RE K 5
3 A I &

QI8 Q19 Q20

Q21 Q22

Figure 14: JS TPC-H benchmark on AfterBurner (SF-l).

M AfterBurner (GraalVM) M AfterBurner (V8) = DynQ

z 10!

e g o

g 10° X

S

= 107

S

=

3

"

M0

MQ1 MQ2 MQ3 MQ4 MQ5 MQ6 MQ7T

Figure 15: JS micro-benchmark on AfterBurner (SF-1).

- W Lodash M Hand Written DynQ o
g ?
=, . A N
B 10 o> K3 K e 2@
&
o 10%
2
=] &
;% 10! -
M0 .\’.\b
MQL MQ2 MQ3 MQ4 MQ5 MQ6 MQ7
Figure 16: JS micro-benchmark (SF-1).
i 1600 B Vanilla I Hand Written DynQ
2 1200
&
= 800
2
B
;v -
()
»
[€a)
zipLookup findByState findByCityAndState

Figure 17: JS benchmark on cities module.

to 2.33x (MQ?7). There are multiple reasons why DynQ is able to out-
perform the hand-written queries. First, the JavaScript semantics
may enforce additional operations which are not required in data
processing; as an example, JavaScript’s Map object performs hash-
ing by converting each value into a string representation. Moreover,
during the execution of hand-written queries the JavaScript engine
needs to perform more runtime checks than DynQ. Besides perfor-
mance, the implementations using DynQ are the most concise ones.
In particular, the hand-written implementations of all the queries
that compose the micro-benchmark count 160 lines of code (LOC),
Lodash implementations count 58 LOC, and DynQ implementations
count 40 LOC.

Benchmarks on Existing Codebases. Here, we evaluate DynQ on
an existing code base, by comparing the performance of an existing
JavaScript library against an equivalent implementation that uses
DynQ. In particular, we selected the npm module cities [11], which
exposes a dataset of locations and offers an API for selecting and

E 25

< 20

£ 15 1.64 M Vanilla

210 ¥ DynQ (JS UDF)
=1 DynQ (Java UDF)
§ 5

=0

gpsLookup

Figure 18: JS benchmark on cities module with UDF.

filtering elements. In this setting, we measure the median of 100
executions (after a warmup of 500 executions).

The npm module cities stores data in a single table (i.e., in a
JavaScript array). The API offered by cities consists of findByState,
zipLookup, findByCityAndState, and gpsLookup. This module
implements the first three APIs using Lodash, whilst the fourth
API is manually implemented with hand-optimized code, which
relies on the npm module haversine [19] for evaluating the distance
between two points. Due to the simplicity of the APIs of the cities
module, we also implemented an hand-optimized version of the first
three APIs. We have not reimplemented the gpsLookup API, since
the original version is already hand-optimized and it does not use
any third-party data-processing library. For evaluating DynQ on the
gpsLookup API, we use two versions; one version (DynQ (JS UDF))
uses the JavaScript module haversine as UDF for calculating the
distance between two points, whilst the other version (DynQ (Java
UDF)) uses a Java UDF instead of the JavaScript one. We manually
implemented the Java UDF by carefully replicating the JavaScript
version, such that the executed algorithm is exactly the same.

The benchmark results are depicted in Figure 17 for the first three
APIs, and in Figure 18 for the gpsLookup APL Since for the latter
experiments we use DynQ in two different ways (i.e., implementing
the UDF in JavaScript and Java), Figure 18 shows (above the bars of
those two implementations) their respective speedups against the
original implementation. As the figures show, DynQ outperforms
both Lodash and the hand-optimized implementations in all APIs.
Moreover, the evaluation of the gpsLookup API shows that evaluat-
ing an UDF with DynQ does not introduce any overhead when the
UDF is implemented in the host dynamic language (i.e., JavaScript).
This is expected, since, as discussed in Section 3, GraalVM can
inline the machine code generated from the JavaScript UDF within
the query execution code. Moreover, when the UDF is implemented
in Java, performance improves, i.e., we measure a speedup factor of
1.64x. This is expected, since executing the JavaScript UDF requires
more type checks than executing the UDF in Java. Our evaluation
on existing codebases shows that, besides data analytics, DynQ is
also a promising library for server-side Node.JS applications that
perform in-memory data processing.

