Specializing Ropes for Ruby

Authors removed for review

Abstract

Ropes are a data structure for representing character strings
via a binary tree of operation-labeled nodes. Both the nodes
and the trees constructed from them are immutable, mak-
ing ropes a persistent data structure. Ropes were designed
to perform well with large strings, and in particular, con-
catenation of large strings. We present our findings in us-
ing ropes to implement mutable strings in JRuby+Truffle, an
implementation of the Ruby programming language using
a self-specializing abstract syntax tree interpreter and dy-
namic compilation. We extend ropes to support Ruby lan-
guage features such as encodings and refine operations to
better support typical Ruby programs. We also use ropes to
work around underlying limitations of the JVM platform in
representing strings. Finally, we evaluate the performance of
our implementation of ropes and demonstrate that they per-
form 0.9x — 9.4x as fast as byte array-based string represen-
tations in representative benchmarks.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Run-time environments

Keywords Virtual Machine, Interpreter, Ropes, Strings,
Truffle, Graal, Ruby, Java

1. Introduction

Strings of character data are one of the most frequently used
data types in general purpose programming languages. Pro-
viding a textual representation of natural language, they are a
convenient form for interacting with users at I/O boundaries.
They are often used for internal system operations as well,
particularly where program identifiers are conveniently rep-
resented as strings, such as in metaprogramming. Some lan-
guages rely so heavily on strings that they are glibly referred
to as “stringly typed.”

[Copyright notice will appear here once ’preprint’ option is removed.]

The choice of string representation must strike a balance
between potentially competing concerns. Even modest im-
provements to either string memory consumption or perfor-
mance of common string operations could have a tremen-
dous effect on overall efficiency.

The predominant string representation is as a thin veneer
over a contiguous byte array. As a consequence, the runtime
performance of string operations in such systems follows
that of a byte array while the use cases may not.

The Cedar programming language [4] introduced ropes [1]
as an alternative string representation in order to better match
the design goals of the language. By modeling strings as an
immutable binary tree where the leaves represent sequences
of characters and interior nodes represent lazy operations,
such as concatenation, the language was able to drastically
alter the cost of common string operations. However, in or-
der to satisfy performance goals for different use cases, ropes
were introduced as a data type distinct from strings with lim-
ited compatibility between the two. In summary, this paper
makes the following contributions:

e We apply the ropes data structure to represent strings
in the Ruby programming language and show how self-
optimizing AST interpreters facilitate their implementa-
tion.

e We introduce new lazy operations that can be represented
as nodes in a rope.

e We show how ropes allow further optimizations to meta-
programming operations that are heavily used in id-
iomatic Ruby.

* We demonstrate that ropes, an immutable data structure,
have utility in languages with mutable string data types.

e We show that ropes can reduce the cost of string opera-
tions involving multi-byte characters.

2. Background

This section discusses traditional string representations and
ropes in more detail, along with the complications intro-
duced by the presence of multi-byte characters. We then
present Ruby’s string semantics. Finally, we introduce our
execution environment: JRuby+Truffle.

2.1 String Representation

The classical representation of strings is as an array of bytes
with an optional terminal character. These strings require

2016/4/23

contiguous memory cells and optimize for compactness.
Consequently, they have the same advantages arrays have,
such as constant-time element access and data pre-fetching.

By extending this simple representation with additional
metadata, such as string byte length or head offsets, the set
of fast operations available to strings can be expanded. E.g.,
string truncation can simply update the length value rather
than require a new array allocation and byte copy.

The byte array representation is not well-suited for all
applications, however. In some languages, such as Java, the
length of an array may have an upper-bound that is smaller
than addressable memory, placing a similar limit on the
length of a string. Requiring contiguous memory may also
prevent allocations if a free block cannot be found. Addition-
ally, operations that require byte copying, such as string con-
catenation, may lead to excessive memory fragmentation.

2.2 Ropes

Ropes [1] are a persistent data structure [5] that can be used
as an alternative implementation of strings. They were de-
signed for the Cedar programming language [4], with the
explicit goal of improving runtime performance over large
strings. They were inspired by other immutable string repre-
sentations, but introduced the efficient sequencing of opera-
tions by representing them as operation-labeled nodes linked
together in a binary tree.

Since ropes are chained together via pointers, the upper-
bound on the length of a rope is the total amount of address-
able memory. Moreover, the nodes in a rope do not need to
reside in contiguous memory. The price of this flexibility is
a heavier base data structure. Depending on the application,
however, it may be possible to recuperate that cost via de-
duplication, as the immutable nature of ropes means they
can be reused by the runtime.

Beyond the additional overhead of the data structure,
ropes suffer from some inefficiencies that mutable byte ar-
rays do not. In the pathological case of transforming each
character in a string, the rope would devolve to an allocated
node for each character. The Cedar environment employed
heuristics to recognize a handful of such problematic usage
patterns and provide specialized operations for them.

2.3 Encodings

The byte array representation of strings is optimal as long as
characters can be represented within the space of a byte. As
computers have broadened their reach to a more diverse au-
dience, the set of characters that must be representable has
grown well beyond the 256 afforded by a byte. Encodings
have been developed as a means of expanding the set of rep-
resentable characters by interpreting byte sequences, rather
than individual bytes, as characters. These byte sequences
can either be fixed-width or variable-width.

When encodings are taken into account, traditional string
representations can be seen as being optimized for fixed-
width encodings with a character width of 1 byte. For any

other type of encoding, some of the advantages inherent
to byte arrays, such as constant-time character access, are
muted.

Ropes, as implemented in Cedar, suffer from some of
the same encoding issues as their byte array counterparts.
E.g., accessing a character by index cannot be performed
by a simple binary search. Instead, a full treewalk must be
performed so the byte sequences can be processed.

24 Ruby

Ruby! is an object-oriented, dynamically-typed program-
ming language with mutable, encoding-aware strings as a
core data type. Ruby strings also serve as the language’s byte
array type via a special binary encoding.

Ruby strings can be interned to another data type known
as a symbol. Due to their performance advantages and more
compact syntax, symbols are used frequently in idiomatic
Ruby. However, the symbol API is deliberately quite limited
and symbols cannot be easily composed without construct-
ing a string as a temporary buffer. Additionally, symbols
were not eligible for garbage collection in Ruby versions
prior to 2.2.0. Subsequently, Ruby programs often consist
of a mixture of strings and symbols to perform similar tasks.
The programmer must decide which type to use as a careful
balance between code concerns, such as concision and value
safety, and VM concerns, such as performance, garbage col-
lection, and memory reuse.

2.5 JRuby+Truffle

Due to its rich features, such as metaprogramming, com-
prehensive collection APIs, and a pure object-oriented de-
sign, Ruby has been an attractive target for language im-
plementors and researchers. JRuby? is an open source, al-
ternative implementation of Ruby that uses its own com-
pilation phases to apply Ruby-level optimizations before
generating Java bytecode, including extensive use of the
invokedynamic instruction. JRuby+Truffle [7] is devel-
oped as part of the JRuby project, providing an alternative
backend for the JRuby runtime that eschews the guest lan-
guage compiler in favor of a self-optimizing AST interpreter
written using the Truffle framework [9]. To achieve peak per-
formance, JRuby+Truffle must be paired with GraalVM [8]
— a convenient distribution that bundles together OpenJDK
and the Graal dynamic compiler.

JRuby+Truffle achieves much of its performance via spe-
cialized implementations of core Ruby methods. Most often
these specializations are based upon argument types so that
polymorphic calls can be distilled down to their constituent
cases without incurring the overhead of unused code paths.
However, it can also specialize on attributes associated with
values. In our implementation, the various rope cases are
distinct types allowing for type specialization, but they also

! Ruby, Yukihiro Matsumoto and others, https: //www.ruby-1lang.org/
2 JRuby, Charles Nutter, Thomas Enebo and others, http://jruby.org/

2016/4/23

https://www.ruby-lang.org/
http://jruby.org/

track metadata that we can specialize on, such as character
width. Being able to specialize on both structure and data
allows us to tailor the code generated for each call site.

3. Ropes

Ropes are first mentioned by Boehm et al. [1] as an alterna-
tive to the byte array representation used by C and Pascal.
They present ropes from the Cedar language [4] as an alter-
native to strings, driven by four main design goals:

1. immutability — Strings should be able to be passed
around modules without concern for accidental modifica-
tion. Additionally, immutable strings make concurrency
guarantees much easier.

2. efficiency — Common operations, such as concatenation
and substring, should be fast and memory efficient.

3. scalability — Common operations should perform well
regardless of string length.

4. adaptability — Sources of string data (e.g., files and
network streams) should also be treated as strings and
support common string operations.

In contrast to mutable byte array representations, ropes
are constructed from nodes into a binary tree that represents
the contents of a string. The leaves of the tree do contain
byte arrays — that is unavoidable without more data types
built into the language — but the arrays themselves are im-
mutable, satisfying the first goal. Efficiency and scalability
are achieved by providing lazy operations for string concate-
nation and substring. These operations are represented by
operation-labeled nodes in the tree. By modeling the oper-
ations as a simple node addition to the tree root, they can
be performed in constant time. Adaptability is very much a
runtime-specific concern and given Ruby and Cedar had dif-
ferent design goals, we do not consider it in our evaluation.

While Cedar ropes did provide limited compatibility with
their traditional string type, called text, they were essen-
tially two distinct types; any usage of ropes was a deliberate
decision by the programmer. We are unaware of any system
developed since that has a rope-like representation exposed
as a core data type. More commonly, languages such as a
Java, provide different types for immutable strings (String)
and mutable buffers (StringBuilder), but they are both flat
representations. They satisfy goal #1, but otherwise perform
their operations in much the same way that C strings have
for decades. Rather than introduce ropes as a competing data
type, we look to use them as an implementation strategy for
Ruby strings.

4. Related Work

Other Ruby String Implementations All other implemen-
tations of Ruby use contiguous arrays of bytes to represent
strings.

The reference Ruby implementation, MRI, is written in
C and uses a pointer and length field. In some cases the
pointer can be copy-on-write shared by referring to the same
character array, however this is only implemented for simple
operations, such as strings from the same literal and simple
substrings.

JRuby, from which JRuby+Truffle was developed, is writ-
ten in Java. However it does not re-use the standard Java
String data type as some encodings supported by Ruby are
considered by some people to not be faithfully representable
in Unicode. Instead JRuby uses a byte [], which it encapsu-
lates in a ByteList class. JRuby’s byte lists support copy-
on-write for literals and substrings but do not support any
lazy operations such as concatenation. As JRuby uses a stan-
dard Java array of bytes, the length of strings are limited in
JRuby to around 2 GB.

Rubinius is an implementation of Ruby using a VM in
C++ but with much of the Ruby-specific functionality im-
plemented in Ruby. Like MRI, Rubinius uses copy-on-write
for string literals and for cases where one string is replaced
with another, but Rubinius does not share character data for
substring operations.