5 RELATED WORK

Query compilation in relational databases dates back to System-
R [8] and has recently gained more interest both in the research
community and in industrial systems. In the context of stream li-
braries, Steno [37] exploits query compilation in LINQ for the ct
language. Nagel et al. [38] further improve LINQ query compilation
in C# by using more efficient join algorithms and by generating
native C code which is able to access C# collections that reside on
the heap of the managed runtime. OptiQL [53] is a stream library
for the Scala language which leverages the Delite [52] framework
for generating optimized code. Strymonas [27] is a stream library
for Java, Scala, and OCaml. Strymonas leverages the LMS [47]
framework for ahead-of-time query compilation for Java and Scala,
and MetaOCaml for the OCaml language. Those libraries are de-
signed for statically-typed languages and exploit type information
for generating specialized programs during the code generation.

Most dynamic languages such as JavaScript or Python offer stan-
dard data-processing APIs (e.g., filter, map, reduce), as well as more
advanced streaming libraries. However, little research has focused
on optimizing integrated queries in dynamic languages. Among
them, JSINQ [22] is a JavaScript implementation of LINQ, which has
been extended [39] with a provider for querying the MongoDB [36]
database. JSINQ compiles queries to JavaScript source code. Due to
this design, JSINQ cannot outperform a hand-written implementa-
tion of a query, in contrast with DynQ.

Afterburner [13] is an in-memory, relational database embed-
ded in JavaScript. Afterburner leverages optimized JavaScript data
structures (i.e., typed arrays) and generates ASM.js [3] code, i.e.,
an optimized subset of JavaScript with only primitive types. Al-
though this design offers very fast query evaluation, it comes with
many limitations compared to our approach. First, it cannot execute
queries on arbitrary JavaScript objects, i.e., the data needs to be
inserted into a database-managed space before query execution,
which introduces overhead, increases the memory footprint, and re-
quires users to provide a data-schema, whereas our approach allows
objects to be queried in-situ without any user-provided schema.
Moreover, Afterburner is designed for relational data of few prim-
itive types (i.e., numbers, dates, and strings), with no support for
querying arrays and nested data structures, unlike DynQ.Finally,
our approach targets any language supported by GraalVM, whilst
Afterburner is specifically designed for JavaScript. In particular,
the approach proposed in Afterburner cannot be easily replicated
in other dynamic languages, since most of them do not offer effi-
cient data structures like typed arrays and an efficient subset of the
language to operate on primitive datatypes, like ASM.js.

DuckDB [46] is an embedded database with bindings for multiple
dynamic languages, i.e., Python and R. Differently from many other
embedded databases, DuckDB is able to execute queries directly
on data structures managed by a dynamic language, in particu-
lar Python and R data frames. However, DuckDB cannot execute
queries on arbitrary objects (e.g., on an array of heterogeneous
objects), in contrast to DynQ. Hence, DuckDB does not need to
face the challenge of dealing with unexpected types during query
execution. Moreover, our evaluation shows that when DuckDB is
configured for executing queries directly on the R data frame, DynQ
outperforms DuckDB on all the evaluated queries.

The Truffle framework has been successfully adopted for opti-
mizing existing libraries. FAD.js [7] is a runtime library for Node.js
which optimizes JSON data access by parsing data lazily and incre-
mentally when the data is actually consumed by the application.
FAD.js focuses on optimizing data access, whilst DynQ focuses
on data processing. Moreover, the approach described in FAD.js is
complementary to our approach and can be synergistic with DynQ,
i.e., we could integrate FAD.js in the DynQ JSON provider.

Recently, speculative optimizations based on Truffle have been
proposed [48] in the context of Spark SQL for optimizing query
execution on textual data formats. However, the described approach
targets only the leaves of a query plan (i.e., table scans with pushed-
down projections and predicates), whilst DynQ is a standalone
query engine that can execute a whole query plan. Another impor-
tant difference w.r.t. the mentioned work and DynQ is that in [48]
the query compilation is obtained by combining Spark code gen-
eration and Truffle ASTs, leveraging Truffle nodes for speculative
optimizations and using Spark original code as fallback, whilst in
DynQ the whole query is compiled into a Truffle AST. Moreover,
the speculative optimizations discussed in [48] are complementary
to our approach, and such optimizations can be integrated into our
DynQ providers for textual data sources.