Ropes in Other Language Implementations PyPy is a
high-performance implementation of the Python language
using meta-circular implementation and a meta-tracing just-
in-time compiler [2]. PyPy has concatenation ropes, and
earlier versions experimented with additional rope opera-
tions such as lazy substrings, but useful speedups were not
observed and the more complex ropes were removed [3].
Python strings are immutable and idiomatic concatenation
of long strings is often achieved by creating an array and
then joining in a single operation, so the benefits of ropes
may not be as clear in Python as they are in Ruby. Also,
this work was prior to the meta-tracing JIT used in modern
versions of PyPy, so interaction with compiler optimizations
such as allocation removal were not considered.

GraallS, the JavaScript implementation using the same
technology as JRuby+Truffle, has a lazy concatenation string
object, but no other rope operations. Other JavaScript im-
plementations have similar string implementations. V8§ calls
concatenation ropes ConsString, and SpiderMonkey has
JSRope.

As described for the Ruby implementations, many lan-
guage implementations implement substrings as a view into
a shared character array. Java did this until 7u6, when it was
changed to avoid potential memory leaks, which is an issue
we do not address in this paper. Implementations that sup-
port ropes for concatenation such as V8 will flatten a con-
catenated rope before sharing the character array.

Java, JavaScript, and Python have simpler string encoding
semantics than Ruby with just one or two explicit encodings
used. However implementations may use additional encod-
ings internally. For example, V8 has two-byte strings as the
JavaScript standard describes but also one-byte strings, and

2016/4/23

SpiderMonkey has optimizations including inline strings
that do not allocate a separate character array. Java is also
exploring one-byte compressed strings.

5. Applications

Sharing String Data Other implementations of Ruby use
some form of copy-on-write to reduce unnecessary copies of
string character data. This can be as simple as a single char-
acter array used by different strings, possibly with different
start offsets and lengths. In Ruby this is particularly impor-
tant as string literals in the source code allocate a new string
object each time they are executed, rather than referring to
a single object as in Java. Ropes can be applied to achieve
the same goal, with a single immutable rope shared between
all instances of the string literal. We extend this to work for
string literals across multiple source files by maintaining a
global table of ropes into which we de-duplicate ropes as
they are created. We also use this table to share ropes used
by other long-lived objects, such as Ruby’s symbols.

Lazy String Concatenation One of the starkest contrasts
between a simple byte array-based string representation and
ropes is how string concatenation is handled. In its simplest
form, the former requires the allocation of a new byte array
large enough to hold the contents of both strings and then
those strings are copied, in order, to the output buffer. This
is a linear time operation that also requires enough memory
to hold two copies of the resulting string while the operation
is being performed. In contrast, ropes simply create a new
ConcatRope node with its child pointers referencing the two
strings being concatenated; a constant time operation with a
fixed amount of memory overhead for the additional node.
Repetitive byte copying with a traditional string repre-
sentation can be mitigated by allocating spare memory and
tracking the length of the string, allowing smaller concate-
nation operations to occur within the excess space of the re-
sulting string. However, the approach is impractical for large
strings as it requires an undue amount of wasted memory in
the form of preallocated, but unused, space. It also does not
work when the result of the operation is to be non-destructive
with regards to the source operands — in that case allocating
a new byte array for the result is unavoidable.
Concatenations with ropes are effectively a lazy opera-
tion. While a new ConcatRope node is created immediately,
the complete sequence of bytes for the string are now rep-
resented by the structure of the rope. Ropes as described
by Boehm et al. never allocate a byte array for the en-
tire string, rather relying on a treewalk whenever the bytes
are needed. In our implementation, we have opted to sacri-
fice immutability of ConcatRope instances — yet maintain
idempotency — by attaching a byte array to each node, re-
gardless of type, in the rope. The first time the byte array is
needed, it is calculated and then cached in the root node.
While we pay the cost of walking the tree for the ini-
tial calculation, subsequent requests for the byte array are

constant time; similar to a byte array-based representation.
However, if a string has a series of N concatenation opera-
tions before the full list of bytes is needed, the rope approach
would only require a single byte copy operation, whereas the
byte array-based representation would require N (1 per op-
eration, modulo reductions due to preallocated extra space).

A special case of concatenation is repeatedly concatenat-
ing a string with itself, which Ruby provides as the * opera-
tor on string objects.

Lazy Substrings Generating a substring from an existing
substring is a key operation for Ruby, a language designed
to process text and used commonly to handle text data on
the web. Breaking apart strings, matching in regular expres-
sions, and parsing HTTP requests & JSON payloads are all
examples of producing substrings that could refer back to
the original string where they entered the VM’s heap. With
ropes, even as the substrings are processed, either being con-
catenated with other things or further substringed, they can
still refer back to the original source of the string. As with
lazy concatenation, lazy substrings allow us to allocate a new
string without copying the data inside it.

Multi-byte Indexing Since strings in Ruby are encoding-
aware and may use multi- and variable-byte schemes, re-
trieving a character by index implies knowing both the string
length for bounds checking and the character boundaries for
the underlying encoding. For strings with fixed-width encod-
ings, the calculations are straightforward, but for common
encodings like UTF-8 finding character boundaries requires
non-trivial logic. UTF-8 strings are common on the internet
and are the default encoding of Ruby source files which dic-
tates the encoding of string literals in them.

An application of ropes is to help translate a character’s
index to the byte offset, because ropes can store both their
byte length and character length. A string made up of a tree
of ropes can then more easily seek to the rope that contains
the character by skipping whole nodes based on character
length. This is something of a side-effect of ropes, and only
applies if they are made up of many rope nodes which may
not always be the case.