6 CONCLUSION

In this paper we introduced DynQ, a new query engine for dynamic
languages. DynQ is based on a novel approach to SQL compila-
tion, namely compilation into self-specializing executable ASTs.
Our approach to SQL compilation relies on the Truffle framework
and on GraalVM to dynamically compile query operators during
query execution. Truffle was designed as a programming-language
implementation framework; however, in DynQ we exploit it in an
innovative and previously unexplored way, i.e., as a code-generation
framework integrated in a query engine. DynQ has been evaluated
with two programming languages, namely R and JavaScript, against
existing data-processing libraries and hand-optimized queries. Our
evaluation shows that the performance of query evaluation with
DynQ is comparable with hand-optimized implementations, outper-
forming existing data-processing systems and embedded databases
in most of the benchmarks. To the best of our knowledge, DynQ is
the first system which integrates a query engine within a polyglot
VM directly interacting with its JIT compiler, and allowing execu-
tion of federated queries on object collections as well as on file data
and external database systems for multiple dynamic languages.
Besides the features that DynQ offers to end users, we believe
that DynQ would also be a useful framework in other data process-
ing domains. Indeed, being a language-agnostic data-processing
framework, DynQ could be exploited for implementing query exe-
cution in the context of other existing data processing frameworks.

ACKNOWLEDGMENTS

The work presented in this paper has been supported by Oracle
(ERO project 1332). We thank the VM Research Group at Oracle
Labs for their support. Oracle, Java, and HotSpot are trademarks
of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

REFERENCES [31] Yinan Li, Nikos R. Katsipoulakis, Badrish Chandramouli, Jonathan Goldstein,
[1] AfterBurner Team. 2020. AfterBurner TPC-H Benchmark. https://github.com/ and Do:_qald Kossmann. 2017. Mison: A Fast JSON Parser for Data Analytics.
afterburnerdb/afterburner/blob/master/src/tpch/benchmark_tpch.js Proceedings of the VLDB Endowment (2017), 1118-1129.))
[2] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. [32] LINQ "Ijeam 2020. Lfmguage Integrated Qu(?ry (LINQ) provider for C# iFmance &
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Operatio;té/DJ{n?rr;acs 3?‘ lh/tlt_ps://docs_émcrosoftcom/en—us/dynam1c5365/ﬁn-
. . ; . o ops-core/dev-itpro/dev-tools/ling-provider-c
ll\gzt;lz;}lana' 2015. Spark SQL: Relational Data Processing in Spark. In SIGMOD. [33] LINQ Team. 2020. LINQ to Objects (C#). https://docs.microsoft.com/en-us/dotnet/
[3] ASM,js Tez.lm 2020. asm.js. https://http://asmjs.org [34] csl’;ar};l/programming-g;id:/c}(;nceptj/l(iinqﬁinq-to-objects
h T . o S s . . 34] Lodash Team. 2020. Lodash. https://lodash.com/
[4] Edmon Begoli, Jeslis Camacho-Rodriguez, Julian Hyde, Michael J. Mior, and [35] Wes Mckinney. 2010. Data Structures for Statistical Computing in Python. Pro-

Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources. In Proceedings of the 2018
International Conference on Management of Data (SIGMOD). 221-230.

[5] Gavin Bierman, Erik Meijer, and Mads Torgersen. 2007. Lost in translation:
Formalizing proposed extensions to C#. In OOPSLA 2007. 479-498.

[6] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In CIDR 2005. 225-237.

[7] Daniele Bonetta and Matthias Brantner. 2017. FAD.js: fast JSON data access using
JIT-based speculative optimizations. Proceedings of the VLDB Endowment (2017),
1778-1789.

[8] D.D.Chamberlin, M. M. Astrahan, W. F. King, R. A. Lorie, J. W. Mehl, T. G. Price,
M. Schkolnick, P. Griffiths Selinger, D. R. Slutz, B. W. Wade, and R. A. Yost. 1981.
Support for Repetitive Transactions and Ad Hoc Queries in System R. ACM
Trans. Database Syst. (1981), 70-94.

ceedings of the 9th Python in Science Conference (2010).

[36] MongoDB Team. 2020. The most popular database for modern apps | MongoDB.
https://www.mongodb.com/

[37] Derek Gordon Murray, Michael Isard, and Yuan Yu. 2011. Steno: Automatic

Optimization of Declarative Queries. SIGPLAN Not. (2011), 121-131.

Fabian Nagel, Gavin Bierman, and Stratis D. Viglas. 2014. Code Generation

for Efficient Query Processing in Managed Runtimes. Proceedings of the VLDB

Endowment (2014), 1095-1106.