Metaprogramming Idiomatic Ruby libaries and programs
make very extensive use of metaprogramming, or reflective
operations. For example, it is common to call methods using
their string or symbol name and the #send method, if the
method to call varies. In extreme cases, method names are
constructed dynamically from multiple sources [6].

Language implementations use inline caches to select
methods to call based on a name. The name is compared
against cached names that have been used before, which then
yields the corresponding method. For conventional method
calls and with method names that are symbols, the names can
be interned and so a reference comparison made. If method
names are strings then a full comparison of the string’s
contents must be made.

2016/4/23

When ropes have been constructed from the same sources,
string comparisons can avoid a linear byte array comparison
by performing reference equality checks on either the ropes
themselves or their backing byte arrays.

Access to Compiler Optimizations Sophisticated language
implementations may use dynamic compilers with features
such as escape analysis, partial escape analysis, and scalar
replacement of aggregates, which allow small objects that
are not used outside of a method to avoid heap allocation
and only exist as temporary values. Strings with their own
character arrays are unlikely to be small enough to meet the
heuristics of these algorithms, but the node objects in a rope
probably will be.

A method that performs operations such as concatenation,
character retrieval, and substring before returning a final
result may be able to keep those intermediate rope node
objects from escaping the compilation unit and so allow the
compiler to apply the more sophisticated optimizations.

6. Long Strings

The Java language and JVM were designed when 32 bit
processors were common, and so specify that arrays are
indexed using a signed 32 bit integer, regardless of what the
architecture and address space actually support. Java does
support 64 bit integers, but not for indexing an array. As the
integer types are also signed, this limits the size of a byte[],
and so a string that uses such a representation, to 2 GB.

With ropes we can continue to use byte[], which is
visible to optimizations and simple to access, but combine
them in a rope to produce a string whose length is bound only
in practice by available memory. One remaining limitation is
that we still use a signed long to represent the string length.

Most Ruby applications will have no need for such long
strings, but it does represent a deviation of behavior between
JRuby and MRI, which is something that we aim to mini-
mize. Ruby strings are used for raw binary data as well as
text with a specific encoding, so the 2 GB limit does, for
example, currently prevent JRuby from loading and calcu-
lating the message digest of a (not unreasonable) 3 GB file,
without manually chunking it.

7. Implementation

Our implementation of ropes (Fig. 1) consists of an abstract
base Rope class and subclasses for the lazy string concate-
nation (ConcatRope), lazy substring (SubstringRope),
and lazy repetition (RepeatingRope) operations. We also
have an abstract LeafRope, which represents the root of
the leaf rope hierarchy. In a departure from Boehm et al.’s
ropes, our ropes codify string encoding information in the
leaves. Thus, we have leaves for ropes encoding ASCII-
only characters (AsciiOnlyLeafRope), for ropes repre-
senting valid multibyte characters (ValidLeafRope), and
for ropes with invalid byte sequences for the rope’s encod-
ing (InvalidLeafRope).

Figure 1. JRuby+Truffle’s rope class hierarchy. LeafRope sub-
classes are split by the rope’s character encoding. All other Rope
subclasses represent lazy string operations.

Lazy
Operations

Encoding
Information

In addition to the byte array, our ropes store metadata use-
ful for both Ruby language semantics and the Graal com-
piler. Our ropes store encoding and code range values, as
well as a single-byte optimizable flag, to guide optimizations
on interpretations of the byte array. We also store the byte
length and character length, along with the Ruby-level hash
code, for the string represented by the rope.

In another departure of Boehm et al., we never employ re-
cursion to traverse the tree. Truffle’s partial evaluator does
not work well with unbounded recursion, so we have opted
to use an iterative treewalk where necessary. Removing re-
cursion means some of the heuristics Boehm et al. applied
to limit tree depth are no longer necessary. While an itera-
tive treewalk requires the allocation of a node stack to track
position, it can be heap allocated so its growth is not much
of a concern. Recursive walks, on the other hand, must limit
tree depth in order to manage the call stack size. As we are
not concerned with depth, we have also eliminated tree re-
balancing to make concatenation a constant time operation.
The trade-off is character retrieval by index may degrade to
a linear time operation if the tree is extremely unbalanced.

7.1 Specializations

Efficient implementation of string operations is an impor-
tant contributing factor to the overall performance of many
language runtimes. The choice of string encoding can dras-
tically impact the runtime complexity of those operations.
Without careful consideration, supporting multiple encod-
ings can result in performance degrading to that of the slow-
est encoding.

While a runtime may support a wide array of encodings
(JRuby+Truffle ships with 101 different encodings), in prac-
tice many applications use a small subset of those encodings.
Moreover, applications quite often only use encodings that
are compatible with each other (i.e., they support conversion
from one to the other without reinterpretation of the under-
lying bytes). Compatible encodings can often be treated as a
homogeneous type for the purposes of optimization.

By specializing our operations on both the structure and
the content of ropes, we are able to avoid any slow paths

2016/4/23

associated with encodings, or classes of encodings, not in
active use. Should a previously unseen encoding, or class
of encodings, be encountered, we deoptimize and transition
to a more generalized form of the operation that provides
correct functionality for the entire set of active encodings.
We limit the performance impact of heterogeneous classes
of encodings to appropriate call sites by method cloning.

Due to the importance of adequately handling string en-
codings, we have extended ropes to encode the most criti-
cal information needed for specialization decisions into the
leaf node types and a set of final metadata fields within each
rope. The leaf node types correspond to a broad classifi-
cation of encodings, known as code ranges in Ruby. They
partition strings into those known to consist only of 7-bit
ASCII characters, those that have a valid byte representa-
tion for their associated encoding (but at least one non-7-bit
ASCII character), and those with an invalid byte representa-
tion for their associated encoding. The metadata fields can be
used to further divide ropes based on more refined criteria,
such as the width of a character, regardless of encoding. As
a consequence, we specialize our operations on a wide range
of discriminators, including empty vs. non-empty, fixed- vs.
variable-width, UTF-8 vs. other variable-width encodings,
rope node type, rope structure, and rope equality.