[39] K. Nakabasami, T. Amagasa, and H. Kitagawa. 2013. Querying MongoDB with
LINQ in a Server-Side JavaScript Environment. In 16th International Conference
on Network-Based Information Systems. 344-349.

[40] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proceedings of the VLDB Endowment (2011), 539-550.

[41] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System

'@
&

[9] Sudarshan S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon- with In-Memory Performance. In CIDR
stantinou, J. Ullman, and J. Widom. 1994. The TSIMMIS Project: Integration of 42] NPM T. 202}(7) b 'ld. - hi https:// ; /
Heterogeneous Information Sources. In IPS7. [42] cam. - npm | build amazing things. hitps://www.npmjs.com,
(10] James Cheney, Sam Lindley, and Philip Wadler. 2013, A Practical Theory of [43] Oracle, Team Java. 2020. Stream (Java Platform SE 8). https://docs.oracle.com/

javase/8/docs/api/java/util/stream/Stream.html

[44] R Core Team. 2020. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org/

[45] Mark Raasveldt and Hannes Miihleisen. 2017. Don’t Hold My Data Hostage: A

Case for Client Protocol Redesign. Proceedings of the VLDB Endowment (2017),

1022-1033.

Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB: an Embeddable Analytical

Database. In Proceedings of the 2019 International Conference on Management of

Data. 1981-1984.

Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging: A Prag-

matic Approach to Runtime Code Generation and Compiled DSLs. In GPCE.

127-136.

Filippo Schiavio, Daniele Bonetta, and Walter Binder. 2020. Dynamic Speculative

Optimizations for SQL Compilation in Apache Spark. Proceedings of the VLDB

Endowment (2020), 754-767.

[49] Amir Shaikhha, Mohammad Dashti, and Christoph Koch. 2018. Push vs. Pull-
Based Loop Fusion in Query Engines. Journal of Functional Programming 28 (10
2018).

[50] Squeljs Team. 2020. Squeljs. https://hiddentao.github.io/squel/

[51] StackOverflow Team. 2020. Stack Overflow Developer Survey 2019. https://insights.
stackoverflow.com/survey/2019/

[52] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi,

Martin Odersky, and Kunle Olukotun. 2014. Delite: A Compiler Architecture

for Performance-Oriented Embedded Domain-Specific Languages. ACM Trans.

Embed. Comput. Syst. (2014).

Arvind K. Sujeeth, Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Hassan Chafi,

Victoria Popic, Michael Wu, Aleksandar Prokopec, Vojin Jovanovic, Martin Oder-

sky, and Kunle Olukotun. 2013. Composition and Reuse with Compiled Domain-

Specific Languages. In ECOOP 2013. 52-78.

[54] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. 2018. How to Architect
a Query Compiler, Revisited. In Proceedings of the 2018 International Conference
on Management of Data (SIGMOD ’18). 307-322.

TensorFlow Team. 2020. TensorFlow. https://www.tensorflow.org/
TPC. 2019. TPC-H - Homepage. http://www.tpc.org/tpch/

[55]
([n.d.]) E% V8 Team. 2020. V8 Engine. https://v8.dev/
[27] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. 2017. 58] Hadley Wickh d Romain F is. 2014. dplyr: A G Data Mani
Stream Fusion, to Completeness. SIGPLAN Not. (2017), 285-299 (58] lat €y Wickham anc Romal Frangots. - apy rammar of Data Manip-
g y ulation.

(28] Andrgl Iithn’ V‘ktl" * ;0611;’12‘1};}% ’gl(;ll}lats Nel;mar;](lj 2018. Adaptgvet e)};ectlltmn. of [59] Christian Wimmer and Thomas Wiirthinger. 2012. Truffle: A Self-optimizing
compiled queries. In th International Conference on Data Engineering Runtime System. In SPLASH. 13-14.

(ICDE). 197-208. . . [60] Thomas Wiirthinger, Christian Wimmer, Christian Humer, Andreas W68, Lukas
[29] Tomasz Marek Kowalski and Radostaw Adamus. 2017. Optimisation of language-
. . . Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017.
integrated queries by query unnesting. Computer Languages, Systems & Structures X
Practical Partial Evaluation for High-performance Dynamic Language Runtimes.
47 (2017), 131-150
Korstantinos Krkellas. Stratis Vielas and Marcelo Cintra. 2010. Generating cod. SIGPLAN Not. (2017), 662-676.
f on; ?,Iltl,nos Tike aT’ ;a ISI IIgCiS)}?a;OIO EI;C; 2241]1 ra. - benerating code Thomas Wiirthinger, Christian Wimmer, Andreas W68, Lukas Stadler, Gilles
or holistic query evatuation. in : R Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All. In Onward! 187-204.