7.2 Operations

Concatenation and Addition Ruby supports string con-
catenation and addition. Both operations combine the con-
tents of two strings, with the former being destructive in the
first operand, while the latter allocates a new string whose
contents are the result of the combination. We represent both
operations with the same rope structure, as seen in Figure 2,
only modifying the rope reference in the string object if nec-
essary. A ConcatRope node represents the lazy operation
and its metadata is populated as a union of its children’s val-
ues, with Ruby-specific rules governing conflict resolution.

w " encoding UTF-8
garcon byte length 7
- character length 6
ConcatRope single-byte optimizable false
/ \ code range VALID
“gar” “con”
AsciiOnlyLeafRope ValidLeafRope
T T
I I
encoding US-ASCII encoding UTF-8
byte length 3 byte length 4
character length 3 character length 3
single-byte optimizable true single-byte optimizable false
code range TBIT code range VALID

Figure 2. String concatenation and addition are lazy operations
represented by a ConcatRope.

By storing the metadata at fixed locations within the ob-
ject, we allow the compiler to perform optimizations on that
metadata uniformly across all rope types. Avoiding the lazy
evaluation of those values also allows for rope construction
operations to occur in constant time, rather than linear time.

Substring Taking the substring of a string is a general op-
eration that can take on many forms. Ruby supports char-
acter retrieval by index, string truncation, character replace-
ment, character iteration, regular expression matching, and
several other operations that can be modeled as a variation
of substring. In its most general form, we perform the op-
eration lazily and denote it with a SubstringRope, as il-
lustrated in Figure 3. In addition to the metadata fields that
all Rope instances contain, SubstringRope instances also
store a child reference to the string being substringed and a
byte offset into the child. As with ConcatRope, we eagerly
calculate all metadata for optimal performance.

. F----1 encoding UTF-8
on byte length 2
B character length 2
SubstringRope single-byte optimizable true
i code range 7TBIT
- " encoding UTE-8
garcon byte length 7
- character length 6
ValldLeafRope iiiiii single-byte optimizable false
code range VALID

Figure 3. Taking a substring is generally a lazy operation repre-
sented by a SubstringRope.

In limited cases we opt to eagerly perform the substring
operation, either in part or in whole. Taking a single-byte
substring is a frequent operation in Ruby. It is advantageous
for us to forgo the SubstringRope in favor of a LeafRope
representing the single byte, as demonstrated in Figure 4.
As an additional step, we cache the single-byte LeafRope
instances in lookup tables for the most popular Ruby en-
codings (each sharing the same backing byte array), guar-
anteeing reference equality for the results of all single-byte
substring operations.

-
byte length 1
D o
g
SubstringRope

[Tt}

g
l) AsciiOnlyLeafRope
“garcon”
ValidLeafRope

Figure 4. Taking a single-byte substring can be reduced to a
single-byte LeafRope. Single-byte ropes are called for in many
places in JRuby+Truffle and as such, we store them in a lookup
table so the same instances can be re-used across the runtime.

When taking the substring of a rope that is itself an
instance of SubstringRope, we collapse the operation by
adding the two substring offsets together. The result is two
distinct SubstringRope nodes that share the same child, as
shown in Figure 5. While tree depth is not something we
generally must be concerned with in practice, by reducing
the construction we limit the likelihood a small substring
operation keeps a large interstitial tree live for GC purposes.
It also restricts the set of valid tree relationships, which

2016/4/23

is helpful for any operation that must match against the
structure of the tree.

“I'§” byte length 3
i byte offset 2
SUbStrlngROpe y byte offset 1 byte length
i /| byte length 6 .

7 \ !
1

“arcon”) “arcon” “rg”

SubstringRope SubstringRope SubstringRope
“garcon” “gargon”

ValidLeafRope ValidLeafRope

Figure 5. Taking the substring of a SubstringRope can be re-
duced to a new SubstringRope of the original’s child by combin-
ing offsets.

Likewise, when taking the substring of a ConcatRope,
we compare the byte offset and byte length values of the sub-
string operation to each of the ConcatRope’s children. If the
values cross the boundary between the two children, then we
insert a SubstringRope whose child is the ConcatRope.
Otherwise, we pick the appropriate child and encounter one
of two cases: 1) the substring matches the range of the child
exactly, in which case the result of the substring operation is
simply a reference to that child; or 2) the substring is smaller
than the child, and so we restart the substring operation over
the child, taking the child node’s type into account.

Repetition Ruby includes a string “multiplication” opera-
tion that returns a new string consisting of the receiver re-
peated N times. In a byte array representation, this oper-
ation would require the allocation of a new buffer of size
|source| x N bytes. The operation would then copy the
source string’s byte array to the destination buffer N times.

With ropes, we have several ways we could model the
operation. We can treat the result as a LeafRope and pop-
ulate its bytes in the same manner as a byte array-oriented
approach would. However, it may be more advantageous to
make use of the inherent byte array sharing of the source
string. In this case we can treat the operation as a series of
N — 1 concatenations. For successive powers of 2 we can
even mirror one side of the concat tree to the other, further
maximizing our ability to share already constructed objects.