Language-Integrated Query. SIGPLAN Not. (2013), 403-416.

[11] cities Team. 2020. cities - npm. https://www.npmjs.com/package/cities/

[12] ECMAScript Team. 2020. ECMAScript Language Specification - ECMA-262 Edition
5.1. https://www.ecma-international.org/ecma-262/5.1/#sec-15.9.1.1

[13] Kareem El Gebaly and Jimmy Lin. 2017. In-Browser Interactive SQL Analytics
with Afterburner. In SIGMOD 2017. 1623-1626.

[14] H. Fang. 2015. Managing data lakes in big data era: What’s a data lake and why
has it became popular in data management ecosystem. In CYBER. 820-824.

[15] Jeff Friesen. 2019. Processing JSON with Jackson. 323-403.

[16] G.Graefeand W.]J. McKenna. 1993. The Volcano optimizer generator: extensibility

and efficient search. In Proceedings of IEEE 9th International Conference on Data

Engineering. 209-218.

Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Wiirthinger, and

Hanspeter Méssenbock. 2015. High-Performance Cross-Language Interoper-

ability in a Multi-Language Runtime. SIGPLAN Not. (2015), 78-90.

[18] Torsten Grust, Jan Rittinger, and Tom Schreiber. 2010. Avalanche-Safe LINQ

Compilation. Proceedings of the VLDB Endowment 3 (Sept. 2010), 162-172.

haversine Team. 2020. cities - haversine. https://www.npmjs.com/package/

haversine/

[20] Urs Holzle, Craig Chambers, and David Ungar. 1991. Optimizing Dynamically-
Typed Object-Oriented Languages With Polymorphic Inline Caches. In Proceed-
ings of the European Conference on Object-Oriented Programming (ECOOP). 21-38.

[21] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender,
and Martin L. Kersten. 2012. MonetDB: Two Decades of Research in Column-
oriented Database Architectures. IEEE Data Engineering Bulletin 35, 1 (2012),
40-45.

[22] Kai Jager. 2009. JSINQ-A JavaScript implementation of LINQ to Objects. (2009).

[23] Neil D. Jones. 1996. An Introduction to Partial Evaluation. ACM Comput. Surv.
(1996), 480-503

[24] Vanja Josifovski, Peter Schwarz, Laura Haas, and Eileen Lin. 2002. Garlic: a new
flavor of federated query processing for DB2. 524-532.

[25] Jupyter Team. 2020. Project Jupyter. https://jupyter.org/

[26] Timo Kersten, Viktor Leis, and Thomas Neumann. [n.d.]. Tidy Tuples and
Flying Start: Fast Compilation and Fast Execution of Relational Queries in Umbra.

[46

[47

=
=

[48

=
L

o
&

[30

[61

https://github.com/afterburnerdb/afterburner/blob/master/src/tpch/benchmark_tpch.js
https://github.com/afterburnerdb/afterburner/blob/master/src/tpch/benchmark_tpch.js
https://http://asmjs.org
https://www.npmjs.com/package/cities/
https://www.ecma-international.org/ecma-262/5.1/#sec-15.9.1.1
https://www.npmjs.com/package/haversine/
https://www.npmjs.com/package/haversine/
https://jupyter.org/
https://docs.microsoft.com/en-us/dynamics365/fin-ops-core/dev-itpro/dev-tools/linq-provider-c
https://docs.microsoft.com/en-us/dynamics365/fin-ops-core/dev-itpro/dev-tools/linq-provider-c
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/linq-to-objects
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/linq-to-objects
https://lodash.com/
https://www.mongodb.com/
https://www.npmjs.com/
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://www.R-project.org/
https://www.R-project.org/
https://hiddentao.github.io/squel/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://www.tensorflow.org/
http://www.tpc.org/tpch/
https://v8.dev/

	Abstract
	1 Introduction
	2 Background
	2.1 Language-integrated Queries
	2.2 Query Execution Models
	2.3 GraalVM and the Truffle Framework

	3 DynQ
	3.1 DynQ Architecture
	3.2 Query Compilation in DynQ
	3.3 DynQ Providers
	3.4 Language-Specific Type Conversions

	4 Evaluation
	4.1 R Benchmarks
	4.2 JavaScript Benchmarks

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