A third option is to treat the operation as a simple run
length encoding. Our RepeatingRope is a lazy opera-
tion that stores a reference to the source string and the
repetition count. For many Ruby string operations, the
RepeatingRope instance can operate as a lazy sequence,
satisfying the request without needing to reify a byte ar-
ray for the string being represented. This approach is both
memory efficient and time efficient, reducing a linear-time
operation to a constant-time one.

JRuby+Truffle specializes on both the metadata of the
receiver string and the value of N to choose between each

of the implementations. While use of RepeatingRope per-
forms well in the general case, there are situations in which
one of the other two algorithms may yield better results, such
as small repetitions of single-byte strings.

Tree Flatten We eliminate the need for multiple treewalks
across the entire rope by caching the resulting byte array at
the root, as noted in Section 5. However, this still keeps
the entire tree resident in memory. In some cases we wish
to eliminate the tree entirely and thus we have an eager flat-
ten operation. When flattening a LeafRope we can trivially
return the rope, but in all other cases the result of the op-
eration is a newly allocated LeafRope instance, which by
definition has its byte array populated. NB: if a new rope
is allocated, the result of the operation shares no references
with the source rope, which may cause cache misses if the
source rope was used as a cache key in any specializations.

All ropes are flattened before being interned in our rope
table. Insertion and retrieval from the table are slow-path
operations and thus the overhead of the flattening operation
is inconsequential. By flattening, we reduce the size of the
table and decrease the likelihood of entries being evicted
during GC cycles.

Bytes Much of the benefit of ropes derives from few string
operations ever needing direct access to the underlying
bytes. By deferring the construction of either the complete
or a partial (subrange) byte array until necessary, ropes avoid
many costly memory copy operations. Ruby’s String class
has methods for retrieving a copy of the underlying byte ar-
ray, walking the bytes with an iterator, and retrieving an ar-
bitrary byte by index, amongst others. When such a method
is called, we would like to satisfy the request as efficiently
as possible given the structure of the rope backing the string.

For the purposes of byte-oriented operations, ropes can
be partitioned into two classes: those that have their internal
byte array populated and those with a sparse byte array.
By definition, all LeafRope instances fall into the former
category. By extension, due to the flattening operations on
the interned rope table (see Section 7.2), all string literals
fall into the former category. By specializing on whether the
rope’s byte array is populated, we can provide a fast-path
method that does a simple field load.

For the ropes with a sparse byte array, we determine on
a per-operation basis whether it is cost-effective to populate
the byte array. Once populated, that rope can then proceed
down the fast path for subsequent string operations. Alter-
natively, rather than populate the byte array, we may opt to
flatten the rope and then update the source string’s rope refer-
ence to the new flattened rope. As flattened ropes are always
instances of LeafRope, this also allows future byte-oriented
string operations to proceed down the fast path.

8. Evaluation

In order to evaluate the impact of choice of string represen-
tation, we compared our rope implementation against tradi-

2016/4/23

tional byte array approaches in benchmarks that stress criti-
cal Ruby string operations. We have extracted a subset of the
fasta benchmark that focuses on string operations and wrote
several of our own benchmarks using the bench9000 bench-
marking tool. Of the benchmarks we wrote, two were micro
benchmarks to measure string equality (micro-string-equal)
and string length and character retrieval by index in the pres-
ence of multi-byte characters (micro-string-index). The last
benchmark is a simulated HTML template rendering engine,
drawn from the Ruby standard library template engine, ERB.

For our comparisons, we implemented a RopeBuffer
that matches the API of Rope but is backed by a mutable
byte array. RopeBuffer instances are always leaf nodes as
any modifications to them can be made in situ. We modified
JRuby+Truffle to add RopeBuffer-specialized variants of
the benchmarked string operations.

We also compare the performance of JRuby+Truffle’s
ropes to that of strings in other Ruby implementations.
While those comparisons are illustrative of general Ruby
string performance, we cannot make claims about how well
a rope representation would work in those runtimes due to
the innate differences in their virtual machines and com-
pilers. All experiments were run on a system with an Intel
Xeon Core i7-4390K processor with 6 cores each at 3.4 GHz
and 32 GB of RAM, running Ubuntu Linux 14.04. We evalu-
ated MRI 2.3.0, JRuby+Truffle Ofcb104 with GraalVM 0.11,
JRuby 9.0.5.0, and Rubinius 3.15. Reported errors are the
standard deviation.

8.1 fasta

The fasta benchmark measures the generation of DNA se-
quences, with benchmarks split between repeated copy-
ing from a supplied sequence and random generation from
source alphabets. The former benchmark is heavy on string
operations, exercising Ruby’s string multiplication, trunca-
tion, length, substring, and concatenation methods, whereas
the latter is a mixture of heterogeneous data type calls. We
extracted the repeated fasta benchmark for our evaluation.
The benchmark was modified to collect results in a buffer
rather than print them out to standard output so as to elimi-
nate I/O overhead from the analysis.

— 1.7 |
=
23
8 o 1r N
=T
?s
: i
0 N N "
>
& & ¢ & & &
& be S ‘(ﬁ R
& & & &
& &S R

Figure 6. Comparison of Ruby runtime performance on the the
fasta benchmark.

The selected operations are a mix of immutable and mu-
tating calls so as to not implicitly favor one string representa-
tion over another. Figure 6 shows the relative performance of
various Ruby runtimes, normalized to MRI’s runtime perfor-
mance. JRuby+Truffle’s rope representation outperforms all
other runtimes, although the error was very large (too large
to show) which we believe is due to large garbage collection
pauses.

Much of the difference in execution time can be attributed
to the string concatenation operation. With ropes, this is a
constant time operation. Other runtimes may need to allocate
a new buffer and copy the contents from both the receiver
and operand strings to the new buffer.

The substring operation is also performed repeatedly in
this benchmark. For runtimes that perform copy-on-write for
the byte arrays, the difference between ropes and a byte ar-
ray representation is negligible in this context, as no modifi-
cations are made to either the source string or the resulting
substrings after an initial truncation.

We did not evaluate the memory requirements of any im-
plementations, other than to note that they each managed to
calculate a 100 million character DNA sequence and split
it into 60 character substrings within the bounds of a 2 GB
heap. With repeated concatenations of substrings, the over-
head of the rope data structure may eventually be problem-
atic in a more generalized case. However, the non-rope rep-
resentations each eagerly allocate 100 MB of contiguous
memory to store the results of the string multiplication oper-
ation, whereas a RepeatingRope instance can simply store
a reference to a LeafRope with a 287 element byte array
along with a repetition count.

8.2 String Equality

Efficient comparison of strings is necessary for a high per-
forming Ruby runtime. While string equality is a concern
for typical application usages such as filtering user data and
dictionary lookup, it is also used frequently within Ruby for
metaprogramming facilities.

The micro-string-equal microbenchmark allocates two 10
million character, 7-bit ASCII strings, and measures the run-
time’s performance in comparing them. In order to prevent
byte array sharing between the two strings, a mutation is
made to one of them and then reverted. The strings be-
ing compared are logically equivalent, so there is no early
bailout possible via mismatch detection.

Our ropes perform slightly worse than a byte array rep-
resentation, as can be seen in Figure 7. Due to the muta-
tions required to prevent byte sharing, the rope representa-
tion is a tree that reflects those operations, rather than a sim-
ple LeafRope. When comparing composite ropes, our im-
plementation first flattens the tree, which involves additional
memory allocations. It then compares the resulting arrays as
if they were LeafRope instances. The JRuby+Truffle rope
buffer results illustrate how the JRuby+Truffle runtime per-
forms when comparing strings that begin in the flat state.

2016/4/23

In future work we will look to lower the cost of the flat-
tening operation or, optionally, eliminate it entirely. Without
caching partially combined results intermittently throughout
the tree, our rope comparison will always require a full tree-
walk. The benchmark only stresses shallow trees, but the 10
million bytes being compared will dominate the number of
pointers traversed during a typical treewalk; indeed, this can
be enforced by limiting the number of pointers via tree flat-
tening during construction.

T T T T T

& & i~
K : N & N \@*‘\
&F & <

e

|
o
38
Q
;é% 0.5 .
e
R - o I .
V@
<
&5&

Figure 7. Comparison of Ruby runtime performance on the
micro-string-equal benchmark.

8.3 Character Retrieval by Index

The micro-string-index microbenchmark measures the per-
formance of Ruby runtimes in retrieving a character by in-
dex in the presence of multi-byte characters. It adds together
a 10-character ASCII string with a single character, 3-byte
wide UTF-8 string, and then iterates through each character
in the resulting string.

The results in Figure 8 highlight the value in making
ropes encoding-aware. Our 6.8x speed-up over MRI is
largely due to ropes tracking both byte length and character
length, making bounds checking a very cheap operation. The
semantics of Ruby only allow the concatenation of compat-
ible strings, so the resulting string’s length must be the sum
of its children’s lengths — a simple value to carry forward.
Of the other runtimes, only Rubinius tracks character length.
The remainder must do a byte scan to determine character
length and do this for every character access.

Ropes only track a string’s character length, not the in-
dividual character offsets. As such, determining where a
variable-width character exists is also a linear operation
for ropes. We minimize that cost by exploiting the rope’s
structure. In this case, the ConcatRope’s children are an
AsciiOnlyLeafRope and a ValidLeafRope. By knowing
the character length of each child and the index for the char-
acter retrieval operation, we can decompose the rope and
choose the child that can best satisfy the request. Here, the
first N —1 operations will route to the AsciiOnlyLeafRope
where the request can be satisfied optimally.

We note that if the rope is flattened, the performance dif-
ferential drops to 2x that of MRI. The choice of benchmark
is intended to mimic the behavior of real world templat-

ing applications, which often are authored with 7-bit ASCII
characters but combine user-supplied input, such as a per-
son’s name, in the resulting string. In that situation, the rope
structure would qualify for the deconstruction optimization.

[~ I i
== °
S 2
iz Y)
wn % 9] N
- 1 | |
m 00 = = m
)
@Q‘ Q'OQ@ ‘bg@ S X ﬁ\ob 3 &@
S S
& S ¥

Figure 8. Comparison of Ruby runtime performance on the
micro-string-index benchmark.

8.4 HTML Template Rendering

ERB is a templating engine that is included as part of Ruby’s
standard library. It processes a set of markup tags to handle
Ruby expressions, which are typically used to dynamically
generate content to be substituted into the document or to
provide limited control flow to guide the rendering process.
Its inclusion in the standard library makes it a popular first
choice for many applications, such as HTML rendering.

The templating-erb benchmark extracts a portion of the
ERB rendering pipeline for evaluation of string processing.
The entire rendering process involves many other aspects
of a Ruby runtime which, while interesting, would detract
from the evaluation of string performance. In particular, the
immediate output of ERB’s processor is a fragment of Ruby
code to be dynamically evaluated. Our benchmark includes
a pre-generated fragment and executes it, much like Ruby’s
eval would, generating the final product.

As ERB is part of the Ruby standard library, it is subject
to change along with the standard library. To ensure consis-
tent results across all runtimes, our extracted benchmark is
based on ERB from version 2.2.4 of MRL

The generated Ruby fragment from ERB makes heavy
use of string concatenation, which is an operation that is
generally favorable to ropes. As shown in Figure 9, we see
that JRuby+Truffle ropes are 9.4x faster than MRI. Our rope
buffers execute at 2.7x the speed of MRI, suggesting the dif-
ference in speed for ropes is not entirely related to a decrease
in byte array allocations. JRuby without invokedynamic
enabled operates at 1.7x the speed of MRL

8.5 Ropes vs. Rope Buffers

Ruby has been fertile ground for language implementation,
spawning several runtimes that see production use. Compar-
ing our performance relative to alternative language imple-
mentations helps frame the context for our work. We also
evaluated the performance differences between ropes and

2016/4/23

% 10 - n
£
22
g
s - |
. ‘ D 0 =
N
g OQQ% é&é < & %\Q& @&&
¥ Q¢ ¥ <&

Figure 9. Comparison of Ruby runtime performance on the the
templating-erb benchmark.

rope buffers within the same JRuby+Truffle runtime to min-
imize environmental differences. Both representations were
specialized within our runtime for the operations being exer-
cised in our benchmarks. However, differences in data repre-
sentation can affect the partial evaluator in the Truffle/Graal
system. We made a best effort to make both representations
amenable to online compilation, but we did not normalize
the process by disabling optimizations that applied to only
one or the other representation. We care about peak perfor-
mance and thus the choice of string representation is largely
influenced by how it impacts compilation.

Ropes outperform buffers by a wide margin in the fasta,
templating-erb, and micro-string-index benchmarks. Both
ropes and rope buffers had very similar performance for
the micro-string-equal benchmarks. The micro-string-equal
benchmark in particular produces a situation that is sub-
optimal for ropes. The fasta benchmark suffers from a wide
margin of error, as noted in Section 8.1. While we are care-
ful not to generalize those results to all string operations, it
is encouraging to see that the worst-case observed rope per-
formance is competitive with a byte array representation.

We did not measure differences in memory usage or
garbage collection between the two representations. Both
operated within the same upper limit of a 2 GB heap permit-
ted to each of the benchmarks.

9. Limitations and Future Work

In some cases it is beneficial to flatten ropes when they
reach a certain depth: a trade-off between the time and space
needed to create a single byte array with improved indexing
performance and the lower overhead of a LeafRope. We
do flatten ropes in some cases such as when a string is
interned as a symbol, but we are unaware of any work on
sophisticated flattening heuristics and leave this for future
work.

In our evaluation we have not considered the performance
of I/O operations, as our benchmarks only measure the con-
struction of strings. We have begun to experiment with I/O
operation specializations that can output a rope without flat-
tening it, but also leave this for future work.

10. Conclusions

We have evaluated the performance of ropes as a string rep-
resentation for the Ruby programming language. Despite the
incongruity of Ruby strings being mutable while ropes are
immutable, we have found worst-case performance of ropes
on some critical string operations to be competitive with a
traditional byte array representation. We have demonstrated
that ropes can have a significant performance advantage over
byte arrays. Rope performance does vary with its structure
due to our specialized methods in JRuby+Truffle, but we
generally saw a performance range of 0.9x — 9.4x of MRI
for representative benchmarks. By tailoring our rope imple-
mentation to Ruby’s semantics — notably making our ropes
encoding-aware — we have reduced some core linear time
operations to constant time. The immutable nature of ropes
allows us to freely share references, which makes them suit-
able for caching in the Truffle framework. Immutable meta-
data in the rope structure also provides context to the Graal
optimizing compiler, unlocking optimizations that would not
be available with a byte array string representation. Future
work will investigate memory and garbage collection trade-
offs between the two string representations.

References

[1] H.-J. Boehm, R. Atkinson, and M. Plass. Ropes: An Alternative
to Strings. Softw. Pract. Exper., 25(12):1315, dec 1995.

[2] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing
the Meta-Level: PyPys Tracing JIT Compiler. In Proc. of
ICOOOLPS, 20009.

[3] Carl Friedrich Bolz. Private correspondence with the authors,
April 2016.

[4] B. W. Lampson. A Description of the Cedar Programming
Language: A Cedar Language Reference Manual, Dec. 1983.
Xerox PARC Technical Report CSL 83-15.

[5] C. Okasaki. Purely Functional Data Structures. Cambridge
University Press, New York, NY, USA, 1999.

[6] C. Seaton. Specialising Dynamic Techniques for Implementing
The Ruby Programming Language. PhD thesis, The University
of Manchester, 2015.

[7] C. Seaton, B. Daloze, K. Menard, P. Chalupa, et al.
JRuby+Truffle, High-Performance Truffle Backend for JRuby.
https://github.com/jruby/jruby/wiki/Truffle.

[8] T. Wiirthinger, C. Wimmer, A. WoB, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One VM
to rule them all. In Proc. of Onward!, pages 187-204, 2013.

[9] T. Wiirthinger, A. W68, L. Stadler, G. Duboscq, D. Simon, and

C. Wimmer. Self-optimizing AST interpreters. In Proc. of DLS,
page 73, 2013.

2016/4/23

https://github.com/jruby/jruby/wiki/Truffle

	Introduction
	Background
	String Representation
	Ropes
	Encodings
	Ruby
	JRuby+Truffle

	Ropes
	Related Work
	Applications
	Long Strings
	Implementation
	Specializations
	Operations

	Evaluation
	fasta
	String Equality
	Character Retrieval by Index
	HTML Template Rendering
	Ropes vs. Rope Buffers

	Limitations and Future Work
	Conclusions

